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Abstract

Purpose—The purpose of this study was to detect and classify potentially destabilizing 

conditions encountered by manual wheelchair users with spinal cord injuries (SCI) to dynamically 

increase stability and prevent falls.

Methods—A volunteer with motor complete T11 paraplegia repeatedly propelled his manual 

wheelchair over level ground and simulated destabilizing conditions including sudden stops, 

bumps and rough terrain. Wireless inertial measurement units attached to the wheelchair frame and 

his sternum recorded associated accelerations and angular velocities. Algorithms based on mean, 

standard deviation and minimum Mahalanobis distance between conditions were constructed and 

applied to the data off-line to discriminate between events. Classification accuracy was computed 

to assess effects of sensor position and potential for automatically selecting a dynamic intervention 

to best stabilize the wheelchair user.

Results—The decision algorithm based on acceleration signals successfully differentiated 

destabilizing conditions and level over-ground propulsion with classification accuracies of 95.8, 

58.3 and 91.7% for the chest, wheelchair and both sensors, respectively.

Conclusion—Mahalanobis distance classification based on trunk accelerations is a feasible 

method for detecting destabilizing events encountered by wheelchair users and may serve as an 

effective trigger for protective interventions. Incorporating data from wheelchair-mounted sensors 

decreases the false negative rate.
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Introduction

In USA, there are ~1.4–2.2 million wheelchair riders, about half of whom live outside of 

institutions [1–3]. According to the National Electronic Injury Surveillance System (NEISS) 

of the US Consumer Product Safety Commission (USCPSC), an estimated 100 000 

wheelchair-related accidents occur each year that are serious enough to warrant attention in 

an emergency department [2,4]. Of these incidents, there are ~50 wheelchair-related deaths 

each year [3–5]. Spinal cord injury (SCI) is one of numerous neuromusculoskeletal 

conditions, diseases or dysfunctions that can result in dependence on a wheelchair for daily 

personal mobility. There are currently an estimated 276,000 persons living in USA with a 

SCI and ~12,500 new cases per year [6]. About 68% of people with a SCI use either a 

wheelchair or scooter with ~40% using a manual wheelchair [7].

Wheelchair-related falls occur for various reasons and result in a variety of injuries. The 

number one cause of wheelchair-related tips and falls is instability. Tips and falls result in 

either the user falling out of the wheelchair without the wheelchair tipping or the wheelchair 

itself tipping over, such that one or more wheels leave the ground. Between 65 and 77.4% of 

wheelchair-related injuries are due to tips and falls [1–5]. Environmental factors such as 

inclines, ramps and curb cuts are the most frequent causes of tips and falls. Additionally, 

walls and large obstacles can cause injuries via collisions [8]. More than twice as many 

accidents occur outdoors than indoors, where environmental and weather conditions can 

play a larger role [3]. Fractures, lacerations and contusions/abrasions are the most common 

wheelchair-related injuries, most of which tend to occur to the head and neck region 

followed by the trunk, wrist and hand [2,3,8]. Alternatives for stabilizing the torso and 

preventing falls is often limited to belts, straps or other custom seating adaptations [9]. Users 

of even the most sophisticated seating system optimized for their specific postural needs are 

still exposed to unexpected and potentially destabilizing events that could result in falls.

Depending on the level of injury, wheelchair-dependent persons with SCI are often unable to 

sit upright without external support due to paralysis of the trunk muscles required to actively 

support the spine and pelvis, even though passive structures like tendons and ligaments are 

still intact [10,11]. Static support is not widely used or accepted in this population because it 

interferes with remaining voluntary movement and restricts non-propulsion seated function 

such as reaching [11]. In a study of individuals with C5–C6 tetraplegia, the effects of 

personalized seating and positioning interventions on posture and performance showed 

mixed results, with some subjects showing no improvement in objective measures with 

custom seating systems [12]. While dynamic support that is responsive to user movement 

may be more effective, no seating system can guarantee postural stability in the presence of 

unexpected perturbations that can result in catastrophic falls [11].
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This study was designed to explore dynamic options for improving postural stability and 

recovering from potentially destabilizing events that complement the optimal seating 

configuration while maintaining as much freedom of movement as possible in the 

wheelchair.

Various standardized wheelchair functional assessments of safety and stability rely on 

simulating real-world conditions in controlled laboratory environments. Instruments like the 

Wheelchair Skills Program (WSP) include various potentially destabilizing wheelchair tasks, 

such as negotiating a 2 cm (0.787 inch) threshold [13], traversing tracks in multiple 

orientations [14] or placing 0.375 and 0.625 inch dowels on a treadmill to simulate bumps 

[15]. Other studies have focused on predicting the risk of falls from wearable sensors [16]. 

Giasanti et al. reported detecting falls based on data from wearable inertial measurement 

units (IMUs) that sensed accelerations and angular velocities. The system was able to 

distinguish between three classes of fall risk based on the Mahalanobis distances between a 

set of inertial measurements and the statistical distributions of representative examples in 

multidimensional parameter space [16,17]. A similar approach for training a neural network 

to detect falls has been developed as well [17].

The purpose of this investigation was to determine whether a classification system could be 

constructed based on data from simple IMUs that could appropriately differentiate between 

environmental conditions that could lead to instability during manual wheelchair propulsion. 

When implemented in real time, such an event detector would be able to trigger the 

appropriate safety mechanism required to prevent tips and falls that could result in injury. As 

such, it represents the first stage of a new class of advanced seating systems that reacts to 

protect the manual wheelchair user from impending harm, much like the automatic 

triggering systems for automotive airbags.

Methods

Overview

One subject with a motor complete [ASIA Impairments Scale (AIS)-B] thoracic level SCI 

(T11), consented to participate in a series of experiments with multiple-repeated measures. 

He has been a manual wheelchair user since February 2009. The subject used his own 

professionally fit, TiLite ZR wheelchair with seat width 16 inch, seat depth 17 inch and with 

14 inch seat back height. Institutional Review Board (IRB) approval was obtained from the 

Louis Stokes Cleveland Veteran Affairs Medical Center (LSCVAMC) for all experiments.

Data collection

Kinetic data were collected with a 16 camera VICON MS motion capture system (Oxford 

Metrics, Oxford, UK) configured oriented to cover a 10 × 2 × 2 m volume along the flat 30 

m walkway of the Motion Study Laboratory at the LSCVAMC. Six spherical retro-reflective 

markers (10 mm in diameter) were taped on the wheelchair: two markers on the back cross 

bar, one at each wheel center and one above each caster. In addition, four markers were 

taped to the trunk of the subject: one at each shoulder, and one on the sternum, and C7 

vertebra. Marker positions were sampled at 100 Hz. Inertial measurements were collected 
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from two custom wireless IMUs, each containing a CMA3000-D01 accelerometer from 

Texas Instruments (Dallas, TX) and a ST Microelectronics LSM330DLC accelerometer and 

gyroscope. One IMU was placed on the sternum of the subject and the other on the 

wheelchair frame above the right caster. The chest sensor was oriented such that the x-axis 

was in the medial/lateral (M/L) direction, y-axis in the superior/inferior (S/I) direction and z-

axis along the anterior/posterior (A/P) direction. The wheelchair sensor was oriented such 

that the x-axis was in the S/I direction, y-axis in the A/P direction and z-axis in the M/L 

direction (Figure 1). Inertial data sampled at 50 Hz and synced with the VICON data via a 

start and stop pulse from the wireless IMU receiver. The three-dimensional position 

coordinates were recorded for each marker, as well as the 3D components of acceleration 

and angular velocity from each wireless IMU.

Four propulsion conditions were tested: baseline level over ground wheelchair propulsion, 

and three simulating potentially destabilizing conditions inspired by standardized clinical 

tests of wheelchair skill—rough terrain (rumble strips), isolated bumps (thresholds) and 

sudden stops.

The rough terrain and bump conditions were created by affixing solid semicircular dowels 

1.9 cm (0.75 inch) in height to a thin, flat backing. For rough terrain (i.e., rumble strips), the 

dowels were closely spaced 3.8 cm (1.5 inch) apart over a 1.2 m (4 foot) long section such 

that the casters would not hit the backing board between them to simulate surfaces such as 

cobblestone or brick pavers (Figure 2(B)). Isolated bumps, such as contiguous sidewalk 

slabs of mismatched heights or a door threshold, were simulated with another surface on 

which two dowels were placed 36-in apart such that the entire wheelchair could return to 

level ground between strips (Figure 2(C)). The surfaces were positioned in the center of the 

VICON measurement volume and the subject was instructed to approach them at a 

comfortable speed, and maintain that speed for at least three strokes after completing the 

course.

In most real-life wheelchair collisions, the wheelchair strikes another object such as a wall, 

while in rarer instances the wheelchair is hit by another object [8]. Sudden stops/collisions 

were simulated in the laboratory with a 15.24 cm (6 in) high barrier placed toward one end 

of the VICON data capture volume (Figure 2(D)). The subject was instructed to approach 

the barrier at moderate speed without breaking or slowing down and collide into the solid, 

un-cushioned vertical barrier. For safety, the top of the barrier was padded to cushion impact 

and protect against injury, should the subject tip forward or fall from the wheelchair upon 

collision. In addition, the subject wore a protective bicycle helmet and loose fitting lap belt 

for all test conditions. Vision was not obstructed as another safety precaution for subject 

safety and to allow for quick restorative reactions in the case of an impending fall during 

data collection.

A total of six trials for each condition were collected. Motion data were pre-processed in 

VICON Nexus software (Oxford, UK) and exported to Matlab where they were 

synchronized with the wireless inertial sensor data. Kinematic data from the motion capture 

cameras were used as the gold standard to determine the exact time that each event occurred. 

Determinations of the initiation of each event were obtained from the marker position. A 
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sudden stop/collision occurred when the right caster marker had come to a stop in the A/P 

direction. This was seen when the trajectory defining the A/P-position levels off and it was 

no longer increasing. Because the subject needed to voluntarily raise the front caster to enter 

the rough terrain condition, their onset was defined as when the right rear wheel position 

was on top of the dowels at its first maximum, i.e., when the rear wheel was on top of the 

first dowel in the set, indicating that the entire wheelchair was over the obstacle. This was 

defined by the first peak in the S/I coordinate of the rear wheels. A bump was defined as 

when the right rear wheel had come in contact with the dowel. All the signal components 

from the wireless IMUs, consisting of the x-, y-and z-accelerations and angular velocities 

from each sensor, were collected and included in the analysis.

Data processing

Each condition was represented as a cluster of data and the classifier was queried to make a 

decision in which cluster to place each new observation. The Mahalanobis distance (MD) of 

a data point at each sampling interval serves as a statistical measure of the distance between 

the new observation and each of the clusters representing the four classes of test conditions. 

Each data point was classified by assigning the unlabeled observation to the closest cluster, 

defined by the smallest MD.

The MD was determined to be an appropriate candidate for a classification tool due to its 

ability to take into account correlation among parameters and variance within a class in a 

multidimensional space [16,18]. In this case, each dimension correlated to one direction of 

acceleration from an IMU. Given different clusters of data, each of which has a Gaussian 

distribution with a different mean and covariance, and an observation P, the MD measures 

the distance between P and the centroid (mean) of each of the clusters and quantifies the 

distance along each of the principal axes of the cluster distribution in terms of the covariance 

(e.g., standard deviation along the principal directions). The underlying Gaussian 

distribution of the experimental data was verified using standard statistical methods (Q–Q 

plots).

The MD for a given observation, I, was defined as:

Where, μ is the mean of the reference cluster, σ is the standard deviation of the reference 

cluster, and Y is the test set defined as a matrix of size (number of observations [time points] 

× dimensions of data [signal components]).

To determine the optimal window for discriminating between the events, the MD of each 

point was compared to a reference cluster representing manual wheelchair propulsion over 

level ground. A threshold to discriminate level ground from all other events was set as the 

largest MD from the centroid of the data collected during steady state propulsion over level 

ground. The optimal window, from one point before to one point after the start of the event 

(three points total), was determined from the time samples with the most trials larger than 

the threshold of the reference cluster. The window ideally only captures the individual event 
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and not another event such as level ground that could be happening before or after the 

potentially disturbing event. Once the optimal window was determined, a classification 

scheme was developed. The A/P, M/L and S/I components of unfiltered acceleration data 

were used as features for the classification. The chest and wheelchair accelerations were 

examined separately and together, resulting in three classification schemes: chest 

accelerations alone, wheelchair accelerations alone, or both wheelchair and chest 

accelerations simultaneously. In the first two cases, the single accelerometer used defined a 

three-dimensional feature space, while in the latter case, the combination of both sets of 

accelerations resulted in a six-dimensional feature space.

A decision-making flow chart of the classification scheme is shown in Figure 3. Each 

condition (level ground, rough terrain, bumps and sudden stops/collisions) was represented 

using the MD mean and standard deviation of its cluster of time points. A threshold for each 

condition was set as the mean plus two standard deviations. In order to classify the events, 

the first criterion examined was the number of time points within this threshold for each 

condition. The trial was labeled as the condition with the most time points inside of its 

threshold. If multiple conditions exhibited the same number of points within their 

thresholds, then the average MD across time points was used for further classification. The 

trial was labeled the condition with the minimum average MD.

A jackknife resampling approach [19] was used for validation of the classifier due to the 

limited number of trials compared to the number of events being classified. The classifier 

was trained on all trials except one, which was used for testing. The first testing trial was 

then included in the training set and a different trial was used for testing until each trial had 

been tested.

Results

An example of the raw IMU data collected from the chest for a sudden stop/collision is 

shown in Figure 4. A window of inertial data beginning one point before onset of the event 

according to the VICON motion data to 19 points after the start of the event was exported 

from the raw inertial data to Matlab for further analysis. A smaller, three point window (one 

point before to one point after) was used for MD-based classification.

The confusion matrices from the three classification schemes: chest acceleration only, 

wheelchair acceleration only and chest and wheelchair accelerations are displayed in Figures 

5–7. The rows correspond to the predicted conditions or the output of the classifier. Columns 

correspond to the actual or known condition for each event. The diagonal (from upper left to 

lower right) would ideally have all of the predicted classifications with the off diagonals 

being zeros, meaning there were no misclassifications. For example, in Figure 5, the one in 

the second column (bump) and fourth row (level ground), show that one trial that was a 

bump, was misclassified as level ground. In Figure 6, the zeros in Rows 2–4 (bump, rough 

terrain, level ground) of Column 1 (collision) show that all of the collision trials were 

properly classified as collisions. This is also shown by the entry in Row 1 (collision), 

Column 1 (collision) representing six correct classifications out of six trials. The percentages 

are of the number of trials in a given cell in the 4 × 4 sub-matrix, out of the total number of 
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trials for all conditions. Since there was the same number of trials for each of the four 

classes, each entry in the column should be 25%. The first four columns of the last row, the 

top number is the percentage of trials properly classified for that column. The bottom 

number is the percentage of trials misclassified in the given row. Similarly, for the first four 

rows, the last column represents the percentage of properly classified and misclassified trials 

per row. The cell in the fifth row and fifth column shows the overall percentages of properly 

classified (green) and misclassified (red) trials.

The overall accuracy of the classifier using chest accelerations, wheelchair accelerations, 

and both chest and wheelchair accelerations were: 95.8, 58.3 and 91.7%, respectively. The 

lone misclassification for the classifier using chest accelerations (Figure 5) occurred when a 

bump was misclassified as level ground, a false negative. Chest acceleration properly 

classified sudden stop/collisions, rough terrain and level ground 100% of the time. Using 

only wheelchair acceleration, four out of six rough terrain and six out of six level ground 

trials were misclassified as sudden stops/collisions. The six level ground trials misclassified 

as sudden stops/collision are considered false positives. Wheelchair acceleration classified 

collisions/sudden stops and bump correctly 100% of the time. Using both chest and 

wheelchair accelerations one bump was misclassified as a sudden stop/collision and one 

rough terrain trial was misclassified as a bump. A combination of chest and wheelchair 

accelerations classified sudden stops/collisions and level ground correctly 100% of the time. 

Sudden stops/collisions were properly classified as collisions 100% of the time across 

classification schemes and sensor locations.

Discussion

Important considerations in choosing the most appropriate classifier are the false positive 

and false negative rates. For the purpose of the classifier discussed, not all misclassifications 

will have an equal impact on the outcome. For example, misclassification of one potentially 

disruptive event that was similar to another potentially disruptive event would have less of an 

impact than events that were more dissimilar. A bump and rough terrain are similar in nature 

and therefore would potentially require similar intervention to correct for their perturbation 

effects, causing a misclassification of a bump as rough terrain or vice versa to be less of a 

concern than a collision being misclassified as level ground or vice versa. The rough terrain 

trial misclassified as a bump when using both chest and wheelchair accelerations seen in the 

results, is less of a concern than a bump being misclassified as level ground when using 

chest acceleration only. When using both chest and wheelchair acceleration there was an 

additional misclassification of a bump as a collision. When using the chest and wheelchair 

acceleration there was a lower overall accuracy by 4.1% than when using chest acceleration 

alone. It is not clear whether this difference is significant since the levels of impact of the 

misclassifications are not equal. Therefore, it is unclear which set of accelerations is best, 

but it is important to include the chest accelerations in all classification schemes. A better 

determination of the best set of features could be determined if more trials for each event 

were available.

Using the MD to form a classifier, potentially destabilizing events and level ground were 

properly classified with >90% accuracy in two out of three acceleration schemes. Giasanti 
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[17] got an accuracy of 93.5–94.5%, similar to the findings of this study (91.7–95.8%). The 

classifiers with >90% accuracy had some misclassifications of bumps and rough terrain. Of 

the misclassifications observed with classifiers where chest acceleration was included, the 

most problematic case was when the one of the potentially disturbing conditions was 

misclassified as level ground since no appropriate action would be taken. Other 

misclassifications that would be problematic would be confusing level ground for an event 

such as a sudden stop/collision. Based on the results presented, the chest acceleration is 

necessary to get the best classification scheme. The wheelchair acceleration alone 

misclassified level ground and rough terrain as a sudden stop/collision for most trials. Level 

ground being misclassified as a sudden stop/collision is problematic and could potentially be 

due to the sensitivity of the IMUs, or the location of the wheelchair sensor directly above the 

castor, which was subject to spurious vibrational input that may not be indicative of a true 

destabilizing event. The signals could potentially be damped on the trunk IMU causing them 

to be smoother and thus easier to classify with certainty.

Based on the offline analysis, an event could potentially be classified within 5 ms. This 

indicated that the MD distance calculation and classification could be performed fast enough 

for real-time operation [17].

One of the limitations of this study is the limited number of trials per condition and reliance 

on a single subject. Future testing with more repetitions of each condition is necessary prior 

to real-time implementation to allow for improved training sets and validation. Future work 

should also include additional subjects, as well as additional events such as sharp turns, 

ramps or asymmetric elevation of a single wheel simulating a condition that might lead to 

tipping. Furthermore, in order to improve detection accuracy and algorithm efficiency, it will 

be necessary to select a set of optimal signal components and features for the classifier. 

Potential techniques to determine these components and implement them into a classifier 

include principal component analysis (PCA), Gaussian mixture model (GMM), local 

Fisher’s discriminant analysis (LFDA) or a neural network. The collection of additional 

trials for the subject presented as well as gathering data with additional subjects is ongoing 

with the addition of a sharp turn condition. Additionally, further analysis is being done to 

ensure that any dropped data points by the sensor do not cause a problem in the 

classification process. Plans are underway to further refine the MD classification scheme by 

minimizing an error function to optimize threshold parameters [18]. Refinements to the MD 

classifier were limited because of the small number of trials obtained for each condition in 

this study. Once a classification scheme is set, it will need to be reformulated for real-time 

operation and tested under real-world conditions outside of the laboratory. Finally, subject 

specific interventions would need to be determined to react to disturbances and regain user 

stability in their wheelchair.

One potential application of this destabilizing event detection algorithm is to act as a trigger 

for a motor system neuroprostheses (NP) activating gluteus maximus, lumbar erector spinae 

and quadratus lumborum to stabilize the otherwise paralyzed spine and pelvis in individuals 

with SCI. Active sitting and stimulated control of trunk and pelvic motion for wheelchair 

dependent individuals with SCI is an evolving and promising field with great potential to 

provide dynamic seating and positioning through the actions of the user’s own muscles. 
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Neural stimulation can improve skeletal alignment, alter trunk position, enable bimanual 

reach and expand seated work volume, and restore erect upright sitting from a fully forward 

flexed position [20]. Electrically activating the paralyzed core hip and trunk muscles can 

stabilize seated posture and improve manual wheelchair efficiency [21] and prevent forward 

falls in response to applied disturbances [22,23]. Results of this study indicate that 

potentially destabilizing events can be detected from a relatively small number of sensors 

with relatively simple classification algorithms. Such classification techniques may serve as 

valuable command inputs to a neural stimulation system that can correct for destabilizing 

perturbations by delivering the appropriate stimulation to the paralyzed muscles to avoid 

potentially injurious falls from the wheelchair.

Conclusion

The results of the current study have shown that a MD-based classifier is successful in 

differentiating potentially destabilizing events for wheelchair users. By inputting 

acceleration data from the wheelchair and user into the MD-based classifier, potentially 

disturbing events can be identified with >90% accuracy. Sudden stops/collisions were 

properly classified across classification schemes tested as well were level ground for 

classification schemes with >90% accuracy with these two conditions being the least and 

greatest potential for causing instability. Although classification with chest acceleration lent 

itself to the highest overall accuracy, it may not be the optimal classification scheme. The 

levels of impact for the different misclassifications must be considered and more data is 

needed to make this determination. This classification scheme also lends itself to real-time 

operation making it a feasible determination in triggering a NP device or other intervention 

to prevent injury to users.
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➤ IMPLICATIONS FOR REHABILITATION

• SCI has a significant impact on quality of life, compromising the ability to 

participate in social or leisure activities, and complete other activities of daily 

living for an independent lifestyle.

• Using inertial measurement units to build an event classifier for control the 

actions of a neuroprosthetic device for maintaining seated posture in 

wheelchair users.

• Varying muscle activation increases user stability reducing the risk of injury.
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Figure 1. 
Experimental setup for assessing wireless sensor technology in classification of potentially 

disturbing wheelchair events. Superior/inferior (S/I) axes are y (inferior positive) for the 

chest IMU and x (superior positive) for the wheelchair IMU. Anterior/posterior (A/P) axes 

are z (posterior positive) for the chest IMU and y (posterior positive) for the wheelchair 

IMU. Medial/lateral (M/L) axes are x (medial positive) for the chest IMU and z (lateral 

positive) for the wheelchair IMU.

Crawford et al. Page 12

Disabil Rehabil Assist Technol. Author manuscript; available in PMC 2018 February 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Figure 2. 
Conditions tested: (A) level ground, (B) rough terrain: 1.9 cm high dowls placed 3.8 cm 

apart over a 1.2 m area, (C) bumps: 1.9 cm dowels placed 91.4 cm apart and (D) collision/

sudden stop: 15.24 cm high barrier.
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Figure 3. 
Decision-making flow chart to assign class to test set of data based on a threshold and 

minimum MD.
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Figure 4. 
Sample raw data of a collision/sudden stop. The onset of the event as was determined by the 

motion capture kinematics (the front caster came to a stop) is indicated by a vertical line.
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Figure 5. 
Confusion matrix from MD classifier using all chest acceleration components where Col is a 

collision/sudden stop, Bump is a bump, RT is rough terrain and LG is level ground.
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Figure 6. 
Confusion matrix from MD classifier using all wheelchair acceleration components where 

Col is a collision/sudden stop, Bump is a bump, RT is rough terrain and LG is level ground.
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Figure 7. 
Confusion matrix from MD classifier using all chest and wheelchair acceleration 

components where Col is a collision/sudden stop, Bump is a bump, RT is rough terrain and 

LG is level ground.
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