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Abstract
Objective  Critically appraise prediction models for 
hospital-acquired acute kidney injury (HA-AKI) in general 
populations.
Design  Systematic review.
Data sources  Medline, Embase and Web of Science until 
November 2016.
Eligibility  Studies describing development of a 
multivariable model for predicting HA-AKI in non-
specialised adult hospital populations. Published 
guidance followed for data extraction reporting and 
appraisal.
Results  14 046 references were screened. Of 53 
HA-AKI prediction models, 11 met inclusion criteria 
(general medicine and/or surgery populations, 474 478 
patient episodes) and five externally validated. The most 
common predictors were age (n=9 models), diabetes 
(5), admission serum creatinine (SCr) (5), chronic 
kidney disease (CKD) (4), drugs (diuretics (4) and/or ACE 
inhibitors/angiotensin-receptor blockers (3)), bicarbonate 
and heart failure (4 models each). Heterogeneity was 
identified for outcome definition. Deficiencies in reporting 
included handling of predictors, missing data and sample 
size. Admission SCr was frequently taken to represent 
baseline renal function. Most models were considered 
at high risk of bias. Area under the receiver operating 
characteristic curves to predict HA-AKI ranged 0.71–0.80 
in derivation (reported in 8/11 studies), 0.66–0.80 
for internal validation studies (n=7) and 0.65–0.71 in 
five external validations. For calibration, the Hosmer-
Lemeshow test or a calibration plot was provided in 4/11 
derivations, 3/11 internal and 3/5 external validations. 
A minority of the models allow easy bedside calculation 
and potential electronic automation. No impact analysis 
studies were found.
Conclusions  AKI prediction models may help address 
shortcomings in risk assessment; however, in general 
hospital populations, few have external validation. Similar 
predictors reflect an elderly demographic with chronic 
comorbidities. Reporting deficiencies mirrors prediction 
research more broadly, with handling of SCr (baseline 
function and use as a predictor) a concern. Future research 
should focus on validation, exploration of electronic linkage 
and impact analysis. The latter could combine a prediction 
model with AKI alerting to address prevention and early 
recognition of evolving AKI.

Introduction
Acute kidney injury (AKI) is defined as an 
acute increase in serum creatinine (SCr) 
or reduction in urine volume.1 The inci-
dence of AKI is increasing, affecting up to 
one in five hospitalised adults worldwide.2 A 
continuum of injury exists long before suffi-
cient loss of excretory kidney function can be 
measured with standard laboratory tests (ie, 
SCr).3 4 Associated mortality remains high, in 
part reflecting the severity of the underlying 
disease, but may also be due to the limita-
tions of conventional markers to detect early 
injury.5

Deficits in recognition and management of 
patients with AKI6 have led to practice guid-
ance calling for improved risk assessment, 
at which point interventions could be most 
beneficial.7 One suggested strategy to achieve 
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Research

Strengths and limitations of this study

►► This is the first systematic review of prediction 
models for hospital-acquired acute kidney injury 
(AKI) in general hospital populations who account for 
the majority of hospital admissions and AKI cases.

►► The models were selected following an extensive 
literature search; the review followed the latest 
critical appraisal guidance and assessed validity of 
the models in terms of risk of bias and applicability, 
highlighting important shortcomings such as 
handling of serum creatinine.

►► The large number of patient episodes provides 
important insights into AKI prediction and 
complements other recent reviews in specialised 
areas (cardiac surgery, contrast-induced AKI and 
liver transplantation).

►► Lack of access to individual participant data 
prevented a meta-analysis of the studies, an avenue 
of future research.

►► The small number of externally validated models and 
absence of impact analysis limit the recommendation 
and implementation of an individual model.
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this aim is through the implementation of clinical predic-
tion models.8 9 Though development and validation of 
AKI prediction models is desirable,7 10 clinical application 
in this and other fields has been hampered for a number 
of reasons:

►► potential predictors and models continuously increase 
with new studies often finding conflicting results11

►► substandard reporting of methodology and results 
make conclusions problematic12 13

►► few general hospital population studies exist; specialist 
fields (cardiac and transplant surgery and contrast-in-
duced (CI-AKI)) account for the majority of AKI 
models and all systematic reviews but are unlikely to 
be generalisable and14–17

►► models rarely enable electronic automation as part of 
clinical workflow, known to influence uptake.18

High-quality systematic reviews of prediction models 
have been called for.19 Following recent reporting guid-
ance (CHecklist for critical Appraisal and data extrac-
tion for systematic Reviews of prediction Modelling 
Studies (CHARMS)20 and Transparent Reporting of a 
multivariable prediction model for Individual Prognosis 
or Diagnosis (TRIPOD)),12 this review appraises hospi-
tal-acquired AKI (HA-AKI) prediction models in general 
populations who, in the UK, account for the majority of 
hospital episodes21 and AKI cases.22 23

Methods
Published guidance (CHARMS, TRIPOD and Preferred 
Reporting Items for Systematic Review and Meta-Anal-
ysis (PRISMA)) helped frame the review question, data 
extraction, reporting and appraisal.12 20 24 The research 
question was: what are the available prognostic predic-
tion models for the development of HA-AKI in adult 
general populations? Using explicit, systematic methods 
to minimise bias and provide reliable findings from 
which conclusions can be drawn and decisions made,25 26 
the review aimed to collate empirical evidence for AKI 
prediction models across general hospital settings, fitting 
prespecified eligibility criteria (online supplementary 
table 1). Performance was assessed by discrimination and 
calibration including validation studies. The presence 
of any impact analysis studies was also investigated. The 
review aimed to provide recommendations for the most 
robust, usable models, including the ability to incorpo-
rate future electronic data linkage, for example, between 
the community (primary care) and hospital.

Data sources, study selection and data extraction
We searched MEDLINE, Embase and Web of Science data-
bases (inception to November 2016) using recommended 
filters (online supplementary tables 2–4).27 28 Titles and 
abstracts were screened by two reviewers (LEH and AS), 
and full articles were reviewed if eligible. Disagreements 
were resolved by iterative screening rounds. Reference 
lists from retrieved articles, systematic reviews, national7 
and international guidance1 and our own literature files 

were also analysed. Data extraction and quality assess-
ment were performed by two investigators (LEH and AS) 
with disagreements resolved by a third reviewer (LGF). A 
data extraction form was used based on previous reviews 
and guidance (summary online supplementary table 
5).12 13 20 Items extracted included design (eg, cohort and 
case–control), population, location, outcome (definition 
duration of follow-up and blinding of assessment), model-
ling method (eg, logistic), method of internal validation 
(eg, bootstrapping), number of participants and events, 
number and type of predictors, model presentation and 
predictive performance (calibration and discrimination). 
The presence of external validation was recorded.

Outcome, model performance and clinical utility
It was anticipated that study outcome, HA-AKI, would 
vary given the numerous definitions in use prior to 
Kidney Disease: Improving Global Outcomes (KDIGO) 
in 2012.1 Thus, during the search strategy, we included 
studies with an SCr around admission and repeated 
during a hospital admission to diagnose HA-AKI. Infor-
mation was gathered on how a study defined a patients 
baseline renal function, how community AKI cases were 
handled, whether SCr was used as a predictor in analysis 
and finally the magnitude and timeframe used to define 
the outcome. Discrimination and calibration are the 
most common methods to assess model performance. 
Discrimination is usually assessed graphically by the 
area under the receiver operating characteristic curve 
(AUROC), representing how well a model separates 
and ranks patients who experienced the outcome from 
those who did not. For prediction models, the AUROC, 
which focuses solely on accuracy, has a number of short-
comings, such as a lack of information on consequences 
and when used in populations where the outcome 
prevalence is rare.29 30 Calibration describes how well 
predicted results agree with observed results.12 30 The 
Hosmer-Lemeshow (H-L) test, despite limitations, 
is the most commonly used calibration statistic.31 32 
It is also recommended to graphically plot expected 
and actual outcomes, for example, with a calibration 
slope.12 In addition to performance, ease of bedside use 
and whether the models could be electronically auto-
mated—factors known to influence successful uptake—
were recorded.18 A quantitative synthesis of the models 
was not performed, being beyond the scope of review 
and formal methods for meta-analysis of prediction 
models are yet to be fully developed.

Study quality assessment
A global TRIPOD score for each study was calculated to 
quantify reporting, consisting of the sum of the scores 
for each individual item (out of a maximum 37, with a 
score of 1 for criterion met, score of 0 for each item not 
met or unclear).12 As yet there has been no suggested 
cut-off for what represents a high-quality study, though 
it would be reasonable to judge that those studies with 
the most significant gaps in reporting are likely to be 
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Figure 1  PRISMA study flow chart.24 AKI, acute kidney injury; PRISMA, Preferred Reporting Items for Systematic Review and 
Meta-Analysis.

at higher risk of bias. Furthermore, the quality (risk of 
bias) of each study was assessed by piloting a version 
of Prediction study Risk Of Bias Assessment Tool 
(PROBAST), a tool for assessing risk of bias and applica-
bility of prognostic model studies, nearing completion 
and ready for piloting when this review was undertaken 
(Wolff R, Whiting P, Mallett S, et al, personal commu-
nication, website: http://​s371539711.​initial-​website.​
co.​uk/​probast/). Elements were considered in the 
following domains: study participants, predictors, 
outcome, sample size and missing data, statistical anal-
ysis and overall judgement of bias and applicability.

Patient involvement
Patients were not involved in setting the research ques-
tion, outcome, design and implementation of the study. 
There are no plans to involve patients in dissemination.

Results
From 14 046 articles identified by the search strategy, 254 full 
articles were reviewed (PRISMA flow chart, figure 1). Special-
ised fields (predominantly cardiac surgery, transplantation 
or CI-AKI) accounted for 61 of 74 (82%) of all studies. This 
review included 11 general model studies (n=474 478 patient 
episodes), in general surgery,33 34 trauma and orthopaedics 
(T&O),35 general hospital cohorts (predominantly medi-
cine and surgery)36–40 and heart failure (summarised in 
table 1 and online supplementary etable 6, with abbrevia-
tions in supplementary etable 7).41–43 Two further studies 
were purely external validations.44 45 HA-AKI incidence was 
7% (21 641 events), though this varied from <1% in the 
general surgery models33 34 to 28% across the heart failure 
studies, and heterogeneous definitions (timeframe and 
marker) were employed (see table 1 for definitions used 
with further information in online supplementary etable 6). 
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Table 2  Summary of limitations in methodology and reporting

Area of concern Description

Missing data Multiple imputation recommended to avoid bias—rarely described.12 50

Definitions of outcome 
and predictors

No consistent strategy used to differentiate CA-AKI from HA-AKI. Two studies excluded patients with 
pre-existing CKD33 37; five studies took admission SCr as baseline; five included SCr as predictor 
despite it forming the outcome; comorbidities inconsistently defined: including from admission 
diagnoses or coded history.

Blinding of predictors or 
outcome

Not reported.

Sample size Calculations not described, six studies had <10 EPP. Small sample increases risk of overfitting and 
underfitting.12 49

Univariate to select for 
multivariate analysis

Technique not recommended, used in 10 of 11 models.12

Bootstrapping Adjust for optimism, without losing information—rarely described.35 43

Calibration plots Important part of model performance,12 present in only one model and one external validation.35 45

External validation and 
model updating

Validation adjusts for optimism, assesses generalisability but was scarce, while model updating is 
recommended but not described.12

Newer performance 
measures

Techniques such as decision curve analysis offer insight into clinical consequences—not described.29

Use of data linkage Only one study used data linkage.35

AKI, acute kidney injury; CA-AKI, community-acquired AKI; CKD, chronic kidney disease; EPP, events per predictor; HA-AKI, hospital-
acquired AKI; SCr, serum creatinine.

For example, five studies took admission SCr to represent 
a patients baseline, potentially confusing CKD, established 
and emerging AKI.34 38 40 42 43 Of note, one study produced 
a model to predict AKI admission as well as HA-AKI at 
72 hours with the former not considered suitable for anal-
ysis in this review.39

In seven of the nine studies reporting age, this was 
significantly higher in the group with the outcome, with 
eight studies reporting a mean or median age over 65 
years in the outcome group (table 1). Mortality was signifi-
cantly higher in those who developed the outcome in the 
six studies where data were available (ranging 6%–42%). 
No impact analyses were retrieved.

Study reporting
A median 28 (IQR 25–30) of 37 recommended items 
were reported, suggesting significant shortcomings (key 
shortcomings are summarised in table  2 with TRIPOD 
reporting summarised in online supplementary etable 
8). By design, eight studies were retrospective, two were 
prospective and one was a case control. Five studies were 
single centre. USA (n=6) and UK (n=3) accounted for 
the majority of the models. Only three studies used impu-
tation techniques for missing data.34 35 38 Definitions 
were heterogeneous (table 1) with five using Risk, Injury, 
failure, loss of kidney function (RIFLE),37 Acute Kidney 
Injury Network (AKIN)42 or KDIGO criteria for changes 
in SCr.35 36 39 One study used KDIGO SCr change within a 
24-hour timeframe of predictors being measured.40

Candidate predictors, model building and sample size
A median of 29 (IQR 19–35) predictors were considered, 
though frequently studies only reported those significant 

on univariate or multivariate analysis. Blinding of assess-
ment of predictors and study outcome was not mentioned. 
Continuous predictors were dichotomised in four studies, 
and 10 studies used univariate analysis to select for multi-
variate analysis. No models mentioned shrinkage tech-
niques or sample size calculations. Median number of 
outcome events was 271 (121–672). For statistical power, 
all of the studies had more than 10 events per predictor 
(EPP) included in the model. However, the EPP was <10 
in six studies, when accounting for the total number of 
candidate predictors assessed.33 36 38 39 41 43 Of a total of 56 
different predictors, a median of 7 (7–12) was included 
per model, including demographics, history, procedure 
information, laboratory parameters, physiological obser-
vations and hospital admission diagnoses (most common 
presented in figure  2, full details onlinesupplementary 
etables 9–10). Only four studies included physiological 
parameters in their final model.36 38 40 43 Seven studies 
included admission SCr as potential predictor with 
five including this in the final model, thus potentially 
confusing prediction with a diagnosis of AKI.34 37 40 42 43 
Each study’s handling of SCr in terms of when a baseline 
was calculated (prior or at admission) and whether SCr 
was used as a predictor are summarised in online supple-
mentary etable 11.

Model performance
Median AUROC (or C-Statistic) was 0.745 (range 0.71–
0.80) for derivation (eight studies) and 0.74 (range 
0.66–0.80) for internal validations reporting discrimina-
tion (seven studies). Excluding the studies using non-con-
sensus-based definitions and those including admission 

https://dx.doi.org/10.1136/bmjopen-2017-016591
https://dx.doi.org/10.1136/bmjopen-2017-016591
https://dx.doi.org/10.1136/bmjopen-2017-016591
https://dx.doi.org/10.1136/bmjopen-2017-016591
https://dx.doi.org/10.1136/bmjopen-2017-016591
https://dx.doi.org/10.1136/bmjopen-2017-016591
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Figure 2  Predictors most frequently included in the 
11 HA-AKI prediction models. ACEi, ACE inhibitors; 
ARBs, angiotensin-receptor blockers; Bloods, laboratory 
parameters; CKD, chronic kidney disease; HA-AKI, hospital-
acquired acute kidney injury; ↓HCO3, reduced serum 
bicarbonate; SCr, serum creatinine; ↑WCC, raised white cell 
count.
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SCr as predictor and/or baseline, only four studies were 
left.35 36 39 41 In these studies, AUROCs ranged 0.71–0.74 
in derivation (three studies), 0.67–0.76 for internal vali-
dation (three studies) and 0.65–0.71 for external vali-
dation (three studies). Only one model study presented 
a calibration plot for derivation and validation.35 The 
H-L statistic was used in three derivations36 37 42 and two 
internal validations.39 42

Five models have been externally validated: on sepa-
rate populations within the same study,35 39 other model 
studies43 or stand alone external validations,33 45 where the 
AUROCs were moderate, ranging 0.65–0.71. One validation 
provided a calibration plot,35 one the H-L statistic39 and one 
reported both.45 In the Bell external validation cohort cali-
bration suggested the model overpredicted the outcome 
requiring recalibration.35 In the external validation of the 
Forni study calibration plots showed agreement at low 
probability rates, while at higher rates calibration deviated 
in the medical cohort.45 Two of the three surgical models 
have been externally validated: the Kheterpal model,33 in 
a Chinese population (AUROC 0.66),44 and the UK T&O 
study used a third centre for external validation.35 Two of 
five mixed general population models have external valida-
tion,36 39 the latter having been derived on medical patients 
and externally validated in medical and surgical cohorts.45 
The first of the three heart failure studies was externally 
validated in the subsequent studies with inferior discrimi-
nation (AUROC 0.65 in both validations).41–43 No model 
updating was reported.

Quality assessment and risk of bias summary
Quality assessment was  based on a draft version of the 
PROBAST tool. This suggested evidence in 9 of the 11 
included studies of a high risk of bias (summarised in 
table  3) with shortcomings across the major domains 
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of the assessment. For example, one study used a case–
control design, which is inappropriate for developing 
a prediction model as it does not enable calculation of 
absolute risks and thus yields incorrect estimates of model 
intercept or baseline hazard.20 A wide variety of predic-
tors were considered with use of univariate analysis to 
select for multivariate in 10/11 of the studies. Six studies 
were potentially underpowered having less than 10 EPP 
assessed. Seven of the studies introduced potential bias 
in handling of renal function and SCr either in failing 
to establish a reliable baseline renal function, excluding 
patients with reduced renal function or employing it as 
a predictor. Finally, outcome definition frequently varied 
in part owing to a number of the studies preceding 
consensus definitions.

Discussion
Principal findings
In this first systematic review of HA-AKI prediction in 
general hospital settings, the most common predictors 
were age, diabetes, CKD, drugs, heart failure, SCr and 
bicarbonate. Modest discrimination performance of all 
the models is unsurprising when attempting at a single 
time point to predict a future event reflecting diverse 
aetiologies, affecting heterogeneous patient groups. 
Significant shortcomings mirror those described else-
where13 46–48:

►► multiple similar models, rarely externally validated
►► no impact analysis or evidence of clinical 

implementation
►► incomplete reporting and
►► little consideration of electronic automation (allowing 

presentation without additional data input beyond 
usual clinical care), which influences uptake.18

Methodological and reporting shortcomings in the 
studies (summarised in table  2) included six studies 
having less than 10 EPP potentially leading to overfit-
ting, with only three employing multiple imputation to 
handle missing data that can increase sample size and 
power.12 49 50

Handling of SCr and CKD was of particular concern in 
a number of areas. First, in part due to a previous lack of 
a consensus definition, the outcome in question, HA-AKI, 
had heterogeneous definitions, both in magnitude of SCr 
rise and timeframe. For example, the Kheterpal study34 
used a rise in SCr ≥177 μmol/L, which has been shown to 
significantly underestimate rates of AKI when compared 
with more recent definitions.51 Koyner et al40 used a 
rolling timeframe of 24 hours while others used SCr eleva-
tion at any point during an admission. Indeed one study 
produced a separate model to predict AKI at admission 
to hospital.39 This was further confused in seven studies 
by the inclusion of admission SCr as a potential predictor 
(with inclusion in five models), five studies taking admis-
sion SCr to represent a patient’s baseline and two studies 
excluding all patients with a reduced admission estimated 
glomerular filtration rate from their analysis. This risks 

confusing prediction and detection of AKI events. Issues 
with differing definitions have been described before 
in systematic reviews of prediction models and should 
be considered when researchers embark on future 
studies.52 53

A formal risk of bias assessment (PROBAST) suggested 
the majority of studies had domains placing the studies 
at high risk of bias. Published after TRIPOD, Bell and 
colleagues’ model provides researchers with a good 
template for adherence to reporting guidance, with a low 
risk of bias and demonstrates the utility of data linkage 
(eg, between community and hospital), though lack of 
validation in other populations tempers recommenda-
tion for implementation.35

Strengths and limitations of this review
This review summarises the currently available AKI 
prediction models in general populations who account 
for the majority of hospital admissions and AKI cases.21–23 
The models were selected following an extensive litera-
ture search, and the review employed the most recent 
critical appraisal guidance and risk of bias assessment.12 20 
The large number of patient episodes provides important 
insights into AKI prediction complementing other recent 
reviews in cardiac surgery, CI-AKI, liver transplantation 
and non-cardiac surgery.14–17In-patient mortality in those 
who developed the outcome ranged 6%–42% (in the six 
studies reporting mortality), emphasising this is a crucial 
group to promptly identify.

The first limitation is the small number of externally 
validated models, which tempers recommending one 
model over another. Second, though we aimed to include 
general populations, caution should be employed, for 
example, when comparing a model derived on heart 
failure patients to one from an orthopaedic cohort. 
However, in many UK hospitals, such populations share 
similarities (predominantly elderly demographic with 
comorbidities), and if one aim of a prediction model 
is generalisability, a model should be tested in these 
different fields. Third, as study outcome definitions and 
handling of SCr (baseline and as predictor of outcome) 
were heterogenous, model comparisons are problematic, 
though recent studies were more likely to use KDIGO SCr 
change. Fourth, no studies included urine output, prob-
ably reflecting the small number of patients who have this 
marker closely monitored. Fifth, TRIPOD recommenda-
tions were used as a reporting benchmark; however, the 
relative importance of individual items and what consti-
tutes an acceptable ‘score’ is arguable, though a formal 
risk of bias assessment was also carried out (PROBAST) 
providing further insight into respective study strengths 
and weaknesses. The absence of impact analysis limits the 
recommendation of one model over another. Finally, a 
meta-analysis was not performed without access to indi-
vidual participant data. Expert guidance now exists in 
this area and offers opportunities to improve the scope of 
external validation research.53 54
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Table 4  Potential areas for future impact analysis of AKI prediction models

Population Impact analysis to inform clinical use

General surgery Perioperative: haemodynamic targets, place of care, drugs, contrast delivery

Trauma and orthopaedics

General populations Risk stratification of large populations: for example, influencing intensity of observations, remote 
monitoring, application of biomarkers in subgroups at high risk

Heart failure Optimise haemodynamic status: diuretic dosing, use/volume of contrast

Comparison with previous systematic reviews
Both this study and a review of CI-AKI models found 
pre-existing predictors: age, CKD, diabetes and heart 
failure to be the most commonly included.15 A cardiac 
surgery review reported specialty-specific predictors in 
addition to these chronic comorbidities. A non-cardiac 
surgery review (five of six studies in liver transplantation 
or resection) reported age, CKD and diabetes in at least 
two models.17 Finally, a liver transplantation review high-
lighted the importance of CKD and (unsurprisingly) liver 
dysfunction.16 The present review found drugs or acute 
laboratory values frequently included, though only four 
models included acute physiological parameters. Our 
study and the non-cardiac surgery review included adher-
ence to recommended TRIPOD reporting with similar 
shortcomings. Across the other reviews, only in the fields 
of CI-AKI and cardiac surgery were external validations 
reported.14 15 Ease of use (including if necessary a calcu-
lator) and potential for electronic automation were rarely 
considered across the models reviewed. No impact anal-
ysis studies have been described.

Future directions
Management of HA-AKI presents a significant chal-
lenge that could be helped by robust prediction models 
to risk stratify populations, encourage prevention and 
promote prompt recognition.6 10 Appraisal and synthesis 
of prediction studies may enable clinicians and policy-
makers judge model utility; however, this is problematic 
when key study details are not reported.12 Though much 
of the AKI literature is on (often assumed) HA-AKI, the 
majority of cases arise from the community (commu-
nity-acquired AKI).55 56 Indeed, a recent study demon-
strated a significant proportion of such patients are never 
hospitalised.57 This review suggests even in HA-AKI, the 
strongest predictors are pre-existing patient factors. The 
two laboratory measures frequently included—SCr and 
bicarbonate—may also reflect a chronic component. It 
is likely a proportion of cases classed as HA-AKI repre-
sent (evolving) community cases; thus, models using 
such pre-existing risk factors makes clinical sense. This 
continuum of harm between community and hospital 
could suggest that a risk prediction model in place at or 
even before hospital admission, combined with early flag-
ging of those who have met AKI criteria, may be required 
to improve outcomes.

Electronic linkage of patient records between commu-
nity and hospital data is desirable to ensure accurate 

inclusion of predictors (chronic morbidity, medication, 
laboratory and physiological parameters). This may also 
enable bedside automation as part of clinical workflow, 
where there is evidence that beneficial implementation 
can be achieved.18 58 Acute physiological parameters 
assessed as predictors in seven studies and subsequently 
included in only four studies could be an avenue of 
future research to improve the modest performance of 
all models at a single time point (admission to hospital) 
described to date. As hospitals increasingly employ elec-
tronic track and trigger observation systems, this may then 
enable the application of complex statistics (eg, machine 
learning) to account for the effects of trends and repeated 
measures. Risk stratification using chronic comorbidity 
and medication(s) with trends in physiology could be 
further enhanced by measurement of urine output 
and/or newer biomarkers. Unfortunately, to date, such 
research has not been published, with reliance on using 
retrospective databases often only providing information 
at a single time point. A future study in this area would 
thus require prospective collection of rich data, with the 
aim to achieve accurate prediction modelling demanded 
by clinicians and patients prior to implementation.

Impact analysis in prediction research is sparse making 
it difficult to conclude whether a model is worth imple-
menting alongside, or replacing, usual care.59 This is 
important as, for example, one study suggested clinical 
acumen may be superior to prediction models,60while 
another found the combination of a model with clin-
ical acumen was better than either alone.61 Some impact 
analyses have suggested benefit, but conclusions are 
limited due to their rarity and design (mostly before–
after without control).62 There are a number of poten-
tial areas for impact analysis and clinical implementation 
(summarised in table  4). First, in specific populations, 
a model could influence location of perioperative care 
of surgical patients or drug and/or contrast dosing in 
patients with heart failure. Second, in a wider hospital 
setting, the effects of highlighting those at highest risk to 
teams (ward, outreach critical care or nephrology) with 
an adequate effector arm could be investigated. This has 
been demonstrated by existing AKI alerts in established 
AKI where outcome benefit has been limited to patients 
who had best practice delivered.63–65 Third, as healthcare 
embraces complex technology, the inclusion of physiolog-
ical (including urine output) or laboratory trends may be 
the only way to significantly improve model performance. 
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Fourth, a model could identify a high-risk group to be 
further risk stratified by employing one of the (increasing 
number of) available renal biomarkers,66 or response to 
an intervention such as a frusemide stress test.67 Finally, 
one external validation study found those patients high 
risk on the prediction model who did develop AKI had 
a higher rate of mortality than the low-risk group who 
developed HA-AKI, indicating the model predicts disease 
severity.45 This could allow early review of such patients to 
help inform whether escalation of care may be required, 
or indeed be appropriate in the increasing number of 
frail elderly patients admitted to hospitals.

To conclude, improving the management of patients 
to prevent AKI, or reduce associated complications, is 
a global health priority. This systematic review suggests 
there are few externally validated prediction models to 
help identify those at risk of AKI across general hospital 
populations. Future research should concentrate on 
validation, utility of additional markers, exploration of 
electronic implementation to enable clinical uptake and 
impact analysis.
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