Table 3.
Performance of the genus classification model using default parameters of Weka
Type of evaluation | ML algorithm | Weighted average among all classes | |||||
---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F-Measure | MCC | AUC | ||
Using a test set | MLP | 0.941 | 0.963 | 0.941 | 0.951 | 0.8940 | 0.971 |
SMO | 0.835 | 0.865 | 0.835 | 0.795 | 0.6340 | 0.816 | |
RF | 0.934 | 0.941 | 0.934 | 0.936 | 0.8750 | 0.988 | |
10-fold cross validation | MLP | 0.970 | 0.970 | 0.971 | 0.970 | 0.9610 | 0.991 |
SMO | 0.920 | 0.901 | 0.920 | 0.906 | 0.8850 | 0.962 | |
RF | 0.966 | 0.966 | 0.966 | 0.965 | 0.9510 | 0.997 | |
Leave-one-out | MLP | 0,971 | 0,971 | 0,972 | 0,960 | 0.9920 | 0.995 |
SMO | 0.944 | 0.938 | 0.945 | 0.939 | 0.8810 | 0.946 | |
RF | 0.991 | 0.991 | 0.991 | 0.991 | 0.9550 | 0.999 | |
Mean performance | MLP | 0.966 | 0.974 | 0.967 | 0.970 | 0.9490 | 0.986 |
SMO | 0.900 | 0.901 | 0.900 | 0.880 | 0.8800 | 0.908 | |
RF | 0.964 | 0.966 | 0.964 | 0.964 | 0.9238 | 0.995 |