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Abstract

Our use of tools is situated in different contexts. Prior evidence suggests that diverse regions 

within the ventral and dorsal streams represent information supporting common tool use. However, 

given the flexibility of object concepts, these regions may be tuned to different types of 

information when generating novel or uncommon uses of tools. To investigate this, we collected 

fMRI data from participants who reported common or uncommon tool uses in response to visually 

presented familiar objects. We performed a pattern dissimilarity analysis in which we correlated 

cortical patterns with behavioral measures of visual, action, and category information. The results 

showed that evoked cortical patterns within the dorsal tool use network reflected action and visual 

information to a greater extent in the uncommon use group, whereas evoked neural patterns within 

the ventral tool use network reflected categorical information more strongly in the common use 

group. These results reveal the flexibility of cortical representations of tool use and the situated 

nature of cortical representations more generally.

INTRODUCTION

Tool use is a defining feature of human behavior (Ambrose, 2001; Wilson, 1999). Typically, 

humans use tools in common ways (e.g., we use a hammer to hammer a nail), and our tool 

use reflects conventionalized relationships between actions and objects (i.e., the hammer 

was designed to hammer nails). This ability has allowed humans to transform our physical 

environments, and because we are adept at learning the common uses of objects from each 

other (i.e., we can imitate each other and are skilled observational learners), we have 

transformed our social environments by building a culture of shared knowledge (see 

Johnson-Frey, 2004). In this way, common tool use shares features with other 
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quintessentially human characteristics, including the conventional use of language and the 

use and transmission of moral conventions.

According to some authors, early hominids evolved specialized cognitive systems to create 

tools to efficiently address our goals (e.g., see Donald, 1991). One of the features of this 

early evolving system is its generative capacity, our ability to break down or categorize 

features of objects and combine them to solve problems (see Corballis, 2015, in press). For 

instance, we can categorize graspable things and hard things and combine them to create a 

tool that is effective at hammering. In most instances, common tool use reflects these 

conventionalized associations, allowing us to efficiently identify the features of existing 

tools that satisfy our goals. Importantly, however, we encounter tools in context, and in some 

contexts, these conventions can be broken. Given our generative capacity, we can analyze 

features of existing tools and apply them to problems for which they were not designed. For 

instance, to hammer a nail, we can identify any object with sufficient hardness and 

graspability, like a shoe. In this way, uncommon tool use, like language use, allows us to 

extend our problem-solving abilities in potentially infinite ways (see Goldenberg & 

Hagmann, 1998) and shows that object representations are not static; rather, information 

composing the object’s representation is situated in a cognitive context and therefore is 

activated in ways to meet task demands (Kalénine, Shapiro, Flumini, Borghi, & Buxbaum, 

2014; see Yee & Thompson-Schill, 2016; Barsalou, 2015, for a review).

Much research has investigated which regions of the cortex reflect tool-related information 

during common tool use. The general findings from this research are that tool-related 

information is represented by the activity of a distributed left hemisphere network (i.e., the 

tool use network; Gallivan, McLean, Valyear, & Culham, 2013; Lewis, 2006; Johnson-Frey, 

2004). This network is distributed across both the ventral and dorsal processing streams (see 

Milner & Goodale, 2008), and its activity during tool use is characterized by flexibly 

reorganized task-dependent interactions between them (see Hutchison & Gallivan, in press; 

also Stevens, Tessler, Peng, & Martin, 2015). Nodes of this network show differences in 

both functional connectivity (e.g., Garcea & Mahon, 2014) and anatomical connectivity 

(e.g., Caspers et al., 2011). They also show activation sensitivity. Within the ventral stream 

are regions showing sensitivity to tools (e.g., medial fusiform gyrus; Chao, Weisberg, & 

Martin, 2002; Chao, Haxby, & Martin, 1999; see Grill-Spector & Malach, 2004, for a 

review). Martin and colleagues (e.g., see Martin, 2007) have suggested that tool-preferring 

regions are attuned to shape and motion attributes.

The dorsal stream can be further subdivided (see Binkofski & Buxbaum, 2013; Johnson & 

Grafton, 2003; Rizzolatti & Matelli, 2003; see also Borra & Luppino, in press; Almeida, 

Fintzi, & Mahon, 2013). First, a bilateral dorso-dorsal stream processes information related 

to aspects of tool orientation (e.g., the lateral occipital parietal junction; Valyear, Culham, 

Sharif, Westwood, & Goodale, 2006) and the kinematics of the arm and hand during online 

grasping (e.g., the anterior intraparietal sulcus; Culham et al., 2003; Chao & Martin, 2000; 

see Culham & Valyear, 2006, for a review). Second, a left-lateralized ventro-dorsal stream 

processes information both about characteristic visual tool motion (e.g., the posterior middle 

temporal gyrus; Kalénine & Buxbaum, 2016; Beauchamp, Lee, Haxby, & Martin, 2002, 

2003; see Beauchamp & Martin, 2007, for a review) and about learned sensorimotor 
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associations between tools and actions (e.g., supramarginal gyrus; see also Buxbaum & 

Kalénine, 2010, for a review). The role of these regions is confirmed by neuropsychological 

studies showing that damage to critical nodes of the ventro-dorsal stream in the left 

hemisphere produces behavioral impairments in tool use (Salazar-López, Schwaiger, & 

Hermsdörfer, 2016) and the execution and recognition of pantomimed tool use (apraxia; 

Goldenberg, Hartmann, & Schlott, 2003; see Buxbaum, Shapiro, & Coslett, 2014, for a 

review; see also Borra et al., 2008; Zhong & Rockland, 2003, for anatomical evidence in 

nonhuman primates). Thus, the bilateral dorso-dorsal stream is specialized for online aspects 

of action control, whereas the left ventro-dorsal stream is critical for the representation of 

learned tool actions (see also Garcea, Kristensen, Almeida, & Mahon, 2016; Kristensen, 

Garcea, Mahon, & Almeida, 2016).

Importantly, many of the regions involved in actual tool use are active during cognitive tasks 

in which there is no action execution. For instance, regions of the posterior parietal lobe are 

activated when viewing images of tools (with no explicit instruction to think about their use; 

Chao & Martin, 2000). A recent large-scale neuro-psychological study revealed that damage 

to the posterior temporal lobe, an area often associated with tool-based motion, results in 

deficits in both action production and action recognition (Tarhan, Watson, & Buxbaum, 

2015). This suggests that part of cortical representation of tool use is not only distributed 

across the ventral and dorsal streams, but the representations within these networks are at 

least partially grounded in sensorimotor systems involved in action planning (see Martin, 

2007). These findings are consistent with the grounded cognition hypothesis that tool 

cognition (e.g., identifying tools or describing how to use them) requires activation of 

representations involved in planning tool use, including those relevant for perceiving tool 

shape, motion, and, possibly, the arm and hand kinematics associated with their use (see 

Matheson & Barsalou, in press; Tarhan et al., 2015; Barsalou, 2008; Thompson-Schill, 

2003).

The claim that representations within the tool use network are distributed and grounded 

within ventral and dorsal regions has consequences for understanding not only common tool 

use but also creative or uncommon tool use and its neural correlates. To use a tool in an 

uncommon way, a problem solver must consider the properties of the tool, both structural 

characteristics such as shape and size and physical principles such as leverage; such 

mechanical problem solving may be disrupted in some patients with apraxia after left 

parietal lesions (see Goldenberg & Hagmann, 1998). These problem-solving skills may be 

supported by overt or covert mental imagery (e.g., Pearson, Naselaris, Holmes, & Kosslyn, 

2015; Kosslyn, Ganis, & Thompson, 2001), perhaps via simulation of possible object uses.1 

A general hypothesis stemming from this perspective is that the ability to generate 

uncommon tool uses requires activating representations of sensorimotor features in a search 

of action possibilities.

Two previous investigations from our laboratory are relevant to these ideas. First, the role of 

anterior and posterior cortical regions in generating uncommon tool uses was investigated by 

1As noted elsewhere (Pearson et al., 2015), there are exciting parallels between the posited role of imagery (specifically) and the role 
of embodied simulations (more generally) in supporting behavior.
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Chrysikou and Thompson-Schill (2011), who reported a reversal in the relative magnitudes 

of the BOLD response during common versus uncommon use generation when comparing 

the inferior frontal gyrus (greater for common uses) and the occipito-temporal cortex 

(greater for uncommon uses). This interaction indicates that the generation of uncommon 

uses places greater demands than does generation of common uses on the neural systems 

that support the analysis and representation of features of the visual appearance of an object, 

such as its shape (see also Tyler & Moss, 2001). Subsequent research revealed that 

participants take longer to generate uncommon uses than common ones (Chrysikou et al., 

2013) and may suggest that the posterior activation observed during the uncommon use task 

reflects the activation of grounded representations and/or explicit imagery (see also 

Chrysikou, Motyka, Nigro, Yang, & Thompson-Schill, 2016).

In this study, we further investigated the way in which information within the tool use 

network is flexibly activated to generate common versus uncommon tool uses. We sought to 

extend previous research by adopting pattern similarity2 analysis (PSA; e.g., Connolly et al., 

2012; see Kriegeskorte, Mur, & Bandettini, 2008), allowing us to emphasize how the 

multivariate responses within the tool use network change between the two tasks. 

Specifically, we examined whether neural dissimilarity patterns of different regions of the 

tool use network (e.g., the neural pattern in response to axe vs. hammer vs. brush vs. …) 

correlated with different behaviorally derived dissimilarity measures relevant to tool use 

behavior. We investigated three types of information, all of which influence activity in the 

tool use network: visual (how visually dissimilar is axe vs. hammer vs. brush vs. etc.), action 

(how dissimilar are the actions associated with using axe vs. hammer vs. brush vs. etc.), and 

categorical (how dissimilar is the category that axe belongs to vs. hammer vs. brush vs. etc.). 

Although many recent theories have posited that object representations are dynamically 

activated (see Mahon & Hickok, 2016, for a review) and some have explicitly focused on 

how different neural regions come online to support conceptual performance in a dynamic 

way (e.g., GRAPES model presented by Martin, 2016), there are no studies, to our 

knowledge, that have investigated how neural tuning of specific regions of the tool use 

network changes in different tasks or the relationship of that tuning to different behaviorally 

relevant information. In this study, we hypothesized that the representation of tool-related 

information is situated and would therefore be differentially tuned within the tool use 

network in common versus uncommon use tasks, with trade-offs observed between the 

ventral and dorsal streams. Specifically, because previous univariate results show a trade-off 

between anterior and posterior regions in these two tasks (Chrysikou & Thompson-Schill, 

2011), we hypothesized that information in more anterior and ventral regions supports 

common tool use information, whereas information in posterior dorsal regions supports 

uncommon use responses.

2Note that authors differ on the use of similarity measures (e.g., correlation) versus dissimilarity measures (e.g., 1 – correlation, 
Euclidean distance), but the conceptual foundation of the technique remains the same.
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METHODS

Participants

We recruited 30 participants from the University of Pennsylvania community through online 

ads. We randomly assigned each participant to either the common use or uncommon use 

generation condition; groups were matched on gender (eight men in each group) and age 

(means = 25.3 and 25.2 years, respectively; t(28) = 0.05, p = .96). With the exception of two 

participants in the common use group, all participants were right-handed; none of the 

findings reported below qualitatively change if we remove the two left-handed participants 

from analyses. All participants reported English as their first language. Participants were 

monetarily compensated for their time. All participants provided consent, and the study was 

approved by the institutional review board at the University of Pennsylvania.

Stimuli

We selected 60 color photographs of everyday household objects from the set described in 

Watson and Buxbaum (2014). See Table 1 for a list of stimuli used in the present 

experiment.

We used stimuli from Watson and Buxbaum (2014)—which are a subset of those in the 

larger Bank of Standardized Stimuli stimulus database (Brodeur, Dionne-Dostie, Montreuil, 

& Lepage, 2010)—because these stimuli have been well characterized with regard to their 

visual, categorical, and action similarity.

Procedure

Following from Chrysikou and Thompson-Schill (2011), we used a between-group 

manipulation of the task—common versus uncommon use generation—to limit the 

frequency with which participants explicitly thought about both types of uses on any given 

trial. For instance, we did not want to prime participants in the common use group to think 

of uncommon uses. We instructed participants in the common use condition to “please 

describe how you would commonly use the object; describe the use that first pops into your 

head. For instance, if you see a shoe, you might respond, ‘To wear on my feet as I walk 

around.’” Participants were encouraged to think of this task as accessing what the most 

common response might be in the population of people familiar with the item. We instructed 

participants in the uncommon use condition to “please describe a creative and novel use of 

the object; describe a use that is not obvious. For instance, if you see a shoe, you might 

respond, ‘Use the sole to hammer a nail into the wall.’” We assured participants that there 

were no correct answers. Participants in the uncommon use task were further instructed to 

avoid repeating prior answers (e.g., if “to use as a hammer” was given in response to one 

object, it should not be given in response to another object) and to avoid generating common 

alternative uses (e.g., using a toothbrush to clean shower tile).

On each trial, a fixation cross appeared for 6000 msec, followed by the image of an object 

for 3000 msec. After this, a blank screen was presented for 9000 msec, in which the 

participants were instructed to simply think about how they would use the object (according 

to their instruction). After this cogitate period, a small circle appeared in the center of the 
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screen for 6000 msec, cueing the participants to provide their verbal response. Participants 

completed 60 trials in random order across two 12-min scanning blocks, with a single break.

A microphone positioned near the participant’s mouth transmitted their response to the 

stimulus computer for coding offline. Vocal responses were recorded onto the native HD 

with an OptoActive Active Noise Control system (OptoAcoustics, Israel). Image display was 

controlled by E-Prime (Psychology Software Tools, Pittsburgh, PA) running Windows XP on 

a Dell ThinkPad laptop computer. Participants viewed images using a mirror positioned on 

the head coil. Images were projected onto a screen using a projector positioned in the 

scanning room.

Behavioral Dissimilarity Matrices

We constructed action, visual, and categorical dissimilarity matrices (DSMs) using the data 

reported in Watson and Buxbaum (2014). Measures of visual and categorical similarity were 

obtained from participants’ explicit ratings of these two dimensions for each pair of objects: 

Visual similarity ratings were based on the instructions to rate how similar pairs of tools 

“looked,” whereas categorical similarity ratings were based on instructions to rate the extent 

to which pairs of tools were from the same “category.” We derived visual and categorical 

dissimilarity values by calculating the Euclidean distance between the ratings for all pairs of 

objects. Action dissimilarities were derived differently. In Watson and Buxbaum (2014), 

participants were given images of the objects and asked to sort the tools into groups based 

on “how the objects are typically used,” emphasizing that the sorting was based on the 

skilled use of the tools. Each pair was assigned a similarity value based on the number of 

times it was sorted together. PCA was performed on the raw data, generating two principal 

components, one corresponding to the amount of arm movement associated with the 

functional use of the tool and one corresponding to the type of hand posture adopted to use 

the tool (see Figure 2 in Watson & Buxbaum, 2014). To create the behavioral action DSM 

used here, we calculated Euclidean distance between tool pairs based on their values for 

each of the two principal components.

In the analysis below, we treat these DSMs as independent, although it is likely that they are 

not orthogonal. For instance, because the actions we can perform on an object are partly 

constrained by its shape, we might expect a strong correlation between action and visual 

information. However, although the action DSM correlated with both the category DSM (r 
= .26, p < .001) and the visual DSM (r = .12, p < .001) and the visual and category DSMs 

correlated with one another as well (r = .22, p < .001), the correlations were small 

suggesting that these matrices are not simply redundant with one another and reflect 

conceptually different sources of information.

Image Acquisition and Preprocessing

We collected fMRI data using a 3.0-T Siemens Trio (Malvern, PA) with a 32-channel head 

coil. The imaging procedure began with T1-weighted localizer image. Echo-planar 

functional images were collected over 44 axial slices (repetition time [TR] = 3000 msec, 

echo time = 30 msec, 64 × 64 × 44 pixels in a 19.2-cm field of view and a voxel size of 3 

mm3).
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Data preprocessing was conducted offline using the fMRIB software library (Jenkinson et 

al., 2012; fsl.fmrib.ox.ac.uk/fsl/fslwiki). First, for each participant, we used the Brain 

Extraction Tool (Smith, 2002) to eliminate voxels of noninterest (e.g., the skull). Adequate 

brain extraction was confirmed visually for each participant. We performed motion 

correction with a linear registration using the MCFLIRT tool (Jenkinson, Bannister, Brady, 

& Smith, 2002), and we spatially smoothed data with a 5-mm FWHM filter. In addition, the 

functional data were temporally filtered with a high-pass filter (100-sec cutoff).

Data Analysis

We conducted two analyses. First, we performed a pattern dissimilarity analysis. Second, we 

performed an exploratory follow-up univariate analysis.

Pattern (Dis)similarity Analysis—For the PSA, the fMRI Expert Analysis Tool was 

used to model BOLD responses in each run. For the first level analysis, we created two 

explanatory variables (EVs) to model (a) the stimulus period and (b) the vocal response 

period of each run; the fixation period between trials was modeled as the baseline. In 

addition, we created 30 EVs to model the response (i.e., the period of the trial in which the 

screen was blank, and participants were preparing their responses) period separately for each 

stimulus (30 response periods per run). To ensure that the patterns used in the PSA were 

estimated from equivalent stages of processing in the two tasks, the response period was 

defined separately for the two groups based on the known RT differences in producing 

common and uncommon use responses (from RTs reported in Chrysikou et al., 2013)3: For 

the common use group, because RTs are reported at approximately 2000 msec, only the first 

TR was modeled during the response period to estimate common use patterns. In contrast, 

for the uncommon use group, because RTs are reported at approximately 5000 msec, the 

second TR was used. In both cases, the other TRs during this period were modeled 

separately as a variable of no interest. All EVs were convolved with a gamma function (6-

sec lag, 3-sec SD). This generated parameter estimates (i.e., contrast of parameter estimates 

generated) images for each stimulus (relative to fixation), which were then used as patterns 

for the PSA. Finally, functional images were registered using FMRIB’s Linear Image 

Registration Tool (Jenkinson et al., 2002; Jenkinson & Smith, 2001) by first aligning the 

functional data with the participant’s high-resolution anatomical brain. We used a linear 

search with 12 degrees of freedom to align the participant’s anatomical to the standard 

MNI-152 2-mm atlas.

Our PSA proceeded in two phases, following from Proklova, Kaiser, and Peelen (2016) and 

Connolly et al. (2012) using functions from the CoSMoMVPA toolbox (Oosterhof & 

Connolly, retrieved from cosmomvpa.org/) as it is implemented in MATLAB (The 

MathWorks, Inc., Natick, MA) and additional custom scripting. First, for each participant, 

we conducted a whole-brain searchlight analysis (radius = 3 voxels): Within each 

searchlight, correlation distance was calculated for each pair of stimulus–response patterns. 

Thus, for each spherical searchlight, a 60 × 60 (i.e., each object’s neural pattern during the 

3We also performed an analysis modeling the first TRs in both groups and found qualitatively similar results. We believe that 
accommodating the known temporal differences between these two tasks (Chrysikou & Thompson-Schill, 2013) when modeling the 
predicted neural activity allows for a better test of the main hypotheses.
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response period) neural DSM was calculated. These neural DSMs were z scored and then 

used as the dependent variable in a general linear model (i.e., multiple regression) with our 

three z-scored behavioral DSMs as predictors (action, categorical, and visual), resulting in 

beta values for each of the three predictors associated with each searchlight center. The 

searchlight analysis resulted in a whole-brain map of beta values of the neural dissimilarity 

versus each of the behavioral DSMs.

Because of the large number of comparisons in analyzing the whole-brain map, we only 

analyzed beta values within a set of ROIs. To identify ROIs, we used the Talairach 

coordinates (transformed to MNI using the coordinate utility of the SDM neuroimaging 

software accessed here: www.sdmproject.com/utilities/?show=Coordinates) from 12 regions 

presented in Gallivan et al. (2013) as nodes in the tool use network. In addition, we used a 

selection of left hemisphere coordinates listed in Chrysikou and Thompson-Schill (2011) as 

nodes in the extended network implicated in uncommon tool use (see Table 2).

To generate our ROI masks, we dilated each voxel (at the specified coordinates) in three 

dimensions by three voxels to create spherical masks (thus, the ROI masks were the same 

size and shape as our searchlights). To calculate the z value associated with each beta value 

(reflecting the fit of the behavioral matrix with the neural matrix for that searchlight), we 

used the Cosmo Monte Carlo Cluster Stat function with multiple comparison correction 

within the CoSMo toolbox (see Oosterhof, Connolly, & Haxby, 2016). This function was run 

separately for each ROI. There are a number of steps to this method: First, at each 

searchlight center, we performed a t test comparing betas in the common use group versus 

the uncommon use group, resulting in a t score for each searchlight center. These t scores are 

immediately converted to z scores, resulting in a single whole-brain map of z values. We 

then used threshold-free cluster enhancement (TFCE) to convert the z map into a map of 

TFCE values; here, each TFCE value is the z score adjusted by the magnitude of the z values 

of those surrounding it—in this case, the other betas in the ROI (see Smith & Nichols, 

2009).4 Next, null TFCE distributions are generated by randomly flipping the signs of the 

observed beta values and performing t tests on each of 10,000 permutations. Finally, a final z 
map is derived by comparing, for each searchlight center, the number of times the observed 

TFCE was smaller than the maximum TFCE in the null maps and dividing this by the 

number of iterations (therefore correcting for all comparisons within an ROI; see Oosterhof 

et al., 2016).

z Scores greater than 1.65 are considered significant at an alpha of .05 (one tailed). This 

criterion allowed us to determine, within each ROI, which searchlight centers showed group 

differences (common > uncommon and uncommon > common). For visualization, we 

projected the results of any ROIs showing at least one significant searchlight center onto the 

surface of the standard MNI-155 2-mm brain template (using FreeSurfer, v5.3.0).

4How the z values are enhanced depends on the magnitude and distribution of all voxels in the analysis. In most cases, cluster level 
statistics are determined by arbitrarily setting a threshold for the statistic magnitude at each voxel and for the spatial extent of nearby 
values. The consequence of this is that, depending on threshold choice and the size of the map, the cluster-thresholded map will be 
biased to either large but spatially restricted clusters or small but spatially diffuse clusters. TFCE adjusts the statistical map in such a 
way that large but spatially restricted clusters are more comparable with those in small but spatially diffuse voxels and does so without 
presetting arbitrary thresholds. Readers are encouraged to see Smith and Nichols (2009) for mathematical details about the algorithm.

Matheson et al. Page 8

J Cogn Neurosci. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Univariate Analysis—To further explore how the tool use network responds to task 

changes in common versus uncommon tool use, we conducted an additional univariate 

analysis: Here, each participant’s 60 response contrast of parameter estimates generated 

(generated in the PSA analysis) were averaged, resulting in one whole-brain map per 

participant (representing the average pattern across all 60 objects for each participant). Then, 

the Cosmo Monte Carlo Cluster Stat function was used with TFCE to identify any voxels 

that showed greater activation in either the common use group or the uncommon use group. 

Again, any ROIs showing greater activation are projected onto the surface for visualization.

RESULTS AND DISCUSSION

Behavioral Results

Vocal responses were transcribed by the first author. Responses that were judged to adhere 

to the instructions (i.e., providing a common or uncommon response) were coded as 

“correct”; all other responses, or failures to respond within the allotted window, were coded 

as “incorrect.” A t test comparing the number of correct responses between groups showed 

that performance in the common group was marginally better (M = 0.99) than was 

performance in the uncommon group (M = 0.93), t(28) = 2.06, p = .058, but overall 

performance was high in both groups.

Pattern (Dis)similarity Analysis—We used PSA to characterize the multivoxel patterns 

of neural activity during the response period separately for the common and uncommon use 

groups to determine whether different information (characterized as behavioral 

dissimilarity), including visual, action, and categorical, predicted neural responses in the tool 

use network. Table 3 lists the voxel coordinates of significant searchlight centers, the 

associated z scores (generated from permutation testing within the ROI), and the average 

beta values for the two groups at that location (Figure 1).

Action Dissimilarity—For action dissimilarity, two ROIs of the left-hemisphere tool use 

network showed at least one significantly stronger correlation in the uncommon use group 

compared with the common use group. Included were the posterior intraparietal sulcus and 

the middle occipital gyrus. The intraparietal sulcus is implicated in coordinating reaching 

and grasping (Vingerhoets, 2014; Culham & Valyear, 2006) as well as reaching and grasping 

imagery (Filimon, Nelson, Hagler, & Sereno, 2007). In the uncommon use group, the 

computations of this ROI predicted action information (associated with common uses), 

suggesting that detailed information about kinematics compose (at least in part) the 

representation of action in this task (see also Orban & Caruana, 2015). It is possible that the 

computations of this region reflect the increased competition between the representations of 

typical functional actions and those of structurally derived actions relevant to alternative uses 

(see Lee, Middleton, Mirman, Kalénine, & Buxbaum, 2013).

The middle occipital gyrus also showed a stronger relationship with action information in 

the uncommon use group. This extends previous findings from Chrysikou et al. (2011) about 

the role of posterior visual regions in generating uncommon uses by showing that shape-

sensitive regions also contribute to the representation of action in this task. Previous research 

has shown that the multivoxel pattern dissimilarity responses of this region also correlate 
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with body extension dissimilarity, specifically the degree to which the objects extend the 

manipulative powers of the body (see Bracci & Peelen, 2013). Our results compliment this 

finding, demonstrating that higher-level visual cortical information reflects nonvisual (i.e., 

motoric) information depending on the task.

These ROIs reflect action dissimilarity more in the uncommon as compared with common 

use group, although no tool is visually presented during the response period, suggesting that 

the information about common actions is predictable from the patterns evoked during the 

planning or imagining of uncommon tool uses. This finding elaborates previous research 

showing that the regions involved in actual tool use are also active during cognitive tasks in 

which there is no action execution (e.g., Creem-Regehr & Lee, 2005; Johnson-Frey, 

Newman-Norlund, & Grafton, 2005; Moll et al., 2000; Grafton, Fadiga, Arbib, & Rizzolatti, 

1997). These ideas are consistent with the grounded cognition hypothesis that 

representations of tool use actions are grounded in the reactivation of regions involved in 

actually using tools, including those relevant for perceiving tool shape and motion and for 

specifying the arm and hand kinematics associated with their use (see Barsalou, 2008; 

Thompson-Schill, 2003).

Categorical Information—The computations of the posterior middle temporal gyrus 

predicted categorical information more strongly in the common use task than in the 

uncommon use task. This region is widely implicated in tool-related semantics (see Watson 

& Buxbaum, 2015). Indeed, the integrity of the posterior middle temporal gyrus is necessary 

for recognizing tool-related actions and producing them (see Kalénine, Buxbaum, & Coslett, 

2010). The fact that this region is clearly involved in both production and recognition 

suggests that the information in the middle temporal gyrus is implicated in organizing tool 

knowledge and is a critical node grounding tool cognition in action (see Kable, Kan, Wilson, 

Thompson-Schill, & Chatterjee, 2005). One possibility is that the posterior middle temporal 

gyrus is critical for retrieving representations of the visual motion of tool actions, consistent 

with the well-established finding of activity in this region in response to moving tools 

(Beauchamp et al., 2002, 2003) and deficits in action recognition after damage here (Tarhan 

et al., 2015). Our results suggest that such simulations support the processing of tool 

category.

Visual Information—Two ROIs of the tool use network predicted visual information more 

strongly in the uncommon use group than the common use group. First, the dorsal premotor 

cortex is implicated in the online control of action and action execution (see Moll et al., 

2000). This finding suggests that generating uncommon tool uses relies on computations that 

reflect visual shape. Indeed, the visual shape of objects will constrain the exact types of 

uncommon uses that are executable with a tool.

Second, the supramarginal gyrus predicted visual information more strongly in the 

uncommon use group. The supramarginal gyrus’ involvement suggests that the computations 

of this region are highly sensitive to the visual form of objects and the precise motor acts 

that the shape affords, perhaps driven in part by higher-level action plans in the dorsal 

premotor cortex.
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Interestingly, the response patterns of the left inferior frontal gyrus predicted visual 

information more in the common use group. This region was implicated by Chrysikou et al. 

(2011) as a region that biases relevant action representations within posterior regions (see 

also Watson & Buxbaum, 2015; Badre & Wagner, 2007). We extend these results by 

showing that the computations of this region reflect visual information during the common 

use task, suggesting that an important dimension for this biasing process is the visual form 

of the object. There are consequences of this relationship as well, as damage to the inferior 

frontal gyrus will result in impaired pantomime (see Bohlhalter et al., 2011) and deficits in 

both producing and recognizing tool-related actions (Tarhan et al., 2015).

Univariate Results

A summary of the univariate analysis is presented in Table 4 and Figure 2.

We observed greater activity in dorsal stream ROIs during the uncommon use task, 

demonstrating that the uncommon use task recruits areas involved in the online control of 

action more than the common use task. Interestingly, the left inferior frontal gyrus5 

responded more in the common use group, but so did posterior regions of the middle 

occipital gyrus, a univariate result that only partial replicates Chrysikou and Thompson-

Schill (2011). However, in Chrysikou and Thompson-Schill (2011), participants viewed 

tools and were told to give a verbal response while the tool was on the screen; conversely, 

our participants gave responses after the stimulus viewing period. Therefore, our task gave 

participants a large amount of time to think of their desired use in the absence of the visual 

object. Because the contributions of the inferior frontal gyrus and fusiform area are not 

static, but unfold in a dynamic fashion, introducing a delay may have obscured any 

differences that arose through the response period. Our design did not permit an 

investigation of such timing effects, but behavioral (e.g., Bub & Masson, 2012) and 

neurophysiological (e.g., Kiefer, Sim, Helbig, & Graf, 2011) results show that the activation 

of action information is highly sensitive to timing (see also Lee et al., 2013).

Summary and Conclusions

We have shown that different types of behaviorally relevant information predict the 

computations of the ventral and dorsal regions of the tool use network differently when 

generating common versus uncommon uses, demonstrating the situatedness and flexibility 

of the neural systems supporting one of our most quintessential skills. Ventral regions 

reflected categorical information more in the common use group, whereas posterior dorsal 

regions reflected action and visual information more in the uncommon use group. Although 

the univariate results show that the absolute magnitude of the activity within a subset of 

these ROIs varies across the two tasks, they do not provide insight about how the processing 

of these ROIs relates to different types of information (see Coutanche, 2013). Our PSA 

findings suggest that the information represented in these regions shifts under the two 

conditions, with computations within posterior dorsal regions more relevant for generating 

uncommon uses and computations within ventral and anterior regions more relevant for 

generating common uses.

5Note that voxels within this ROI do not show up on the projection to the inflated surface used here.
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Our findings are consistent with a growing number of imaging results that demonstrate that 

object representations are dynamically activated across different tasks. For instance, areas of 

the ventral stream represent identical objects differently in perceptual versus conceptual 

tasks (Harel, Kravitz, & Baker, 2014). Furthermore, attention to different semantic 

categories (humans vs. vehicles) during natural viewing shifts the tuning curves of almost 

the entire cortex toward the attended category (Çukur, Nishimoto, Huth, & Gallant, 2013). 

However, we extend these previous findings by showing that not only do task demands 

shape the degree of response in different regions, but the fine-grained structure of the 

response changes across tasks. We have shown that thinking about the properties of a 

hammer with the goal of describing an uncommon use compared with a common use 

recruits different types of information. This suggests strongly that there is no single 

representation of object information supporting task performance but that the 

representation’s structure changes. Along with previous findings, our results are consistent 

with recent theoretical proposals that concepts are not static but are situated instead—that 

context shapes the way in which object concepts are activated (see Barsalou, 2005).

Our findings have an additional, broader theoretical implication. According to grounded 

theories of cognition, generating uncommon tool uses should result in simulations in 

modality-specific cortices, particularly those related to shape and action (see Barsalou, 

2008). In this study, we found evidence for involvement of functional regions specifying 

action and visual properties of tools, in particular, regions associated with action planning 

and recognition (intraparietal sulcus, dorsal pre-motor cortex, posterior middle temporal 

gyrus). This suggests that, even in the absence of overt tool use behaviors, the activity of 

these regions reflects action, visual, and category information and may suggest that overt/

covert imagery of possible actions supports the generation of uncommon uses.

Overall, the situatedness of uncommon tool use reflects the generative abilities of humans to 

creatively break the sociocultural conventions associated with tools. The finding that 

computations within regions of the tool use network reflect different types of information 

under these two conditions suggests one way in which the cortex supports both common and 

uncommon tools use. Specifically, each region of the tool use network performs 

computations that draw upon different types of information and do so in ways that flexibly 

meet the task demands. The computations of the two streams, classically described as 

specializing in visual (i.e., in the ventral stream) and motor (i.e., in the dorsal stream) 

processes, are actually flexibly activated to support different tasks. Our results help 

illuminate why, in neurological conditions such as apraxia, deficits in tool use behavior can 

arise after damage to multiple regions (for instance, either posterior parietal regions or 

prefrontal regions; see Buxbaum et al., 2014): Action-relevant information is represented in 

the specific computations of both regions. Although speculative, this may support the notion 

that complex conceptual information is spread across multiple levels of multimodal neural 

hierarchies and therefore is actually reflected in the computations of most regions of the 

cortex (see Clark, 2013), all of which that are coordinated to support the task (see Anderson, 

2010). This neural flexibility likely contributes to the generative and creative nature of 

cognition in other domains, including the creation of new linguistic and moral conventions, 

and reflects a neural foundation of some of our most quintessential skills.
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Figure 1. 
Brain areas showing at least one group difference for each of the three types of behavioral 

dissimilarity. Left-hemisphere ROIs projected onto the inflated, lateral MNI template. See 

Table 3 for precise coordinates as well as mean beta values for both the common and 

uncommon use groups at the max z score location.
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Figure 2. 
z Scores within ROIs of the tool use network that showed significant differences in the mean 

activation across patterns between groups.
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Table 1

List of the 60 Tools Used in the Present Experiment (see Watson & Buxbaum, 2014)

Axe Key Safety pin

Bottle opener Keyboard Saw

Brush Knife Scissors

Bubbles Light bulb Screw

Calculator Lighter Screwdriver

Comb Lipstick Soap

Cookie cutter Magnifying glass Soap dispenser

Corkscrew Match Sponge

Drill Measuring cup Spray bottle

Dropper Nail clipper Squeegee

Eraser Nail polish Staple remover

Fan Paint brush Stapler

Fly swatter Paint roller Toaster

Fork Peeler Tongs

Garlic press Pencil Toothbrush

Glue stick Ping-pong racket Tweezers

Hair clip Pliers Watering can

Hammer Potato masher Weight

Hole puncher Razor Whisk

Iron Remote control Wrench
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Table 2

List of MNI (in Both Voxel Space and Millimeter Space) Coordinates (Transformed from Talairach) Used as 

the Center of Spherical (3-mm Radius) ROIs

From Gallivan et al. (2013) From Chrysikou et al. (2011)

Region x, y, z (Voxel; mm) Region x, y, z (Voxel; mm)

Superior parieto-occipital cortex 48, 25, 53; −6, −76, 34 Inferior frontal gyrus (1) 69, 72, 37; −48, 18, 2

Posterior intraparietal sulcus 56, 29, 62; −22, −68, 52 Inferior frontal gyrus (2) 65, 20, 34; −40, 20, −4

Middle intraparietal sulcus 61, 36, 62; −32, −54, 52 Inferior frontal gyrus (3) 67, 65, 38; −44, 4, 4

Posterior anterior intraparietal sulcus 66, 39, 60; −42, −48, 48 Inferior frontal gyrus (4) 70, 69, 33; −50, 12, −6

Anterior intraparietal sulcus 66, 44, 59; −42, −38, 46 Superior frontal gyrus 46, 66, 70; −2, 6, 68

Supramarginal gyrus 74, 46, 54; −58, −34, 36 Middle frontal gyrus 62, 65, 63; −34, 4, 54

Motor cortex 64, 50, 62; −38, −26, 52 Middle occipital gyrus (1) 63, 20, 38; −36, −86, 4

Dorsal premotor cortex 58, 58, 63; −26, −10, 54 Middle occipital gyrus (2) 58, 20, 37; −26, −86, 2

Ventral premotor cortex 72, 65, 42; −54, 4, 12 Middle occipital gyrus (3) 63, 17, 29; −36, −92, −14

Somatosensory cortex 65, 44, 62; −40, −38, 52 Fusiform gyrus 60, 22, 26; −30, −82, −20

Posterior middle temporal gyrus (functionally defined) 72, 33, 35; −54, −60, −2

Extrastriate body area (functionally defined) 70, 25, 38; −50, −76, 4
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Table 4

Max Z Scores Comparing Common vs. Uncommon Groups (n = 15) within Each Left-Hemisphere ROI

ROI

Common > Uncommon Uncommon > Common

x, y, z Z (p) x, y, z Z (p)

lIFG (2) −38, 20, −8 1.8 (.04)

lMOG (1) −32, −88, 0 1.75 (.04)

lMOG (2) −30, −88, 2 2.72 (.003)

pIPS −18, −64, 54 −2.41 (.008)

midIPS −32, −54, 58 −1.94 (.03)

paIPS −48, −48, 48 −1.97 (.02)

M1 −40, −30, 52 −2.54 (005)

PMd −30, −12, 50 −1.96 (.02)

SS −40, −32, 52 −1.78 (.04)

pMTG −56, −62, −6 −1.97 (024)

Note that only Z scores > 1.65, considered significant at alpha = .05, are shown. Coordinates are given in MNI space (mm).

lIFG = left IFG; lMOG = left MOG.
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