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Abstract

This study examines temporal trends, geographic distribution, and demographic correlates of anti-

vaccine beliefs on Twitter, 2009–2015. A total of 549,972 tweets were downloaded and coded for 

the presence of anti-vaccine beliefs through a machine learning algorithm. Tweets with self-

disclosed geographic information were resolved and United States Census data were collected for 

corresponding areas at the micropolitan/metropolitan level. Trends in number of anti-vaccine 

tweets were examined at the national and state levels over time. A least absolute shrinkage and 

selection operator regression model was used to determine census variables that were correlated 

with anti-vaccination tweet volume. Fifty percent of our sample of 549,972 tweets collected 

between 2009 and 2015 contained anti-vaccine beliefs. Anti-vaccine tweet volume increased after 

vaccine-related news coverage. California, Connecticut, Massachusetts, New York, and 

Pennsylvania had anti-vaccination tweet volume that deviated from the national average. 

Demographic characteristics explained 67% of variance in geographic clustering of anti-vaccine 

tweets, which were associated with a larger population and higher concentrations of women who 

recently gave birth, households with high income levels, men aged 40 to 44, and men with 

minimal college education. Monitoring anti-vaccination beliefs on Twitter can uncover vaccine-

related concerns and misconceptions, serve as an indicator of shifts in public opinion, and equip 

pediatricians to refute anti-vaccine arguments. Real-time interventions are needed to counter anti-

vaccination beliefs online. Identifying clusters of anti-vaccination beliefs can help public health 

professionals disseminate targeted/tailored interventions to geographic locations and demographic 

sectors of the population.
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Introduction

Recent outbreaks of previously eradicated, vaccine-preventable diseases such as measles and 

pertussis are a public health concern (Adams et al., 2016; Phadke et al., 2016; Winter et al., 

2014; Zipprich et al., 2015). These outbreaks have been linked to parental delay or refusal of 

vaccines over anti-immunization related beliefs (Gust et al., 2008; Salmon et al., 2005; 

World Health Organization, n.d.). Anti-vaccination beliefs represent diverse elements and 

characteristics in relation to vaccines, which manifest themselves in a wide range of negative 

attitudes ranging from being fully against vaccines to expressing hesitancy about them (Gust 

et al., 2005). These beliefs are driven by distrust of government/the pharmaceutical industry 

(Larson et al., 2014), lack of perceived need, and doubts about vaccine safety and potential 

side effects (Chen & DeStefano, 1998; Chen & Hibbs, 1998; Smailbegovic et al., 2003). Of 

particular interest are misconceptions linking preservatives in children’s vaccines, especially 

thimerosal, to autism spectrum disorder [ASD; (Hviid et al., 2003)]. ASD is a developmental 

disorder characterized by communication, social, and behavioral impairments (Centers for 

Disease Control and Prevention, 2015; Phadke et al., 2016) and affects one in 68 eight-year-

old children (Christensen et al., 2016).

Delay of vaccines involves individualized vaccine administration schedules against the 

official recommendations of the Advisory Committee on Immunization Practices (ACIP) on 

appropriate ages, number of doses, and intervals between doses, which can compromise 

vaccine effectiveness (Centers for Disease Control and Prevention, 2004; Plotkin, 2011). In 

2005, missed doses accounted for two-thirds of a 28% non-compliance rate with ACIP’s 

recommendations among children 19–35 months (Luman et al., 2008). Other forms of non-

compliance include delays up to six months for four or more vaccines in the first two years 

of life (Luman et al., 2005).

One measure of parental refusal of vaccines is the rate of nonmedical exemptions from 

mandated school immunizations (Salmon et al., 2005). Currently, District of Columbia and 

all states except Mississippi and West Virginia grant religious exemptions and 18 states grant 

philosophical exemptions (National Conference of State Legislatures, 2016). Data show a 

6% annual increase in nonmedical exemptions in states that offer belief-based exemptions 

but no significant changes in religious exemptions (Omer et al., 2006). Further, nonmedical 

exemptions vary within states to create geographic clusters where rates of unvaccinated 

children are likely to increase (Omer et al., 2008; Omer et al., 2009; Richards et al., 2013; 

Smith et al., 2004). For example, in 2015–2016, county-level exemptions for kindergarten-

aged children in Washington ranged from 1.0% to 17.0% (Washington State Department of 

Health, 2016).

Nonmedical exemptions are associated with acquisition and transmission of vaccine-

preventable diseases (Feikin et al., 2000; Salmon et al., 1999). In a nationwide retrospective 
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cohort study, exempt children were 35 times more likely to acquire measles than nonexempt 

children (Salmon et al., 1999). Another state-level retrospective cohort study showed that 

exempt children were 22.2 and 5.9 times more likely to acquire measles and pertussis than 

vaccinated children (Feikin et al., 2000). Beyond risks to exempt children, clusters of 

nonmedical exemptions pose risks to the community. Omer and colleagues found that 

geographic/temporal clusters of pertussis cases were 2.7 times more likely to overlap with 

exemption clusters after covariate adjustments (Omer et al., 2008). Similarly, incidence rates 

of measles and pertussis in vaccinated children were associated with the frequency of 

exempt children in a county [relative risk 1.6 and 1.9; (Feikin et al., 2000)].

Anti-vaccination beliefs either directly or indirectly (through vaccination perceived risks) 

predict under immunization (Betsch et al., 2010; Brewer et al., 2007; Gust et al., 2004). 

However, research on the characteristics of individuals who hold anti-vaccination beliefs 

remains limited (Kata, 2012). Studies show that women and highly educated and high socio-

economic parents are more likely to be concerned about vaccine safety and to delay/refuse 

childhood vaccines (Freed et al., 2010; Smith et al., 2010; Song, 2014). These results are 

largely based on survey methods that are subject to social desirability biases (Krumpal, 

2013). Conversely, Web 2.0 affords an uncensored platform for disseminating vaccine-

related beliefs (Witteman & Zikmund-Fisher, 2012). More importantly, parents who are 

concerned about vaccine safety and delay/refuse vaccines often seek health information 

online (Gust et al., 2005; Smith et al., 2010). Online sources are considered horizontal media 

sources (McCombs et al., 2014) where people choose to be exposed to beliefs and opinions 

similar to their own, creating an echo chamber and increasing the polarization around 

vaccines (Witteman & Zikmund-Fisher, 2012).

Researchers have documented the prevalence and content of anti-vaccination websites 

(Bean, 2011; Wolfe & Sharp, 2005). However, little is known about anti-vaccination beliefs 

on social media sites such as Twitter. The literature thus far has been limited to review 

articles on the potential role of social media in vaccination beliefs and behavior (Betsch et 

al., 2012; Dredze et al., 2016; Kata, 2012). Love and colleagues conducted, to our 

knowledge, the only data-driven study of the source, tone, and accuracy of 2,580 reposted/

shared vaccination tweets (Love et al., 2013). The sample included all vaccine-related tweets 

(e.g., adult vaccines) and was limited to reposted/shared tweets over one week.

Twitter is a platform for health-related information (Scanfield et al., 2010) and exposure to 

vaccine-related information on social media has been associated with vaccine-related 

behavior (Avery & Lariscy, 2014). Further, geo-tagged Twitter data allow researchers to 

identify geographical regions where anti-vaccination beliefs are predominant. The primary 

goal of this study is to examine variations in anti-vaccine beliefs that link vaccines to ASD 

by geographic distribution and demographics on Twitter. Specifically, we examined 

prevalence of anti-vaccine beliefs tied to ASD from 2009 to 2015 in U.S. micropolitan and 

metropolitan areas, as well as in entire states. Finally, we examined the association between 

micro/metro-specific demographic characteristics and geographic distribution of anti-

vaccine tweets.

Tomeny et al. Page 3

Soc Sci Med. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods

Data Collection

We used Social Studio’s Radian6 (Kim et al., 2013; Stavrakantonakis et al., 2012) 

application programming interface (API) to identify publicly available tweets that contained 

at least one ASD and one vaccine-related search keyword. We used search keywords that 

were culled from previous literature (Diresta & Lotan, 2015; Offit, 2008) to retrieve tweets 

from Radian6 that mentioned ASD and vaccines. Search keywords were vaccine, vaccinated, 

immunization, mmr vaccine, mmrvaccine, #b1less, #hearus, heavy metals, leaky gut, 

mercury, ethylmercury, methylmercury, thimerosal, preservative, dpt, diphtheria-pertussis-

tetanus, pharmaceutical companies, big pharma, autism, autistic, asperger. We also included 

slang and misspellings of search keywords (i.e., vacinne, vacine, antivax, anti vax, aspie, 

asberger, assberger, asd). Finally, we included hashtags that journalists described in their 

coverage of anti-vaccination beliefs on Twitter (i.e., cdcwhistleblower, cdc whistleblower, 

sb277).

A total of 549,972 tweets (including retweets) from 01/01/2009 to 08/21/2015 were returned 

and downloaded. To ensure search accuracy, two researchers coded a random sample of 550 

tweets. We found that 540 tweets mentioned vaccines and ASD, a 98.2% accuracy for the 

search keywords adopted.

Data Coding

We adopted a machine learning approach to identify tweets that expressed anti-vaccine 

beliefs. We used “anti-vaccine” as an umbrella term to capture a wide range of negative 

beliefs about vaccines. This approach allowed us to manually annotate a manageable number 

of tweets to build an algorithm that then coded the entire dataset.

To train the algorithm, two researchers coded 2,000 tweets into two categories: (1) Anti-

vaccine and (2) Other, which consisted of tweets that were pro-vaccines and neutral (i.e., 

tweets that did not make a judgment about ASD and vaccines). Anti-vaccine tweets 

portrayed vaccines as dangerous, ineffective or negative, and mentioned a potential causal 

link to ASD. Examples of tweets that fell into the anti-vaccine category include: “CDC 

whistleblower confesses to publishing fraudulent data to obfuscate link between vaccines 

and autism,” and “RT @_______________: Autism is primarily caused by mercury present 

in vaccines.” Examples of tweets that fell into the other category include: “NEWS: The 

Lancet revokes 1998 Wakefield, et. al. paper associating MMR to autism and GI problems. 

On February 2,…”; “Additional evidence of no link between Autism and thimerosal, a 

preservative used in vaccines. New national study published in Medscape Today,” “Could 

too many vaccines too early lead to #autism? Latest study says no (please don’t shoot the 

messenger): http://t.co/HIgHbrnGLZ,” and “Do you know the truth about the link between 

vaccines and #autism? Hint: Science knows. (via @upworthy http://t.co/8rbRlOMMfj” 

(wording was changed slightly to maintain user anonymity).

The two coders read the tweets and discussed the nature of anti-vaccine sentiment, and then 

made their judgments independently. The two coders had perfect agreement for the anti-

vaccination category and, thus, had perfect intercoder reliability. This was due to the 
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straightforward nature of anti-vaccination tweets. The manually annotated data were then 

used to build a machine learning algorithm.

LightSide (Mayfield & Rosé, 2013), an open-source platform that performs feature-

extraction (e.g., text-strings, strings that include characters like hashtags), was used to build 

a machine learning algorithm. Features used in the final model included: unigrams, bigrams, 

word occurrence counts, punctuation, and feature hit location tracking. These features were 

selected by the researchers in an effort to maximize accuracy and precision. The 

performance of the model was tested against cross-fold validation (N = 10). The training and 

test set size was calculated using the formula (N-1/N). In each test, 90% of the data was used 

to train and 10% of the data was used to test.

Final accuracy (i.e., number of correct predictions divided by total number of predictions 

made; a = .8617) and Kappa (i.e., comparison of observed accuracy accounting for expected 

accuracy; k = .7227) were acceptable. Models with accuracy ≥ .68 are generally acceptable 

(Bradley, 1997). Models with Kappa scores in the range of .61 – .80 reflect substantial 

agreement (Landis & Koch, 1977) that was not due to random chance or biased 

classification. Examples of misclassified tweets included “Mercury Levels Same in Autistic, 

Other Children: Blood levels of mercury are comparable in children with a.. http://bit.ly/

2cTqP7 #health” (a false positive) and “RT @___________: #OpTwitterRaid #The Most 

Common Lies MMR does not cause Autism. Dr Wakefield and 16 other studies all must be 

wrong…” (a false negative). The algorithm was then applied to the remaining, unseen 

tweets. As an extra external validity check, 350 newly classified tweets were randomly 

selected and coded by a researcher to verify the algorithm correctly classified sentiments of 

each tweet. Of the 350 tweets, 313 were correctly classified (89.43%). This suggests that the 

performance metrics were indeed accurate, and the model was externally valid. Overall, 

272,546 tweets (49.5% of all downloaded tweets) were classified as containing anti-

vaccination beliefs.

Geocoding

We geographically tagged tweets based on census Metropolitan and Micropolitan Statistical 

areas, which are geographic entities delineated by the Office of Management and Budget 

(OMB) for use by federal agencies when collecting, tabulating, and publishing federal 

statistics. Metro areas contain a core urban area of 50,000 or more residents whereas micro 

areas contain an urban core of at least 10,000 (but fewer than 50,000) residents. Each metro 

or micro area consists of one or more counties including the core urban area and any 

adjacent counties that have a high degree of social/economic integration with the urban core 

(as measured by commuting to work). Each tweet was geolocated to the area from which it 

originated if (1) the tweet had Global Positioning Systems (GPS) coordinates that resolved 

to a micro/metro area or (2) if the user had a self-disclosed location in their profile that could 

be resolved to a micro/metro area. Retweets were geocoded to the area from which they 

were retweeted.

Less than one percent of the tweets had GPS coordinates (n = 511) because twitter users’ 

tend to not opt-in to geotagging (Vargo & Hopp, 2015). A majority of tweets (n = 172,730, 

63.3%) originated from user profiles that had self-disclosed locations, which were queried 
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using Google Maps Places API (Google, 2016) to resolve an official city name, if possible. 

Geolocated tweets had a lower percentage of anti-vaccine beliefs compared to the full set of 

tweets (31.02% versus 49.56%). This is likely because most bots (i.e., software that 

automatically manages a Twitter account and performs tasks such as tweeting, retweeting, 

favoring) have been known to spread misinformation online and it has been noted that they 

tend not to report locations (Guo & Chen, 2014; Thomas et al., 2012) and were thus not 

included in the geotagged set of tweets.

CensusReporter’s API (UserVoice, 2016) was then used to resolve city names to the correct 

micro or metro area. As an external validity check, a researcher examined 560 random user 

profiles and the resulting micro or metro area and found that 531 profiles (94.8%) were 

correctly identified. In all, 108,207 tweets (39.7% of all anti-vaccination tweets) were coded 

to 732 micro/metro areas. There were 61.52 users per micro/metro area on average (SD = 

243.95) and each user sent an average of 45.49 anti-vaccination tweets (SD = 188.40). These 

standard deviations are comparable to other studies that have geo-resolved Twitter data by 

region (Vargo & Hopp, 2015).

Census data was obtained for all 732 areas using CensusReporter’s API, which allows 

census variables to be downloaded for all micro/metro areas. For all census variables, the 

American Community Survey 2015 5-year data were used because 5-year collections are the 

most reliable and exhaustive estimates. Here, the 2015 dataset was selected because the 5-

year aggregation period (January 1, 2011 to December 31, 2015) closely matched our 

Twitter data collection period.

Data analysis

To examine rates of anti-vaccine beliefs on Twitter over time, tweet volume was calculated 

at the state level because data were sparse at metro and micro areas across time. A total of 

108,413 tweets were resolved from 47,236 unique users at the state level by year and month. 

Granger causality tests were performed to identify outlier states that generated anti-vaccine 

tweets that deviated from the national trend. A significant score was an indicator that any 

given state’s monthly anti-vaccine tweet volume was predicted by the national average, 

given a one-day lag.

To identify demographic correlates of anti-vaccination tweet volume, we examined 188 

census variables including percentage of population by age and sex, sex by marital status, 

women who had a birth by marital status and educational attainment, women who had a 

birth by marital status and receipt of public assistance income, women who had a birth by 

age, race, educational attainment, and household income in the past 12 months (See 

Supplementary Table 1). These census variables were chosen as predictors based on 

previous literature on vaccine-related beliefs and behavior (Freed et al., 2010; Smith et al., 

2010; Song, 2014). We created a least absolute shrinkage and selection operator (LASSO) 

regression model in Python using the ElasticNet module in sklearn to determine which 

variables most uniquely correlated with anti-vaccine tweet volume (Tibshirani, 2011). 

LASSO is a regularized regression that assesses the combined effect of many correlated 

variables and is used when many possible correlated variables exist for its automatic 
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selection of variables that explain a substantial proportion of the variance over those that 

explain little variance.

Results

Number of anti-vaccine tweets per month appears in Figure 1, which shows the monthly 

national average (M = 23.77, SD = 40.35) as well as the five states that most deviated from 

the national average: California, Connecticut, Massachusetts, New York, and Pennsylvania 

(all p > 0.05 on Granger causality test). Significant elevations (i.e., monthly averages greater 

than two standard deviations above the mean) were observed in anti-vaccine tweet volume 

nationally in August (5.15 SDs) and September (3.74 SDs) of 2014 and in January (2.47 

SDs) and February (3.72 SDs) of 2015. Figure 2 contains the percentage of anti-vaccine 

tweets per micro/metro area from 2009 to 2015.

Six census-level demographic variables explained 67% of the variance in volume of anti-

vaccine tweets (Table 1). We used the standard deviations for each variable to derive the unit 

change seen for each predictor variable (x) and tweet volume as a dependent variable (y). 

For every increase in population size by 5837 people, we observed an additional anti-vaccine 

tweet. For demographics, we observed an increase in anti-vaccine tweets by one standard 

deviation (n = 205) in association with a 1.26% increase in percentage of women who gave 

birth within the last 12 months, a 1.98% increase in percentage of households with an 

income equal to or more than $200,000, an 0.40% increase in percentage of males aged 40–

44 years old, a 1.47% increase in percentage of males who attended college for one year but 

did not receive a college degree, and an 0.24% decrease in percentage of females ages 15–17 

years old. Age, sex, and race did not explain unique variance in the model.

The aforementioned results included race as a possible census-level demographic predictor 

associated with areas that experienced heightened levels of anti-vaccine tweets. Entered as a 

predictor variable, the Asian-only race variable was significantly associated with anti-

vaccine tweet volume whereas income was not. It is noteworthy that the Asian race variable 

was correlated with household income at both $150,000 and $200,000+ (r > 0.5, p < .05). 

This correlation was the strongest that any racial group had with other variables of interest. 

Because of the correlation between the proportions of those with Asian descent in a 

geographical area and higher household income, LASSO chose to include percent Asian in 

the model. Given the lack of literature suggesting a link between Asian descent and anti-

vaccine beliefs and, conversely, evidence that suggests relations between higher 

socioeconomic status and anti-vaccine beliefs (Smith et al., 2010), we elected to include 

household income in our final model over the Asian-only race variable. More importantly, 

relations between census-level household income variables and anti-vaccine tweets were 

observed in the current dataset. Across income categories, the correlation between anti-

vaccine beliefs grew in a positive direction as household income increased (Table 2). No 

other race variables explained unique variance in the model despite what others have found 

regarding vaccine-related beliefs among Latinos and African Americans compared to non-

Hispanic Whites (Bazzano et al., 2012).
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Discussion

This study documented trends of anti-vaccination beliefs on Twitter, their geographic 

distribution, and demographic correlates over a six-year period, 2009–2015. Despite 

evidence against a causal link between childhood vaccines and ASD (Centers for Disease 

Control and Prevention, n.d.; Institute of Medicine Board on Health Promotion and Disease 

Prevention, 2004; “Joint statement of the American Academy of Pediatrics (AAP) and the 

United States Public Health Service (USPHS),” 1999; Stratton et al., 2012; Taylor et al., 

2014), this belief remains (Bazzano et al., 2012; Fischbach et al., 2016) and is promulgated 

on online forums (Kata, 2012). Our results show that the volume of anti-vaccine tweets 

remained steady from 2009 to 2014. In August/September of 2014 and again in January/

February of 2015, spikes were observed. Dredze et al. (2016) documented comparable 

spikes in vaccine-related tweets during this same period, which could be attributed to media 

coverage of vaccine-related news, such as revelation of the famed “CDC Whistleblower” in 

August 2014 (Park, 2014) and a California measles outbreak that began in December 2014 

(Zipprich et al., 2015). According to the agenda setting theory, media coverage increases 

issue salience among their audiences (Begg et al., 1998; Hackett, 2008; McCombs et al., 

2014). The nature of the aforementioned events may have further instilled concerns 

associated with anti-vaccine beliefs such as vaccine safety and distrust in government (Kata, 

2012; Larson et al., 2014).

Anti-vaccine tweets disproportionally originated from five states. During the data collection 

period, California and Pennsylvania granted both religious and philosophical exemptions 

from mandated vaccines whereas Connecticut, Massachusetts, and New York offered 

religious exemptions only (National Conference of State Legislatures, 2016). Research 

shows that religious and philosophical vaccine exemptions are associated with clusters of 

undervaccinated children (Omer et al., 2008; Omer et al., 2009; Richards et al., 2013). The 

ease of granting exemptions is also associated with a 5% annual increase in non-medical 

exemptions (Omer et al., 2006). It is noteworthy that California legislature banned 

nonmedical vaccine exemptions in the summer of 2015 (Firger, 2015). Vaccine rates appear 

to vary by location (Hill et al., 2015; Lieu et al., 2015; Smith et al., 2004). Rates for the 

combined seven-vaccine series were 71.9% in New York, 72.8% in Pennsylvania, 75.0% in 

California, 78.5% in Massachusetts, and 80.6% in Connecticut (Hill, 2016). Future research 

should examine state-level factors associated with online vaccination beliefs such as 

nonmedical exemptions, ease of obtaining exemptions, and vaccination rates.

Of census variables examined, the percentage of women who had recently given birth 

predicted anti-vaccine tweet volume. Other predictors included household incomes $200,000 

and higher, percentage of men ages 40 to 44 years old, and percentage of men who received 

one year of college education. Finally, percentage of females between the ages of 15 and 17 

was a negative predictor anti-vaccine volume. Our results align with previous studies that 

show that women were more likely to have concerns about vaccines (Freed et al., 2010), that 

high income levels were associated anti-vaccine beliefs and behaviors [i.e., delaying 

childhood vaccines; (Smith et al., 2010)], and that older individuals (over age 40) were 

concerned about vaccine safety (Gust et al., 2005). According to health behavior theories, 

beliefs are important predictors of vaccination behaviors (Gust et al., 2004). Consistently, 
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studies show that decisions to delay/refuse childhood vaccination schedules were higher 

among married, Caucasian mothers with higher education, higher income, and older age 

(Freed et al., 2010; Smith et al., 2010). These results have implications for health disparities 

where an intentional delay/refusal of vaccines among these populations compromises the 

protection of herd immunity (Plotkin, 2011). This puts unvaccinated or undervaccinated 

children for reasons beyond choice (e.g., lack of health insurance, belonging to a racial/

ethnic minority group, living below the federal poverty line) at risk (Chu et al., 2004; 

Fronstin, 2005; Hill, 2016).

Success of vaccines depends on public acceptance (Streefland et al., 1990). Social media 

sites like Twitter show promise for public health efforts (Avery & Lariscy, 2014; 

Broniatowski et al., 2013). “Social listening” (Cole-Lewis et al., 2015) allows for an 

examination of vaccination-related beliefs and can serve as an early indicator of shifts in 

public opinion that might not be captured in traditional surveys due to high costs (Dredze et 

al., 2016), and sampling (Call et al., 2011; Duggan et al., 2015) and social desirability biases 

(Krumpal, 2013). Further, online activity on internet search sites (e.g., Google) and social 

media (e.g., Twitter) has accurately mirrored health-related events (e.g., disease activity) in 

previous studies (Ginsberg et al., 2009; Polgreen et al., 2008; Signorini et al., 2011). Public 

health professionals should implement real-time interventions that, aided by computer-

assisted content analysis software and machine learning algorithms, are designed to instantly 

detect anti-vaccine tweets and reply with counter messages using the twitter handle (i.e., 

@username) and/or hashtag of the original tweet. These intervention messages should also 

target cross postings (i.e., messages simultaneously posted on multiple social media sites). 

Previous interventions were successful in refuting misconceptions about the vaccine-ASD 

link (Nyhan et al., 2014). Research is needed to examine the effectiveness of real-time 

online interventions in curbing the spread of anti-vaccine beliefs (e.g., retweeting) and 

lowering their volume within defined geographic areas.

Additionally, monitoring social media for up-to-date anti-vaccine beliefs allows public 

health professionals to address such beliefs by targeting geographic areas where these beliefs 

are most prevalent and tailoring the approach to demographic characteristics of populations 

most correlated with these beliefs. Future research should further understand the qualitative 

variation in anti-vaccine beliefs by geographic distribution and demographic correlates. 

Further, future research should aim to better identify and track the wide spectrum of negative 

beliefs about vaccines (e.g., condemnation versus hesitancy) that are expressed on social 

media. This will afford fine-tuned targeting and tailoring activities of health interventions, 

which are important because localized geographic clusters of anti-vaccine beliefs and delay/

refusal of vaccines compromise herd immunity even when the national and/or state-level 

coverage of vaccines is high (Hill, 2016; Plotkin, 2011; Washington State Department of 

Health, 2016).

Finally, our results on geographic clustering of anti-vaccine beliefs suggest that healthcare 

providers may be more or less likely to encounter parents who hold negative vaccine-related 

beliefs. Equipped with timely knowledge of anti-vaccine beliefs prevalent in their immediate 

communities, pediatricians can address such beliefs in their interactions with parents. This 

practice will help pediatricians comply with the recommendation of the American Academy 
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of Pediatrics on Bioethics to continue interactions with parents who express anti-vaccine 

beliefs and/or refuse/delay vaccines (Diekema, 2005). This is particularly important because 

healthcare providers remain trusted sources for information on vaccines for many parents 

(Kennedy et al., 2011). Public health professionals should maintain an up-to-date interactive 

map with prevalent anti-vaccine beliefs that pediatricians and clinics/hospitals can constantly 

access and sign up for notifications of increases in anti-vaccine beliefs in their geographic 

locations (to investigate a specific area, see Figure 2, or visit: website url provided upon 
acceptance for an interactive version via MapBox (Zastrow, 2015). Public health 

professionals should also develop systems to provide clinicians with information about the 

nature of vaccine-related concerns being expressed in any given geographic areas. For 

example, algorithms that code and provide summaries of the content of anti-vaccine tweets 

may prove most helpful.

The study has several limitations. We dichotomized vaccine-related tweets into anti-vaccine 

versus other rather than a fine-tuned classification of the wide spectrum of anti-vaccine 

beliefs. Aside from basic self-disclosed information, little is known about the demographic 

characteristics (e.g., sex, age, income) of Twitter users. Therefore, our results only show that 

anti-vaccine beliefs were more prevalent in areas with certain demographic composition 

rather than among Twitter users. In other words, our results should be considered as census 
conditions in which an area (i.e., a city) experiences heightened levels of anti-vaccination 

social media chatter. Additionally, our data show that 2009 and 2010 yielded 9,565 

geotagged tweets whereas 2011 alone yielded 15,732 tweets, which we attribute to the rise 

of Twitter in the United States from 8% in 2010 to 13% in 2011 (Smith, 2011; Smith & 

Rainie, 2010). Further, our dataset of ASD and vaccine tweets represents a sub-population of 

Twitter users who wanted their location to be broadcasted alongside their message. However, 

studies with similar limitations successfully predicted public health phenomena such as 

infectious disease transmission (Sadilek et al., 2012). It is well documented that anti-

vaccination messages are spread by bots (Diresta & Lotan, 2015; Thomas et al., 2012), 

which were not included in our final geotagged sample. However, we believe analysis of 

geo-resolved messages is representative of public opinion.

Additionally, in accordance with Twitter privacy policy, Radian6 archives all tweets except 

those that have been deleted by users, tweets that belong to deleted accounts, or tweets from 

private Twitter accounts. This is unlikely to affect the contributions of this study because it is 

the public expression of anti-vaccine beliefs beyond close ties (e.g., friends) that is of 

interest here. Twitter users represent 23% of internet users (20% of the population) who are 

over proportionally urban (30% vs. 15% rural), younger (32% 18–29 years old, 29% 30–49 

years old vs. 13% 50–64 years old and 6% 65+), educated (27% college+, 23% some 

college, 19% high school or less) individuals (Duggan, 2015). Thus, our results are not 

nationally representative of vaccine beliefs. Future research would benefit from a hybrid 

approach whereby survey participants report personal demographic information (e.g., age, 

race/ethnicity, insurance coverage) and provide consent for analysis of their social media 

posts. Finally, more research is needed to examine anti-vaccine beliefs among understudied 

minority groups (e.g., non-Hispanic Asians) and men.
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In conclusion, vaccines are effective in preventing contagious diseases (Centers for Disease 

Control and Prevention, 1999; van Panhuis et al., 2013). Vaccination rates for children under 

the age of two remain high in the U.S. with four vaccines meeting the 90% coverage goal of 

Healthy People 2020 (Hill, 2016). Further, public opinion of children vaccines remains 

favorable with 83% regarding vaccines as safe and 68% supporting mandatory children 

vaccines (Anderson, 2015). However, the volume of online anti-vaccine beliefs is alarming 

and may indicate shifts in public opinion, which can translate to lower vaccine coverage. We 

show that anti-vaccine tweets coincide with vaccine-related news events and cluster 

geographically in areas with high concentrations of women who recently gave birth, 

households with high income levels, 40–44-year-old men, and men with no college degree. 

Monitoring social media for anti-vaccine beliefs is beneficial for surveillance and 

intervention efforts to curtail anti-vaccine beliefs.
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Highlights

• 272,546 tweets contained anti-vaccine beliefs from 2009 to 2015.

• Anti-vaccine tweets in five states were higher than the national average.

• Anti-vaccine tweet volume increased with news coverage of vaccine-related 

events.

• Anti-vaccine tweets clustered geographically based on census characteristics.

• Monitoring social media is beneficial to curtail anti-vaccine beliefs.
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Figure 1. 
Number of monthly anti-vaccine tweets nationally and for top five states, 2009–2015
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Figure 2. 
Percentage of anti-vaccination tweets per micro/metro area, 2009–2015. For a hi-resolution, 

interactive version of this map, please visit: (url provided upon acceptance).
Note: Percent anti-vaccine reflects number of anti-vaccine tweets divided by the total 

number of vaccine- and autism-related tweets per each micropolitan/metropolitan area.
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Table 1

LASSO Regression Model for Anti-Vaccination Beliefs

Predictor (Census Variable Code) β

Raw count of general population (B01001001) 122.86

Percent of women who gave birth in the last 12 months (B13014002) 12.29

Percent with household income of $200,000 and above (B19001017) 1.18

Percent of males aged 40–44 (B01001014) 0.70

Percent of males with 1 year of college but no college degree (B15002013) 0.07

Percent of females aged 15 –17 (B01001030) −0.34

Intercept 6.523

Training Data RMSE 186.05

Test Data RMSE 96.44

Training Data R2 0.71

Test Data R2 0.67

LASSO = Least Absolute Shrinkage and Selection Operator

β = linear regression coefficient

RMSE = Root Mean Squared Error

Training set (n = 117)

Test set (n = 584)

Results are 10-fold cross-validation averages.
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Table 2

Correlations between Household Income and Anti-Vaccination Beliefs

Census-Level Household Income in Past 12 Months (Census Variable Code) Anti-Vaccination Beliefs

Less than $10,000 (B19001002) −.09*

$10,000–$14,999 (B19001003) −.19***

$15,000–$19,999 (B19001004) −.21***

$20,000–$24,999 (B19001005) −.22***

$25,000–$29,999 (B19001006) −.23***

$30,000–$34,999 (B19001007) −.22***

$35,000–$39,999 (B19001008) −.20***

$40,000–$44,999 (B19001009) −.18***

$45,000–$49,999 (B19001010) −.14***

$50,000–$59,999 (B19001011) −.13***

$60,000–$74,999 (B19001012) −.06

$75,000–$99,999 (B19001013) −.06

$100,000–$124,999 (B19001014) .21***

$125,000–$149,999 (B19001015) .27***

$150,000–$199,999 (B19001016) .35***

$200,000 or more (B19001017) .41***

Note. Household income reflects the percentage of households in each income bracket per micropolitan/metropolitan area.

*
p < .05.

***
p < .001.
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