Table 4.
Performance of the gene classification model using default parameters of Weka
Type of evaluation | ML algorithm | Weighted average among all classes | |||||
---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F-Measure | MCC | AUC | ||
Using a test set | MLP | 0.972 | 0.973 | 0.973 | 0.972 | 0.968 | 0.985 |
SMO | 0.976 | 0.977 | 0.976 | 0.976 | 0.973 | 0.995 | |
RF | 0.981 | 0.982 | 0.982 | 0.982 | 0.979 | 0.998 | |
10-fold cross validation | MLP | 0.970 | 0.971 | 0.971 | 0.971 | 0.967 | 0.994 |
SMO | 0.972 | 0.973 | 0.973 | 0.973 | 0.969 | 0.994 | |
RF | 0.976 | 0.977 | 0.977 | 0.977 | 0.974 | 0.997 | |
Leave-one-out | MLP | 0.970 | 0.970 | 0.970 | 0.970 | 0.966 | 0.994 |
SMO | 0.9727 | 0.973 | 0.973 | 0.973 | 0.969 | 0.994 | |
RF | 0.9759 | 0.976 | 0.976 | 0.976 | 0.973 | 0.997 | |
Mean performance | MLP | 0.9707 | 0.9713 | 0.9713 | 0.9710 | 0.9670 | 0.9910 |
SMO | 0.9736 | 0.9743 | 0.9740 | 0.9740 | 0.9703 | 0.9943 | |
RF | 0.9776 | 0.9783 | 0.9783 | 0.9783 | 0.9753 | 0.9973 |