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Abstract

Aims—Epigenetic regulators, including microRNAs(miRNAs), are implicated in type 2 diabetes, 

but evidence linking circulating miRNAs in pregnancy and risk of gestational diabetes(GDM) is 

sparse. Potential modifiers, including pre-pregnancy overweight/obesity and offspring sex, are 

unexamined. We hypothesized that circulating levels of early-mid-pregnancy(range 7-23 weeks of 

gestation) candidate miRNAs are related to subsequent development of GDM. We also 

hypothesized that miRNA-GDM associations might vary by pre-pregnancy body-mass 

index(ppBMI) or offspring sex.

Methods—In a case-control analysis(36 GDM cases/80 controls) from the Omega study, a 

prospective cohort study of pregnancy complications, we measured early–mid-pregnancy plasma 

levels of 10 miRNAs chosen for potential roles in pregnancy course and 

complications(miR-126-3p, -155-5p, -21-3p, -146b-5p, -210-3p, -222-3p, -223-3p, -517-5p, 

-518a-3p, and 29a-3p) using qRT-PCR. Logistic regression models adjusted for gestational age at 

blood draw (GA) were fit to compare circulating miRNAs between cases and controls. We 

repeated analyses among overweight/obese(ppBMI≥25kg/m2) or lean(ppBMI<25kg/m2) women, 

and women with male or female offspring separately.

Results—Mean age was 34.3 years(cases) and 32.9 years(controls). GA-adjusted 

miR-155-5p(β=0.260/p=0.028) and - 21-3p(β=0.316/p=0.005) levels were positively associated 
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with GDM. MiR-146b-5p(β=0.266/p=0.068) and miR-517-5p(β=0.196/p=0.074) were borderline. 

Associations of miR-21-3p and miR-210-3p with GDM were observed among overweight/obese 

but not lean women. Associations of six miRNAs(miR-155-5p, -21-3p, - 146b-5p, -223-3p, 

-517-5p, and -29a-3p) with GDM were present only among women carrying male fetuses(all 

p<0.05).

Conclusions—Circulating early–mid-pregnancy miRNAs are associated with GDM, particularly 

among women who are overweight/obese pre-pregnancy or pregnant with male offspring. This 

area has potential to clarify mechanisms underlying GDM pathogenesis and identify at-risk 

mothers earlier in pregnancy.
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1. Introduction

Gestational diabetes (GDM) is increasingly common, affecting 5-15% of pregnancies[1], 

and is implicated in adverse outcomes for both mother and child[2]. Controversy persists 

surrounding GDM screening, but current consensus recommendations support screening for 

GDM in mid pregnancy (24-28 weeks gestation)[3]. Changes related to maternal glycemia 

and fetal hyperinsulinemia, however, begin much earlier[4, 5]. The pathophysiology of 

GDM is not completely understood, and early-mid pregnancy biomarkers may facilitate 

progress in this area. Early-mid pregnancy biomarkers could help in investigations of 

mechanisms that define the role of well-known risk factors, such as pre-pregnancy 

overweight/obesity status, and novel risk factors, such as fetal sex, in GDM pathogenesis. 

For example, mothers of male offspring have been shown to have lower beta-cell function 

(as reflected by the disposition index) and higher risk of GDM[6], but mechanisms 

explaining these observations are unknown.

MiRNAs are small non-coding RNAs (approximately 20 nucleotides in length) that regulate 

gene expression and diverse cellular functions by directing degradation or inhibiting 

translation of messenger RNA transcripts[7]. Differential miRNA expression has been 

demonstrated in adipocytes, islet cells, endothelium, and hepatocytes, as well as smooth, 

skeletal, and cardiac muscle cells[8-17] among type 2 diabetes (T2D) cases, compared with 

controls. Identified miRNAs have been related to insulin secretion, inflammation, and 

insulin resistance. Differences have also been seen in circulating levels of miRNAs (e.g., 

miR-126, -146a, and -29a) comparing type 2 diabetes (T2D) cases to controls[13, 18-27]. 

Epigenetic regulatory mechanisms, including miRNAs, may also have important roles in 

GDM, a condition that shares similar pathophysiologic features to T2D[28-33]. Several 

small studies have demonstrated differences in placental or umbilical vein endothelial cell 

miRNA expression at delivery in GDM pregnancies vs. controls[28-33]. Only two previous 

studies, however, have compared second-trimester circulating miRNA levels in women with 

GDM to controls[34, 35]. These previous studies were small (n = 20 and n = 48) and were 

limited to Asian populations. In addition, to our knowledge, no previous study has examined 
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maternal pre-pregnancy overweight/obesity- or fetal–sex-specific associations of miRNAs 

with GDM.

In the current study, we selected candidate miRNAs that have previously been associated 

with pregnancy complications (e.g., GDM, preeclampsia, or intrauterine growth retardation) 

or pathophysiologic pathways (e.g., placental functions, oxidative stress, and inflammation) 

related to pregnancy complications.[23, 27, 34] We hypothesized that circulating levels of 

early-mid- (7-23 weeks) pregnancy candidate miRNAs are related to subsequent 

development of GDM. We also hypothesized that associations of these candidate miRNAs 

with GDM might vary by pre-pregnancy overweight and obesity or by offspring sex.

2. Materials and Methods

2.1. Study setting and study population

The study was conducted among participants of the Omega study, a pregnancy cohort study 

based at the Center for Perinatal Studies at Swedish Medical Center in Seattle, Washington. 

Study design and protocols have been published previously[36]. Briefly, the Omega study 

was designed to examine metabolic and dietary risk factors of preeclampsia, GDM, and 

other pregnancy complications/outcomes. From 1996 to 2008, participants were recruited 

from prenatal care clinics affiliated with Swedish Medical Center in Seattle and Tacoma 

General Hospital in Tacoma, Washington.

Pregnant women were eligible to participate in the Omega study if they were ≥18 years old 

at enrollment, initiated prenatal care prior to 16 weeks of pregnancy, were able to speak and 

read English, and planned to carry the pregnancy to term and deliver at one of the study 

hospitals. During the study period, approximately 80% of eligible women who were 

approached consented to participate and >95% were followed until delivery. Among 4,011 

Omega study participants, a subcohort of 767 randomly selected participants was included in 

a traffic-related air-pollution case-cohort study investigating course and complications of 

pregnancy. For the current study, we included all GDM cases from the subcohort (n = 38) 

and 100 randomly selected control participants without GDM, pre-eclampsia, low 

birthweight, or preterm delivery. Participant characteristics for the subcohort were similar to 

characteristics of the Omega study population (Table 1). Of the randomly selected controls, 

17 were missing plasma samples. After excluding non-singleton pregnancies, we were left 

with an analytic sample of 116 participants (36 GDM cases, 80 controls). Characteristics of 

the participants with missing plasma samples were similar to those included in the current 

study (Supplementary Table 1).

The institutional review boards of Swedish Medical Center and Tacoma General Hospital 

approved the study, and all study participants provided written informed consent.

2.2. Data collection

At an enrollment visit before 20 weeks of gestation, trained interviewers conducted in-

person interviews (45-60 minutes in length) to collect data on expectant mothers' age, 

height, pre-pregnancy weight, socioeconomic characteristics, reproductive and medical 

histories, and tobacco consumption before and during pregnancy. Pre-pregnancy body mass 
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index (ppBMI), based on self-reported measures of weight and height, was calculated as 

weight in kg divided by height in meters squared. Expectant mothers with ppBMI≥25kg/m2 

were classified as overweight/obese and were compared to women with ppBMI<25kg/m2 in 

analyses of potential effect modification by overweight/obese status. Gestational weight gain 

was calculated as the difference in weight between last recorded maternal weight within four 

weeks prior to delivery (abstracted from medical records) and self-reported pre-pregnancy 

weight during the three months prior to conception. Maternal race was classified as non-

Hispanic white, non-Hispanic black, Asian, Hispanic, or other. Maternal peripheral blood 

was collected shortly after enrollment (see below). Mothers were followed through delivery, 

and trained personnel abstracted data on course and outcomes of the pregnancy (e.g., GDM, 

offspring sex) from maternal and infant medical records.

2.3. GDM diagnosis

A 50g glucose challenge test was administered between gestational weeks 24 and 28 to 

screen for GDM as part of routine follow-up of all women at participating clinics. Women 

testing positive on the screening test (≥140 mg/dL) completed an additional 100g, three-hour 

oral glucose tolerance test (OGTT) within two weeks of the first test. Women were 

diagnosed with GDM if two or more plasma glucose values during the three-hour OGTT 

exceeded the following American Diabetes Association (ADA) 2004 criteria cut-points: 

fasting ≥ 95 mg/dL; 1-hr ≥ 180 mg/dL; 2-hr ≥ 155 mg/dL; or 3-hr ≥ 140 mg/dL[37].

2.4. Sample collection, pre-processing, and RNA extraction

Peripheral blood samples, collected at 16.1 weeks of gestation on average (range 7.0-22.9), 

were kept at 4°C until processing that occurred within 1 hour of collection. Approximately 

200μL of plasma was used for extracting small RNAs using the Exiqon miRCURY™ RNA 

Biofluids Isolation Kit (Exiqon, Woburn, MA). We assessed the integrity, purity, and 

quantity of purified miRNA using spectrophotometry and an Agilent 2100 Bioanalyzer 

capillary electrophoresis system (Agilent Technologies Inc, Palo Alto, CA). To further 

assess quality of extracted RNA, we measured spike-in values of cel-miR-39.

2.5. miRNA selection, profiling, data processing, and normalization

We chose the following miRNAs: miR-126-3p, -155-5p, -21-3p, -146b-5p, -210-3p, -222-3p, 

-223-3p, -517-5p, -518a-3p, and -29a-3p. The selected candidate miRNAs have previously 

been associated with type 2 diabetes (miR-126[27], -223[27], and -29a[24]); pregnancy 

complications including pre-eclampsia (miR-155[38], -210[39], 517[40], and -518a[41]), 

growth restriction (miR-21[42] and -517[40]), and GDM (miR-222[33]); or pathways 

related to pregnancy complications including oxidative stress (miR-21[43]), endothelial 

function (miR-126, -210, and -222[44]), or inflammation (miR-155[45] and -146b[46]). We 

constructed a custom targeted panel of the candidate miRNAs and two control miRNA 

assays using ExiqonLNA™ primers. An exogenous miRNA cel-miR-39 was added as a 

positive control for technical factors including RNA extraction, complementary DNA 

synthesis, and PCR amplification[47], as mentioned above, and an endogenous 

“housekeeping” miRNA, miR-423-3p was chosen for normalization, based on previous 

recommendations[48]. qPCR was conducted in duplicate using 96-well qPCR plates. 

Reactions were run on an ABI PRISM 7000 Real Time PCR machine (Applied Biosystems, 
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Foster City, CA), using default cycling conditions. We recorded threshold cycle (CT) values 

on two measurements per sample. True replicates were done in the sense that the original 

plasma samples were split, completely independent RNA preps were done, independent RT 

reaction was performed for each replicate, and each replicate was run on a different qPCR 

96-well plate. CT values of the duplicates differing by greater than 0.2 times the standard 

deviation were re-tested, and replicates were averaged for analyses. Lab personnel was 

blinded to case-control status. Data from miRNA qRT-PCR arrays were imported into SDS 

Enterprise Software (V2.2.2, Applied Biosystems), and CT values were calculated using a 

consistent thresholding value for each assay across all plates. Raw CT values were scaled to 

values for cel-miR-39-3p. Then, ΔΔCT values were expressed relative to values of 

miR-423-3p and used in subsequent analyses.

2.6. Statistical analyses

We examined distributions of selected characteristics, as well as gestational age at blood 

draw, among GDM cases and controls. MiRNA CT values were log-transformed to achieve 

normal distribution. We used parallel coordinates plots of ln(miRNA) levels to visualize 

patterns of variability that might differ by case status. We then fit logistic regression models 

examining the association of each candidate miRNA with GDM, adjusting for gestational 

age at blood collection (Model 1), and adjusting for gestational age at blood collection, 

maternal age, and pre-pregnancy BMI (Model 2). Because we hypothesized that associations 

of circulating miRNA levels with GDM might differ by pre-pregnancy obesity or offspring 

sex, we fit gestational-age-adjusted models that were stratified by pre-pregnancy overweight/

obesity or offspring sex. If there were differences in associations among strata, we fit models 

that included terms for miRNAs, pre-pregnancy overweight/obesity status or offspring sex, 

and an interaction term for pre-pregnancy obesity or offspring sex and miRNA, to assess 

statistical significance of the interactions. We used Stata version 13.1 (College Station, TX), 

R 3.3.1 (www.R-project.org), including the MASS package[49], and MATLAB Software 

Package (The MathWorks Corporation, Natick, MA) for the analyses. All tests were two-

sided and p<0.05 was used to determine statistical significance.

3. Results

On average, GDM cases were 34.3 years old at enrollment, while controls were 32.9 years 

old. Blood samples were collected at 15.1 weeks among cases and 16.5 weeks among 

controls (Table 1). Cases had greater ppBMI on average than controls (median 25.5 kg/m2 

vs. 21.7 kg/m2). Median values of untransformed miRNA CT levels are shown in Table 2.

Parallel coordinates plots did not reveal systematic patterns of variability in miRNA 

expression profiles by GDM case status (not shown). In models adjusted for gestational age 

at blood collection, higher circulating levels of two miRNAs, miR-155-5p (β=0.260, 

p=0.028) and -21-3p (β=0.316, p=0.005), were associated with higher odds of GDM. In 

addition, associations of miR-146b-5p (β=0.266, p=0.068) and miR-517-5p (β=0.196, 

p=0.074) with GDM odds were borderline. The associations were attenuated in models 

adjusting for gestational age at blood draw, maternal age, and ppBMI; only miR-21-3p 

(β=0.262, p=0.029) remained significantly associated with higher odds of GDM (Table 3).
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In analyses stratified by pre-pregnancy BMI category, associations between miRNA and 

GDM risk were similar between overweight/obese and lean women, except for associations 

of miR-21-3p and miR-210-3p with GDM risk. Associations of these two miRNAs, 

miR-21-3p (β =0.467, p=0.042) and miR-210-3p (β=0.514, p=0.036), were observed only 

among women who were overweight/obese during pre-pregnancy. In a logistic regression 

model with interaction between obesity status and miRNA, the interaction term was not 

significant for miR-21-3p and was borderline for miR-210-3p (Table 4). In stratified 

analyses by the sex of the fetus, among participants who were pregnant with male offspring, 

circulating levels of miR-155-5p (β=0.474, p=0.008), -21-3p (β=0.665, p=0.003), 

miR-146b-5p (β=0.418, p=0.037), -223-3p (β=0.421, p=0.047), -517-5p (β=0.377, 

p=0.028), and -29a-3p (β=0.345, p=0.047) were associated with risk of GDM (Table 5). 

Among participants who were pregnant with female offspring, none of the candidate 

circulating miRNAs were associated with risk of GDM. Tests for interaction effects between 

miRNA and offspring sex were statistically significant for miR-21-3p (p=0.020) and 

borderline (< 0.10) for several of the other miRNAs: miR-155-5p (p=0.059), -223-3p 

(p=0.060), -517-5p (p=0.076), or 29a-3p (p=0.059).

4. Discussion

In this study, we found that early–mid-pregnancy maternal plasma levels of two miRNAs 

(miR-155-5p and -21-3p) were associated with subsequent risk of GDM. Associations of 

miR-21-3p, along with miR-210-3p, with GDM odds was observed only among women who 

were overweight/obese prior to pregnancy. In sex-stratified analyses, associations of 

miR-155-5p, -21-3p, and four others (miR-146b-5p, -223-3p, -517-5p, and -29a-3p) with 

subsequent risk of GDM were present only among mothers bearing male offspring.

Two previous studies have measured circulating miRNA levels in women with GDM and 

controls[34, 35]. Zhao et al. compared serum miRNA levels at 16-19 weeks gestational age 

among 24 GDM cases (based on 75-g OGTT results) and 24 controls using Taqman Low 

Density array (human microRNA panel V2.0) and pooled samples, followed by 

confirmatory qRT-PCR in the primary study population and two separate populations[34, 

35]. In that study, GDM cases and controls were frequency matched for age, gestational age, 

and pre-pregnancy BMI. Women older than 33 years or with BMI > 26kg/m2 were excluded. 

They reported lower levels of miR-132, -222, and -29a among GDM cases compared with 

controls. Zhu et al. performed a pilot study using high-throughput sequencing on pooled 

plasma samples (collected at 16-19 weeks gestational age) from 10 GDM cases (based on 

75-g OGTT results) and 10 age- and gestational-age–matched controls, followed by qRT-

PCR confirmatory experiments[34, 35]. In the sequencing study, twelve miRNAs were 

upregulated and 20 were downregulated. On confirmatory qRT-PCR, five miRNAs 

(miR-16-5p, -17-5p, -19a-3p, -19b-3p, and 20a-5p) were seen at higher levels in GDM 

plasma, compared with controls. In our analysis, we did not see differences in miR-222 or 

-29a levels between GDM case and control groups, although miR-29a was associated with 

GDM risk in the analysis restricted to male offspring. We did not measure miR-192, nor the 

miRNAs that were identified in Zhu's pilot study. To our knowledge, no previous study has 

reported pre-pregnancy overweight/obesity- or offspring sex-specific associations of 

miRNAs with GDM risk.
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There are some important differences among 1) the populations studied, 2) the study 

designs, and 3) the laboratory techniques that might explain the differing miRNAs identified 

in ours and previous studies. For example, both previous studies were performed in Chinese 

populations. The cohorts were also relatively younger and leaner than in the Omega study. In 

the Zhu study, although women were not excluded based on age or ppBMI, on average, 

GDM cases were younger (mean age 30 years) and leaner (mean ppBMI 24kg/m2) than our 

population. Zhao excluded women 33 years or older or with BMI > 26kg/m2. In both 

previous studies, samples were collected between 16 and 19 weeks. The authors did not 

additionally adjust for gestational age at the time of blood draw, potentially a key factor, as 

currently available evidence suggests that circulating miRNA levels may change across the 

course of pregnancy[50, 51]. In addition to adjusting for gestational age in all models, we 

also conducted a sensitivity analysis excluding participants with specimens collected at the 

extremes of gestational age, with quantitatively very similar results. Previous authors also 

did not comment on the prevalence of other pregnancy complications in their populations. 

Our controls did not have preterm delivery (PTD), pre-eclampsia (PE), or low birthweight 

(LBW). Of the GDM cases in our analytic sample, eight had one or more of these other 

pregnancy complications. (Three had LBW. Two had PE, and five had PTD. Two 

pregnancies had both LBW and PTD.) Pre-eclampsia and preterm delivery share common 

risk factors and mechanisms with GDM[52], so we included GDM cases with PE or PTD in 

our analytic sample. We conducted a sensitivity analysis excluding LBW cases, however. 

Findings were similar to the primary results we have reported in this manuscript.

Differing pre-processing and normalization strategies may also have contributed importantly 

to the varying results. Zhao normalized to spike-in levels of C. elegans miR-39[34, 35]. Zhu, 

however, normalized to endogenous miR-221 level[34, 35]. Although miR-221 is sometimes 

used for normalization, it has been related to inflammation[53], which has been linked to 

abnormal glucose metabolism and diabetes[54]. Differences in pre-analytic strategies, 

especially normalization, have been implicated as factors contributing to inconsistent results 

seen in circulating miRNA-T2D association studies[55, 56]. We, therefore, conducted 

multiple sensitivity analyses using two other normalization strategies: we normalized to cel-

miR-39 level only and also performed quantile normalization. In general, findings from our 

sensitivity analyses were similar to the primary results we have reported in this manuscript 

with one exception. MiR-155 was not associated with GDM in quantilenormalized analyses 

using all participants, but it was associated with GDM when we restricted the quantile-

normalized analysis to pregnancies with male fetuses only.

Our study identified several candidate miRNAs that are associated with risk of GDM either 

in overall analyses or analyses stratified by pre-pregnancy obesity or offspring sex. Several 

of these miRNAs have previously been implicated in the pathogenesis of T2D. For example, 

miR-29a is seen at higher levels in serum and whole blood of individuals with newly 

diagnosed and existing T2D[24]. Overexpression of miR-29a also leads to insulin resistance 

in adipocyte cell lines, possibly by targeting proteins in the PTEN-AKT pathway[57]. On 

the other hand, Zampetaki et al. identified lower levels of both miR-21 and -223 when they 

compared individuals with prevalent diabetes to controls[27]. miR-155 was also seen at 

lower levels in peripheral blood mononuclear cells of individuals with diabetes compared to 

controls[58], although in that sample, most of the patients with diabetes were treated with 
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metformin and/or a sulfonylurea, which may have influenced results. Several of the 

candidates we identified (miR-155-5p, -21-3p, and -223-3p) are highly expressed in a 

variety of tissues and have been associated with a number of malignant and non-malignant 

disease states[59], suggesting they might play roles in regulatory pathways common across 

cell types, including apoptosis, cell-cycle regulation, and response to inflammation. For 

example, upregulation of miR-155 in both umbilical vein endothelial cells and placenta 

tissues has been implicated in the pathogenesis of pre-eclampsia, possibly by inhibiting 

trophoblast invasion and proliferation via the cell-cycle regulator Cyclin D1[60, 61]. 

miR-155 and -146b, also identified in our study, are induced by inflammatory cytokines, 

including NF-κB[46, 62, 63]. In the case of miR-21, miR depletion in a pancreatic cancer 

model led to increased apoptosis of malignant cells, inhibiting tumor growth[64]. In 

pancreatic β-cells of mice with a model of T1D, NF-κB increased miR-21 levels, while 

miR-21 decreased the level of PDCD4, an inducer of apotosis[65]. In contrast to these 

widely expressed miRNAs, miR-517-5p is thought to be relatively specific to placenta. It has 

been linked to development of pre-eclampsia, possibly by regulating trophoblast 

proliferation[60]. Our findings support its potential role in GDM pathogenesis.

In the current study, the statistically significant miRNA-GDM associations we observed 

were limited to pregnancies in mothers with pre-pregnancy overweight or obesity. This may 

be due in part to the candidate miRNAs we selected, which were reflective of pathways that 

link obesity and Type 2 diabetes, highlighting potential differences in pathways that lead to 

GDM among obese and lean women. Gestational weight gain in early pregnancy might also 

influence the association of circulating miRNAs with GDM risk. In our dataset, ppBMI was 

correlated with gestational weight gain in the first 20 weeks of pregnancy (Pearson 

correlation coefficient -0.25, p=0.009). In a post-hoc analysis, we fit a model that adjusted 

for early pregnancy gestational weight gain and observed no meaningfully different results 

compared to the ones we report in this manuscript. It is also possible that overweight/obese 

mothers differed from lean mothers in other characteristics (e.g., diet and socio-economic 

status). Sample size limited our ability to fully account for these potential confounders. 

Additionally, miRNA-GDM associations were observed among pregnancies with male 

infants, but not female infants. Male fetal sex has been associated with both higher risk of 

maternal GDM and a lower disposition index[6] in the mother, suggesting the association of 

sex with GDM may be mediated in part by an effect of fetal sex on maternal beta-cell 

function. Sex-specific differences in placental development, placental hormone secretion and 

placental response to maternal factors have also been reported, including differences in 

expression of immune-regulating genes[66], which may reflect differences in maternal 

immune tolerance to the male fetus[67]. To the extent that these are related to risk of GDM, 

they may explain, at least in part, the sex-specific differences in miRNA-GDM associations 

that we observed. Placental miRNAs appear to regulate both trophoblast cell migration and 

maternal immune response[67], which may occur in a sex-dependent fashion. For instance, 

miR-517b, which was associated with GDM among pregnancies with male fetuses only, 

regulates expression of TNFS15[68], a pro-inflammatory, anti-angiogenic cytokine, which 

may reflect a sex-specific placental response to the maternal immune system. In line with 

recent National Institutes of Health statements highlighting the growing awareness of 
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differences in response to metabolic stressors by sex at all ages[69], future studies 

investigating fetal–sex-specific effects of miRNAs in pregnancy are warranted.

The current study has several strengths, most notably, the use of a well-characterized 

prospective cohort of pregnant women and adjustment for gestational age at blood collection

—an important potential determinant of circulating miRNA levels[50, 51]. The fact that 

associations remained generally consistent across normalization strategies also lends 

credibility to our findings. Several limitations of the study deserve mention. First, we used a 

candidate-miRNA approach, which might exclude important miRNAs related to GDM 

pathogenesis. Our list of miRNAs was chosen based on thorough literature review, however, 

and these candidate biomarkers had biologically plausible functions regulating messenger 

RNA targets involved in putative cellular functions. Second, our study is of moderate size. 

Larger studies will need to replicate these findings in a variety of populations. Third, we did 

not assess downstream effects of the miRNAs we identified. Last, because we had a limited 

number of non-white participants or participants with lower education levels or SES, results 

may not be generalizable to more diverse populations. In a sensitivity analysis, we repeated 

our analyses among non-Hispanic white mothers. While there were some differences in 

specific estimates, in general, findings were similar to what was reported in the current 

manuscript including the fact that associations were observed only among participants who 

were overweight/obese pre-pregnancy or who were pregnant with male offspring.

In sum, our findings suggest that early-mid–pregnancy circulating miRNAs are associated 

with subsequent risk of GDM, particularly among women who were overweight/obese prior 

to the pregnancy or among women bearing male offspring. Larger follow-up studies in 

populations representative of a variety of ethnic groups and socio-economic backgrounds as 

well as profiling of larger set of candidate miRNAs or epigenome-wide profiling (e.g., using 

sequencing approaches) may clarify mechanisms underlying GDM pathogenesis as well as 

potential pre-pregnancy overweight/obesity- or offspring-sex–specific differences. Better 

mechanistic understanding of GDM pathogenesis may help identify mothers at high risk of 

GDM earlier in pregnancy and guide development of targeted preventive interventions.
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Highlights

• Evidence linking circulating miRNAs in pregnancy and risk of gestational 

diabetes (GDM) is sparse.

• Whether miRNA-GDM associations vary by pre-pregnancy body-mass index 

or offspring sex is unknown.

• Levels of circulating gestational age-adjusted miRNAs were associated with 

GDM risk.

• Associations varied by pre-pregnancy overweight/obesity and offspring sex.
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Table 2

Median* values of circulating candidate microRNAs

GDM cases Controls

miR-126-3p (Q1-Q3) 1.0 (0.3-2.7) 0.8 (0.2-2.7)

miR-155-5p (Q1-Q3) 3.8 (0.8-13.4) 1.8 (0.4-4.9)

miR-21-3p (Q1-Q3) 12.2 (3.0-33.8) 3.4 (1.1-11.6)

miR-146b-5p (Q1-Q3) 3.9 (0.8-9.4) 1.4 (0.8-5.8)

miR-210-3p (Q1-Q3) 2.3 (0.7-4.6) 1.5 (0.3-3.9)

miR-222-3p (Q1-Q3) 1.2 (0.4-2.5) 1.1 (0.2-3.0)

miR-223-3p (Q1-Q3) 1.7 (0.5-2.7) 0.9 (0.3-3.3)

miR-517-5p (Q1-Q3) 5.2 (1.1-19.0) 2.7 (0.5-10.8)

miR-518a-3p (Q1-Q3) 6.1 (2.8-43.7) 5.1 (1.2-27.4)

miR-29a-3p (Q1-Q3) 1.0 (0.3-2.2) 0.7 (0.2-2.1)

*
cel-miR-39-adjusted ΔΔCt levels relative to housekeeping miR (miR-423-3p)
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