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Abstract

A central goal of evolutionary biology is to understand the genetic origin of morphological 

novelties – i.e. anatomical structures unique to a taxonomic group. Elaboration of morphology 

during development depends on networks of regulatory genes that activate patterned gene 

expression through transcriptional enhancer regions. We summarize recent case studies and 

genome-wide investigations that have uncovered diverse mechanisms though which new enhancers 

arise. We also discuss how these enhancer-originating mechanisms have clarified the history of 

genetic networks underlying diversification of genital structures in flies, limbs and neural crest in 

chordates, and plant leaves. These studies have identified enhancers that were pivotal for 

morphological divergence and highlighted how novel genetic networks shaping form emerged 

from pre-existing ones.
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Introduction

A key problem in biology is to discern how the distinct features of different organisms arose 

at the genetic level. Of particular importance to morphological traits are the networks of 

transcription factors that control the expression of hundreds to thousands of downstream 

genes that confer upon each cell its distinctive physical properties [1]. Transcriptional 

control is mediated by cis-regulatory sequences, often called enhancers in cases of 

transcriptional activation and silencers in cases of repression, that recruit combinations of 

transcription factors to short binding sites that collectively determine when, where, and how 

much each gene is transcribed during development [2]. Thus, determining the evolutionary 

history of a morphological feature’s regulatory network at the level of its participating 

enhancers provides key information on the origins of morphological novelty. We will review 
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progress in studying the origins of enhancers and morphological novelties in the last two 

years.

How to build a new enhancer

New gene expression patterns may evolve through spatial or temporal changes in 

transcription (Figure 1A). Recent studies have highlighted a surprisingly wide range of 

molecular mechanisms that modify regulatory DNA (Figure 1B). Early papers by Britten 

and Davidson proposed that repetitive sequences such as those provided by transposons 

could contribute to gene regulation [3,4]. Many reports have since implicated transposable 

elements in the evolution of gene regulation [5–7]. Recently, genomic studies have 

investigated the significance of transposon-related enhancer birth genome wide. For 

example, transcriptome comparisons of uterine cells showed that thousands of genes gained 

expression during the evolution of mammalian pregnancy [8]. Transposons are enriched in 

the presumed regulatory regions of these genes, suggesting that they may have contributed to 

this major evolutionary transition. On the other hand, a comparative survey of enhancer-

associated histone marks in the mammalian neocortex revealed that transposons were 

underrepresented in newly evolved neocortex enhancers [9]. These studies highlight that 

lineage specific trends may constrain the contribution of transposons to novel expression 

patterns, and raise the question of what direct impact they have on expression.

One recent study presented evidence that multiple families of transposons in mammalian 

genomes carry an interferon response element [10], and used CRISPR/Cas9 genome editing 

to demonstrate that these sequences are necessary for immune responses in cell culture. A 

striking example of a transposon insertion causing altered enhancer activity and concomitant 

morphological evolution was found in stickleback fish. Specifically, a change in body armor 

size that accompanied the transition from marine to freshwater environments was caused by 

a transposon insertion in the BMP-like GDF6 gene which was associated with its increased 

expression [11]. While the insertion was necessary for this increase, it was itself insufficient 

to recapitulate the novel expression of GDF6 in a transgenic assay, indicating that other 

changes were involved in this morphological shift. The above findings underline how 

genome-wide and single gene approaches can provide complimentary insights into how 

molecular patterns shape differences in gene expression.

While transposition has made considerable contributions to the evolution of novel gene 

expression features, many additional mechanisms have been identified in mammals and 

other systems (Figure 1B). Although the evolution of enhancers de novo from mutations in 

non-functional sequences represents an obvious null hypothesis (Figure 1B), this mechanism 

has been difficult to study, and it more often turns out that new regulatory sequences have 

evolved from pre-existing ancestral ones. Studies of the domesticated chicken have shown 

how large-scale chromosome rearrangements and structural variations have contributed to 

diverse phenotypes by rearranging or duplicating regulatory elements and placing them in 

association with new genes (“promoter switching” in Figure 1B) [12–14]. Multiple studies 

have shown how novel expression domains can evolve from pre-existing enhancers that 

derive additional tissue specificities (“co-option” in Figure 1B) [15–18]. For example, novel 

domains of Wingless expression associated with unique spots of pigmentation in the 
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Drosophila guttifera wing evolved by modifying a pre-existing enhancer that was ancestrally 

active in a distinct wing location [17]. A study of the fly Zaprionus capensis uncovered an 

expression pattern in the larval wing disc that evolved through an extreme heterochronic 

shift (Figure 1A) that drove a pupal pattern much earlier into the larval life stage [18]. There 

is a growing appreciation that the introduction of mutations to an enhancer can often elicit 

its ectopic activation in additional locations [19,20]. Two recent papers by Farley and Levine 

illustrate how enhancers may either employ suboptimal binding affinity or suboptimal 

spacing between binding sites, which prevents ectopic activity [21,22].

Considering how frequently enhancers evolve by co-opting pre-existing activities, the role of 

pleiotropy in constraining their subsequent evolution has become increasingly appreciated. 

The loss of trichomes in Drosophila sechellia compared to other fly species, including 

Drosophila melanogaster, is one of the most well understood examples of morphological 

differences that have been dissected to the level of participating enhancers, mutations, and 

the binding sites they affect [23–25]. In an elegant set of experiments, Preger-Ben Noon et 
al. [26] performed a high-resolution identification of the binding sites that were gained and 

lost as an enhancer of the shavenbaby (svb) gene lost its trichome-patterning activity in the 

dorsal surface of D. sechellia larvae. Combining transcriptomic data on sorted epithelial 

cells with a computational analyses, they found that binding sites for the transcriptional 

activator Arrowhead were lost in D. sechellia [26]. Additionally, through a functional assay 

involving RNA interference for all detected transcription factors, they also found that the 

complete inactivation of this enhancer required evolution of a binding site for the spatially 

restricted repressor Abrupt. This transition was speculated to involve the gain of repressive 

inputs that allow maintenance of this enhancer’s pleiotropic function in other tissues. In a 

similar case, the inactivation of a limb enhancer of the Tbx4 transcription factor in snakes 

occurred while preserving its function in the genitalia, likely contributing to evolution of the 

characteristic limbless body plan of these animals [27]. These findings illustrate how 

enhancers can disable linkages in gene regulatory networks, while maintaining pleiotropic 

functions in other tissues.

Network origins as a window into morphological novelties

To understand how new structures (i.e. “morphological novelties” [28–30]) evolve, one 

promising avenue of investigation is to trace the evolutionary history of their developmental 

networks. Several recent examples have leveraged the principles of enhancer evolution 

discussed above to study how novelties arose at a network level (Figure 2).

The posterior lobe of Drosophila male genitalia

Genital traits represent some of the most rapidly evolving morphologies in the animal 

kingdom, and among insects, these characters are key to species identification [31,32]. A 

recent study investigated the origins of a genital appendage, the posterior lobe (Figure 2A), 

present in the model organism D. melanogaster [33]. Development of this structure requires 

the transcription factor Pox neuro (Poxn) [34], and the authors used this pivotal gene to trace 

the network’s evolutionary history. By examining an enhancer of Poxn that drives expression 

in the posterior lobe during pupal development, they found that its function had been co-
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opted from another network deployed in the posterior spiracle, a structure that forms during 

embryonic development (Figure 3A). Interestingly, both the spiracle and lobe form in 

posterior regions of the Drosophila body plan, in a zone specified by the Hox gene 

Abdominal-B (Abd-B), a known regulator of several genes in the spiracle network [35]. The 

authors found that several genes of this ancestral network are active in the posterior lobe, 

and showed that at least seven enhancers active in this structure can be traced to activities in 

the posterior spiracle. In two enhancers, individual transcription factor binding sites were 

required for activity in both the spiracle and lobe contexts (Figure 3A). This demonstrates 

how tracing the origin of a network’s enhancers can illuminate ancestral functions that 

would have been impossible to predict a priori.

Rewiring networks through cis and trans co-evolution during leaf shape 

evolution

Land plants show striking morphological variation, presenting attractive opportunities to 

study the contribution of regulatory evolution to morphological diversity in parallel to 

animals. One trait that has been extensively studied is leaf shape, particularly complex leaves 

with multiple leaflets, which have evolved repeatedly in seed plant lineages (Figure 2B). In 

the Brassicaceae family, complex leaves evolved from simpler forms, and work on two 

families of homeodomain transcription factors, KNOX (KNOTTED1-like homeobox) and 

REDUCED COMPLEXITY/LATE-MERISTEM IDENTITY1 (RCO/LMI1), has 

illuminated the molecular basis of this transition. Through a genetic screen in C. hirsuta, a 

complex-leaved A. thaliana relative [36] (Figure 2B), Vlad et al. identified the RCO gene 

[37]. RCO encodes an HD-ZIP class I transcription factor that promotes leaflet formation by 

repressing growth at focal points along leaf margins (Figure 3B). RCO arose in Brassicaceae 

through gene duplication of the floral regulator LMI1, and was secondarily lost in A. 
thaliana. Transgenic re-introduction of RCO from C. hirsuta into the genome of A. thaliana 
increased leaf complexity, indicating that its loss was a critical change for causing the simple 

leaf phenotype of this species. Diversification of RCO from LMI1 arose through cis-

regulatory evolution, which generated a novel and specific RCO expression domain at the 

base of developing leaflets in a region pivotal for shape determination. To investigate how 

this occurred, Vuolo et al. [38] discovered that a leaf-margin enhancer of LMI1 which drives 

gene expression distally in leaf primordia was repurposed in the RCO paralog to drive 

expression proximally, flanking the emerging leaflets (Figure 3B). They also showed that a 

single amino acid substitution reduced RCO protein stability, which suppressed the potential 

pleiotropic effects of its altered expression. Both the regulatory and coding sequence 

changes in RCO show hallmarks of positive selection. Thus in this case, a potentially 

adaptive path for morphological evolution involved the neo-functionalization of an enhancer 

coupled with changes to its associated coding sequence, steps that limited pleiotropy while 

exploiting a novel expression domain. Interestingly, an RCO-like gene was also shown to 

underlie variation in leaf complexity between sister species in the related Capsella genus 

[39]. Hence, the LMI1/RCO genes likely define key nodes in an often-utilized network to 

modulate leaf shape.
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While RCO restricts growth locally along the leaf margin, KNOX proteins actively promote 

outgrowth and patterning of leaflets. The expression of KNOX genes is associated with 

complex leaf forms, while simple leaves lack expression [40]. They are also active in the 

pluripotent Shoot Apical Meristem (SAM) from which leaves initiate. Their role in leaf 

complexity involves the partial redeployment of their SAM functions (for a review see [41]) 

of repressing differentiation and influencing cell polarity [42]. Previous work showed that 

cis-regulatory divergence at two KNOX genes, SHOOTMERISTMLESS (STM) and 

BREVIPEDICELLUS (BP), correlated with differences in leaf shape between A. thaliana 
and C. hirsuta [43]. However the functional significance of these regulatory differences were 

unknown. Rast-Somsich et al. showed that regulatory changes in the C. hirsuta BP gene 

were more potent than those at STM in terms of restoring complexity to A. thaliana leaves 

[44]. This result contrasted with the relative pleiotropy of these two genes, as mutations in 

BP had less widespread effects than STM on plant development in both C. hirsuta and A. 
thaliana. The resulting changes in BP expression introduced a new node in a small GRN that 

shapes leaf growth and promotes activity maxima of the indolic hormone auxin, which 

supports both leaf and leaflet initiation [44–46]. These findings indicate that regulatory 

divergence of weakly pleiotropic regulators like BP might offer favorable paths for 

morphological divergence to occur. Ichihashi et al. took a complementary genomics 

approach to study evolution of leaf complexity in the tomato lineage where this trait arose 

independently [47]. By conducting comparative transcriptome analyses between three 

species differing in leaflet number, they detected evolutionary changes in KNOX-related 

gene co-expression networks and identified a BOP transcription factor as an upstream 

modulator of KNOX activity and leaf shape [47].

The neural crest

The cartilage and skeletal elements of the vertebrate head embody an exceptionally complex 

novelty that allowed this group to transition to a predatory life style (Figure 2C). Of the cell 

types that contribute extensively to these structures, the neural crest stands out as a new 

tissue type whose origination was crucial to the evolution of this novelty [48]. Neural crest 

cells comprise a multipotent migratory population that invades multiple tissues along the 

anterior-posterior axis of the embryo, and subsequently differentiate into several different 

cell types. The neural domain that produces neural crest cells, the neural border, implements 

a highly conserved network that appears to predate the neural crest’s emergence [49]. In 

contrast, the gene regulatory network underlying neural crest formation and migration (the 

NC-GRN) seems to be unique to vertebrates. Based upon comparative analyses of gene 

expression, it has been argued that many of the cell types derived from the neural crest (such 

as melanocytes, cartilage, connective tissues, and sensory neurons) already existed in basal 

lineages, and were redeployed in descendants of this new cell type [50]. This suggests many 

of the gene regulatory sub-circuits conferring neural crest-like behaviors and potencies 

predate final assembly of the full NC-GRN in the vertebrate lineage. One gene, SoxE plays 

an important role in the specification of neural crest fate. A recent study introduced a 186kb 

fragment encompassing the SoxE gene from amphioxus into zebrafish [51]. While this 

genomic fragment recapitulated the amphioxus pattern of SoxE expression, it failed to drive 

neural crest expression, suggesting that novel neural crest enhancers arose at this key gene. 

Rebeiz and Tsiantis Page 5

Curr Opin Genet Dev. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, a large number of cell types descend from the neural crest, and recent studies have 

made arguments for migratory populations in outgroup species that may share ancestry with 

the neural crest [52,53]. Detailed studies of enhancers within these networks may unveil 

their underlying homology relationships.

Novelties among vertebrate appendages

Some of the most striking morphological novelties reside in the appendages of vertebrates. 

Specifically, the tetrapod limb has novel elements in the wrist, ankle, and digits. As such, it 

represents a remarkably complex elaboration of the fin from an aquatic ancestor that had 

fewer skeletal and muscular elements (Figure 2C). The role of Hox genes in the evolution of 

the tetrapod limb has long been thought to correlate with a late phase of Hox expression in 

distal portions that form digits [54,55]. Two recent studies elegantly demonstrated that fish 

indeed have a late phase of Hox gene activity that is controlled by elements conserved with 

tetrapods [56,57]. Previous studies reported that the zebrafish versions of these elements fail 

to drive gene expression in the mouse limb bud, suggesting that these regions were novel to 

tetrapods [58]. However, this interpretation may have been complicated by derived features 

of zebrafish. Using the genome of the spotted gar [59], Gehrke et al. identified late Hox 

enhancers that drive distal fin expression [57]. While the zebrafish version of this enhancer 

lacks activity in a mouse reporter assay, the gar version is able to produce a pattern similar to 

that driven by the endogenous mouse enhancer. This result suggests that the lack of zebrafish 

activity likely reflects derived differences in zebrafish that cause its enhancer to no longer 

function in the mouse limb bud [57]. Such findings highlight the problem that tests for 

novelty in gene regulatory elements implicitly depend upon negative results (lack of 

activity), which may result from drift in the lineage displaying the ancestral trait rather than 

active changes in the lineage developing the novelty. Lineage tracing of cell populations 

marked by Hoxd13a enhancers, coupled with CRISPR/Cas9 knockout of Hox13 paralogs in 

fish confirmed how this late phase of expression is required to pattern distal fin elements 

[56]. Collectively, these new findings suggest that known networks regulating limb 

development are ancient and that the changes underlying the evolution of the tetrapod limb 

lie in genes outside the Hox loci in this network. This work also illustrates how tracing a 

network’s enhancers can clarify homology relationships among highly divergent traits. 

Given the age of the tetrapod limb (~370 MYA) it is likely that its evolution required 

multiple changes of small effect scattered throughout the genome.

Concluding remarks

The above studies show how the examination of enhancer history provides an important 

perspective into network origins and diversification. They underscore how enhancers lie at 

the heart of pleiotropic connections between different networks and also direct our attention 

towards their most evolutionarily relevant feature: the nodes that underlie trait diversity. The 

morphological features discussed above arose millions, or hundreds of millions of years ago, 

and their evolution probably involved coordinated changes in dozens to hundreds of genes. 

Thus, an important future challenge is to understand and quantify how the integration of 

multiple genetic changes produced such complex traits. In parallel, studies of the effectors of 

these GRNs that mediate morphogenesis will be a critical area of research. What are the key 
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genes causing cells to grow, collapse, mineralize or move to produce phenotypic diversity 

and how do they exert their effects? Answering these questions will require the combination 

of classical genetic approaches and genomics coupled with recently developed methods for 

quantitative and computational studies of development [60–62], cell biology, and precision 

genome engineering [63,64].
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Highlights

• Genome-wide and single gene studies have revealed a variety of mechanisms 

by which new expression patterns arise

• Studying newly evolved morphologies (novelties) at the level of their 

regulatory sequences has provided key insights into the history of their 

genetic networks

• Pleiotropic connections between networks have resulted both from wholesale 

network co-options and expansion of regulatory sequence activity to new 

developmental contexts

• Targeted developmental changes in regulatory sequences have been shown to 

underlie morphological novelty in both animals and plants
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Figure 1. The genetic underpinnings of novel gene expression patterns and enhancer activities
(A) Novel expression patterns can arise through heterotopic shifts that cause a gene to be 

expressed in a spatially distinct pattern (left) or by temporal shifts that cause a gene to be 

expressed much earlier or later during development (right). (B) Genetic models for the 

origins of new enhancer activities. The ancestral state for each model depicts the status of a 

locus before a new expression domain evolved by changes in its cis-regulatory sequences. (i) 

A gene may gain a novel expression pattern through the introduction of a transposon that can 

carry regulatory information resulting in a new enhancer activity. (ii) Changes in 

mechanisms targeting enhancers to specific promoters (e.g. point mutations or large-scale 

chromosomal rearrangements) can cause a pre-existing enhancer to target a different 

promoter. (iii) A pre-existing enhancer active in an ancestral tissue may gain or lose inputs 

that allow it to be expressed in a novel domain. (iv) A stretch of DNA that ancestrally lacked 

regulatory function may evolve a de novo enhancer activity.
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Figure 2. Morphological structures whose origins have been illuminated through the study of 
gene regulatory networks and their constituent enhancers
(A) The posterior lobe (*) is a genital outgrowth unique to males of Drosophila (D.) 
melanogaster and its close relatives that is required for mating. (B) Leaf dissection and the 

consequent presence of distinct leaflets (*) has arisen multiple times in seed plants. A 

convenient model for studying this trait is the complex leaf of the Cardamine (C.) hirsuta, 

which likely evolved from an ancestral simple leaf exemplified by Aethionema arabicum, a 

basally branching species in the Brassicaceae family. The well-studied model organism 

Arabidopsis thaliana has lost leaf dissection and has simple leaves with only slight serrations 

at their margins. (C) Chordate novelties. The neural crest (NC) is a novel migratory cell 

population that invades multiple tissues along the body axis, differentiating into several 

different cell types. NC derivatives play key roles in the development of the vertebrate jaw. 

Several of the cell types that neural crest cells ultimately adopt pre-date the origins of this 

dynamic cell population, which arose in the ancestor of vertebrates. The tetrapod limb 

evolved from fins that first appeared in jawless fish.
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Figure 3. Tracing the origins of networks that participate in novelties
(A) Co-option of genes to the posterior lobe network. (top) Multiple genes of the posterior 

lobe network participate in the development of a larval breathing structure termed the 

posterior spiracle. Green shading delineates genes shared between the two networks. 

(bottom) The posterior lobe enhancer of the Pox neuro (Poxn) gene (orange shading) 

contains binding sites for STAT and Abdominal-B that are required for gene activity in both 

the novel posterior lobe and the ancestral posterior spiracle contexts. (B) The genetic basis 

for diversification of leaf shape in the Brassicaceae family. (top) In simple leaves, LMI is 

expressed at the leaf margin (green shading) and in floral tissues (not shown). The 

duplication of LMI resulted in a second copy of this transcription factor, named RCO, which 

evolved an enhancer specific to the base of leaflets (red shading), as well as an amino-acid 

substitution that reduced its pleiotropic effects on growth. The relative order of these 

regulatory and coding changes is unknown. (bottom) KNOX transcription factors have an 

ancestral role in the apical meristem, which involves suppressing differentiation and 

enabling organization of activity maxima of auxin that supports leaf initiation through the 

PIN1 transporter. This module was re-deployed in complex leaves to generate distal foci of 
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auxin that promote growth. The secondary loss of complex leaves in A. thaliana is partly due 

to loss of KNOX expression in developing leaf primordia. This loss likely reduced the 

morphogenetic potency of marginal auxin foci, contributing to shallower outgrowths. Note 

that leaves likely first evolved from ancestral branched shoots expressing meristem genes 

[65] which may account for the predisposition to reactivate meristem genes that contributes 

to repeated independent origins of leaf dissection in seed plants.
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