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Pancreatic ductal adenocarcinoma (PDAC) is a tumor with an extremely poor

prognosis, predominantly as a result of chemotherapy resistance and numer-

ous somatic mutations. Consequently, PDAC is a prime candidate for the use

of sequencing to identify causative mutations, facilitating subsequent adminis-

tration of targeted therapy. In a feasibility study, we retrospectively assessed

the therapeutic recommendations of a novel, evidence-based software that ana-

lyzes next-generation sequencing (NGS) data using a large panel of pharma-

cogenomic biomarkers for efficacy and toxicity. Tissue from 14 patients with

PDAC was sequenced using NGS with a 620 gene panel. FASTQ files were fed

into TREATMENTMAP. The results were compared with chemotherapy in the

patients, including all side effects. No changes in therapy were made. Known

driver mutations for PDAC were confirmed (e.g. KRAS, TP53). Software

analysis revealed positive biomarkers for predicted effective and ineffective

treatments in all patients. At least one biomarker associated with increased

toxicity could be detected in all patients. Patients had been receiving one of the

currently approved chemotherapy agents. In two patients, toxicity could have

been correctly predicted by the software analysis. The results suggest that

NGS, in combination with an evidence-based software, could be conducted

within a 2-week period, thus being feasible for clinical routine. Therapy recom-

mendations were principally off-label use. Based on the predominant KRAS

mutations, other drugs were predicted to be ineffective. The pharmacogenomic

biomarkers indicative of increased toxicity could be retrospectively linked to

reported negative side effects in the respective patients. Finally, the occurrence

of somatic and germline mutations in cancer syndrome-associated genes is
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noteworthy, despite a high frequency of these particular variants in the back-

ground population. These results suggest software-analysis of NGS data pro-

vides evidence-based information on effective, ineffective and toxic drugs,

potentially forming the basis for precision cancer medicine in PDAC.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the

fourth leading cause of cancer-related mortality in the

USA and Europe (Siegel et al., 2014) and is predicted

to become the second by 2030 (Rahib et al., 2014).

Death from pancreatic cancer now excedes breast can-

cer in Europe (Ferlay et al., 2016). Unlike breast or

colorectal cancer, pancreatic cancer is always terminal

(L€ohr, 2006). At diagnosis, approximately 80–90% of

pancreatic cancer patients are inoperable with therapy-

resistant locally advanced or metastatic disease. The

median survival is approximately 6 months (Bond-

Smith et al., 2012). Even with the best available thera-

peutic regimens, median survival time does not exceed

10 months (Conroy et al., 2011a,b; Von Hoff et al.,

2013). The 5-year survival rate for all stages of pancre-

atic cancer has remained close to 5% for the past

25 years and is the lowest for any cancer despite

numerous efforts to improve the treatment for PDAC

patients (Bond-Smith et al., 2012; Michl and Gress,

2013; Sohal et al., 2014). PDAC poses one of the

greatest unmet medical needs in cancer research and

can be regarded as a medical emergency (L€ohr, 2014).

The lack of treatment response to conventional thera-

peutic approaches as radiation and chemotherapy is

attributable to many factors, including extrinsic or

intrinsic resistance (Michl and Gress, 2012; Wang

et al., 2011).

Pancreatic cancers may benefit from the develop-

ments in precision medicine, which has proven worthy

elsewhere. This has been a result of the identification

of discriminating tumor markers and the development

of targeted therapeutic options, a prime example being

hormone receptors and receptor tyrosine-protein

kinase erbB-2 expression in breast cancer, as well as

proto-oncogene c-Kit in gastrointestinal stromal

tumors. Although these therapies target single

biomarkers and PDAC has a heterogeneous muta-

tional landscape, the identification of single biomark-

ers is a first step in personalized drug combination

therapy (Kris et al., 2014). Approximately 5–10% of

PDAC patients respond to targeted therapy against

vascular endothelial growth factor or rapidly acceler-

ated fibrosarcoma/rat sarcoma viral oncogene

homolog kinase (Garrido-Laguna and Hidalgo, 2015);

however, we lack the tools to identify them (Garrido-

Laguna et al., 2015). Because of this dire situation,

sequencing has specifically been proposed in pancreatic

cancer, allowing mutational cancer analysis to become

a prognostic and diagnostic tool readily available to

clinicians (Mardis, 2012).

As a result of extensive sequencing efforts, such as

the Human Genome Project and The Cancer Genome

Atlas, it is becoming clear that identifying singular

abnormalities (e.g. mutations in the Kirsten rat sar-

coma viral oncogene [KRAS] oncogene or the tumor

protein 53 [TP53] tumor suppressor gene from

sequencing data) is not sufficient to make therapeutic

decisions (Martincorena et al., 2015). Several retro-

spective studies nevertheless demonstrate convincing

explanations for treatment response, or failure,

depending on the collective genetic make-up of the

tumor (Gentzler et al., 2014; Kim et al., 2014), which

highlights an emerging interest in more complex and

sophisticated software tools and algorithms.

The adaptation of next-generation sequencing

(NGS) assays to formalin-fixed, paraffin-embedded tis-

sue (FFPE) (Frampton et al., 2013; Holley et al.,

2012) and even fine-needle biopsy material (Young

et al., 2013) in pancreatic cancer patients has further

facilitated the potential integration of NGS data into

clinical practice. To date, only a few studies have

prospectively used a sequencing approach and based

treatment decisions on the genetic information

obtained. These demonstrate a clear survival benefit

for the personalized therapy based on pharmacoge-

nomic biomarkers over conventional standard-of-care

therapy (Kris et al., 2014; Tsimberidou et al., 2014),

thus creating a discussion amongst the stakeholders on

how to conduct and finance these studies, as well as

on how to reimburse personalized cancer medicine in

the future (Lewis et al., 2013).

It is therefore necessary to use an integrated analysis

of the sequencing data from a given tumor that takes

into account the entire body of knowledge on that par-

ticular tumor entity and all of the information avail-

able for possible treatment options, including their

side effects and interactions with other drugs. Further-

more, given the vast amount of data generated, it is
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clear that the information handed over to the treating

physician cannot be raw bioinformatics data and

should be presented in an interpreted, clinically rele-

vant and user friendly format (Ellard et al., 2013; Gul-

lapalli et al., 2012). TREATMENTMAP(Molecular Health,

Heidelberg, Germany) is such an evidence-based sys-

tem for data analysis that provides physicians with

tumor profiles based on genome-sequencing data from

a single patient, as well as an objective list of all avail-

able scientific and medical data supporting the

decision.

In the present study, we aimed to investigate the

clinical applicability of using NGS in combination

with the software tool (TREATMENTMAP) to generate

individualized analysis for a personalized approach for

the treatment of pancreatic cancer. We report a feasi-

bility study demonstrating the successful implementa-

tion of NGS with TREATMENTMAP into the clinical

workflow with the initial results providing a rationale

for future studies.

2. Materials and methods

2.1. Patients and study set-up

This was an open prospective feasibility study aiming

to establish NGS in the clinical setting within the

framework of our patient-driven process at the Center

for Digestive Diseases, Karolinska University Hospi-

tal, with patient recruitment between March 2014 and

December 2014. The study was approved by the local

ethics committee (EPN; Diarie-Nr. 2013/2:10). Patients

with pancreatic adenocarcinoma who were willing to

join the study were provided with information and

required to provide informed consent. The tumor

material was collected during surgical resection of the

tumor, although there was an additional patient

included who was not resectable where the tissue was

collected from a liver metastases. As a control, either

adjacent nontumor tissue (duodenal or gastric) or an

EDTA blood sample that was collected at the time of

surgery was used.

2.2. DNA extraction and sequencing

Existing hemotoxylin and eosin slides were reviewed

by the expert pathologist (CV), assuring the correct

histological diagnosis of ductal adenocarcinoma of the

pancreas. A block was selected for DNA extraction

with a tumor content of at least 20% in line with the

prerequisites for NGS and use of the software. DNA

extraction was performed with standard protocols

using the QIAmp DNA tissue kits (fresh frozen and

FFPE tissue samples, as well as blood). DNA was

fragmented using Covaris S2 sonicator (Covaris,

Woburn, MA, USA) to an average of 100 bp (FFPE

tissues) and 300 bp (blood) depending on DNA qual-

ity. DNA target enrichment was performed manually

using optimized protocols (e.g. prolonged hybridiza-

tion times, optimized PCR cycles and washing steps)

for SureSelectXTall exon V5 Plus (Agilent Technolo-

gies Inc., Santa Clara, CA, USA) for whole exome

and custom for the SeqCap EZ (NimbleGen,

Waldkraiburg, Germany) custom 620 gene panel under

study (Table S1). DNA quality control was performed

with Life Technologies Qubit Fluorometer and Agilent

Bioanalyzer 2100 or an AATI fragment Analyzer at

several steps throughout the process. Sequencing

was performed using a HiSeq 2500 (Illumina, San

Diego, CA, USA) (rapid-run mode with paired-end

2 9 100 bp reads) FASTQ generation and demulti-

plexing was performed using Casava, version 1.8.4

(Illumina). The average fragment length was 200–
400 bp. The average coverage achieved was > 100 9.

2.3. Data processing and software algorithm

An evidence-based expert system for data analysis was

used (TREATMENTMAP). As input information, TREAT-

MENTMAP processes genome-sequencing data from a

single patient, together with basic clinical and demo-

graphic patient parameters. This information is then

analyzed in three major steps: (i) genome analysis; (ii)

evidence mining; and (iii) clinical interpretation, which

are further described here.

2.3.1. Step 1: genome analysis

The first major step is the genome data analysis. Here,

the system detects genetic alterations in a patient’s

tumor, based on an analysis of their raw sequencing

data. Targeted panel sequencing information is ana-

lyzed in a nonpaired fashion and does not include a

comparison with the patient’s germline reference. The

genome analysis pipeline uses a defined set of quality-

controlled, standard analytical applications and

reference resource databases that are connected in a

controlled workflow. The tools of the pipeline were

selected by evaluating sensitivity and precision using

synthetic patient data with know variants (R. Bohnert,

S. Vivas, & G. Jansen, re-submitted).

In terms of detailed steps, the genome analysis pipe-

line takes raw sequence data as input (FASTQ for-

mat), together with associated clinical data (i.e. patient

diagnosis, age, sex, ethnicity). The genome analysis

pipeline has to align the sequence data with the
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ancestry specific reference genomes. The generated

BAM (binary alignment map) files are then processed

through the respective algorithm for variant calling,

which can detect gene fusion, indels and single nucleo-

tide variants. Tumor- and germline-specific genomic

alterations are then mapped to unique reference pro-

teins using Ensembl DB homo_sapiens_core (http://

www.ensembl.org) and UniProt (http://www.uniprot.

org). The system determines the longest best protein

isoform as reference sequence for mapping to the

information in the proprietary Nucleus knowledgebase

that is part of the software.

2.3.2. Step 2: evidence mining

Once the tumor has been analyzed, the next step of

the TREATMENTMAP analytical workflow is to automati-

cally identify all previously published knowledge about

the clinical implications of genetic alterations. Accord-

ingly, the TREATMENTMAP system screens all genotype

information against the reference information on

genes, pathways, biological pathways, variants, treat-

ments, clinical trials, etc., in the Nucleus knowledge-

base. In the core of this information is a manually

curated database of biomarker information: the so-

called Drug Response Database (DRDB). To aid this

quality assured process, the biomedical curation team

uses text data mining algorithms and manually classi-

fies pharmacogenomic biomarkers according to three

levels of clinical validity (Table 1).

Such quality and relevance measures are not only

important to this analysis, but also are reported

directly in the TREATMENTMAP report, ensuring that

they are explicitly clear about how clinically actionable

a pharmacogenomic biomarker finding might be for

their patient. Other essential information captured dur-

ing the curation process is also included: (i) The vari-

ant (i.e. the type of genomic aberration: SNP,

Insertion or Deletion etc.); (ii) the drug or treatment

used; (iii) the effect of the variant on treatment (i.e.

response, resistance or toxicity); (iv) the quantity of

effect (e.g. strong, medium, weak); (v) the observation

context (i.e. the disease/disease stage or model system);

and (vi) a link to the source information and a grading

of its reliability.

The DRDB database includes information about

any form of genomic aberration including single

nucleotide variants, copy number variations, fusion

proteins, insertions and deletions, and combinations

thereof. The lineage of the mutation is also captured;

for example, whether it is a germline or somatic muta-

tion. Similarly, the database includes information

about the drug or treatment associated with a pharma-

cogenomic (i.e. genomic aberration) being reported, as

well as the source of the information (e.g. seen in

model systems or patients), and includes MeSH terms

(Medical Subject Headings) and other hierarchical

classifications. Variants were matched against muta-

tions logged in the Human Gene Mutation Database

(HGMD�Professional) (http://www.biobase-interna

tional.com/hgmd) from BIOBASE Corporation

(http://www.hgmd.org) (Stenson et al., 2009).

The information contained within the DRDB

patient and/or tumor mutation profile serves to deter-

mine a patient’s likelihood of response to therapy, like-

lihood of resistance to therapy and likelihood of

toxicity.

2.3.3. Step 3: clinical interpretation

TREATMENTMAP provides analytical results and access to

biomedical resources for a reliable evidence-based clin-

ical interpretation of the genetic alterations via a web-

based user interface. This online report displays the

genetic alterations detected in the tumor genome and

the potential effects of these alterations on (i) drug

efficacy (i.e. whether the detected genotype confers

likelihood of response or resistance to cancer drug

treatments) and (ii) drug toxicity (i.e. increased likeli-

hood that the patient might experience adverse drug

effects). In addition to the established pharmacoge-

nomic biomarker information, further metrics are pro-

vided, such as automated assessments of the

importance of a gene in a particular cancer type using

a new method referred to as oncoscoring, in addition

to a prediction of the functional impact of the aberra-

tion on gene/protein function, referred to as ‘func-

tional impact scoring’. Known public functional

impact scoring tools (https://omictools.com/functional-

predictions-category) are commonly prediction tools

using machine-learning approaches. By contrast, the

functional impact scoring system that is implemented

in TREATMENTMAP is basing on an evidence-associated

weighted sum of features scoring.

The oncoscore method is a programmed tool that

relies on multidimensional data types summarizing

Table 1. Levels for grading evidence based on TREATMENTMAP.

Quality level 1: Clinically endorsed pharmacogenetic FDA-approved

biomarkers: Highest relevance information

Quality level 2: Clinically observed biomarkers (i.e. observations

stemming from clinical data but not yet FDA-approved: High

relevance information

Quality level 3: Translational level biomarkers characterized in

preclinical studies and/or predicted by bioinformatics algorithms:

Information of low or unclear relevance
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real-time evidence about clinical and molecular impor-

tance with respect to specific cancer indications. Fea-

tures include: gene/protein pathway inclusion facts,

drug targets, disease association and interaction neigh-

borhood, as well as indication-specific protein and tar-

getable attributes. Applying these parameters across

individual cancer indications allows a prioritization of

the functionally most important genes associated with

each cancer type. To understand the impact of aberra-

tions, we contextualized structural, functional, drug

response and safety information to provide a novel

approach to the prediction of functionally important

aberrations. The oncoscore serves to rationally priori-

tize genes and their specific variants with respect to the

disease.

PharmGKB, another drug–drug interaction and

pharmacogenetic database based on the Food and

Drug Administration (FDA) adverse event reporting

system was used for cross-reference and validation

(Thorn et al., 2010; Whirl-Carrillo et al., 2012).

PharmGKB’s prediction of the drugs most likely to

cause adverse drug reactions to the patients was com-

pared with the TREATMENTMAP data.

2.4. Follow-up

Patients were followed according to clinical routines.

Previous therapy, side effects from chemotherapy and

second line therapies were recorded.

3. Results

The 14 patients received several chemotherapy regi-

mens, in some cases sequential: gemcitabine monother-

apy (n = 8); fluorouracil leucovorin oxaliplatin (FL-

Oxa) (n = 3); gemcitabine + abraxane (n = 1); gemc-

itabine + capcitabine (n = 1); fluorouracil leucovorin

irinotecan and oxaliplatin (FOLFIRINOX) (n = 2)

(Table 2). The disease duration (i.e. from the time

when surgery was performed until the genetic analysis)

was 0.5–24 months (median 12 months). The median

survival time after the date of diagnosis was

19.5 months, with three patients still alive at the time

of data closure.

For all 14 tumor samples analyzed, the median of

target coverage ranged from 123 to 212. For the con-

trol samples, the median of target coverage ranged

from 41 to 223. The tumor samples showed a

≥ 100 9 depth in 71.1–94.2% of targeted sites and the

control samples showed a ≥ 100 9 depth in 2.5–81.9%
of targeted sites. The turnaround time for NGS was

10 days with respect to software analysis and reporting
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The somatic genetic changes identified in these 14

patients are well in line with known driver mutations

in pancreatic cancer (Kamisawa et al., 2016) (Table 3):

13 had KRAS mutations (9 9 G12D), four patients

had additional TP53 mutations, 10 had additional

EGFR (including one with wild-type TP53) and three

had additional SMAD4 (mothers against decapenta-

plegic homolog 4) mutations. In a subset of patients

(n = 10) where sufficient quality sequencing data were

available, analysis of germline and somatic mutations

in the gene panel could be performed (Table S2).

Besides the germ line mutations in drug metabolizing

enzymes (e.g. dihydropyrimidine dehydrogenase;

DPYD), a number of germ line variants could be

found in breast cancer 1 (BRCA1) (n = 6), MutS pro-

tein homolog 2 (MSH) 2/6 (n = 5), ATM serine/thre-

onine kinase (ATM) (n = 4), MutL homolog 1

(MLH1) (n = 4) and mismatch repair endonuclease

PMS2 (PMS2) (n = 4) (Tables S2 and S3); however,

these particular variants have a high prevalence in the

background population and are presumably without

clinical significance. There was no record of a positive

family history for pancreatic cancer in these patients

(Table S2).

In all except one patient, drug targets (positive

response biomarkers) could be identified with TREAT-

MENTMAP (range 1–8). In all these patients (range 1–4)
biomarkers indicating lack of efficacy could be found.

In all patients, biomarkers indicating increased toxicity

(range 1–5) were found; in six patients, these were

FDA-approved pharmacogenomic biomarkers for

toxicity (Fig. 1).

Of the positive pharmacogenomic biomarkers, only

everolimus, erlotinib, cisplatin and oxaliplatin are

drugs that are FDA-approved for use in pancreatic

cancer. However, several biomarkers indicated off-

label use for approved drugs, as well as suggesting

drugs currently in Phase III studies in pancreatic

cancer patients. Eighteen biomarkers in 14 patients

indicated at least one to three approved drugs in a

given patient: trametinib (ABL1.pK266R; n = 1) plus

docetaxel, imatinib (germline KIT.pM541L), lapatinib,

cetuximab, IGF-1R antibody plus temsirolimus

(mTOR inhibitor) as a result of the PTPRD.pR995C,

Ewing sarcoma, or an AKT-inhibitor (MK2206)

(KRAS.pG12D; n = 13), as well as epirubicin (TP53.

pR248Q), paclitaxel (TP53.pR282W) or cisplatin

(germline: GSTP1.pI105V). Further drugs in phase III

clinical studies that were recommended included PARP

inhibitors (olaparib and rucaparib), MEK inhibitors

(PD-0325901 or BAY86-9766), a PK inhibitor

(PF-05212384), or a combination. Forty-four biomark-

ers indicated experimental drugs (pre-clinical and

phase I–III). Because of the KRAS mutations, single

agent receptor tyrosine kinase (RTK) inhibitors and

erlotinib use was predicted to be ineffective in all but

one patient. One patient had a mutation in ERBB4,

and the expression of this gene appears to correlate

with non-metastatic pancreatic cancer and a more

favorable outcome (Thybusch-Bernhardt et al., 2001).

This mutation was taken as evidence for lapatinib

together with docetaxel as a possible treatment option.

The combination of lapatinib together with gemc-

itabine has been studied in pancreatic cancer in a clini-

cal trial that was terminated as a result of

ineffectiveness (Safran et al., 2011).

Other drugs predicted to be ineffective because of a

KRAS.pG12D mutation are everolimus, gefitinib, ima-

tinib (KRAS.pG12D) and adriablastin/doxorubicin

(TP53.pR248Q).

Pharmacogenomic biomarkers with evidence for

increased systemic toxicity for a series of drugs were

detected (Table S3): cisplatin (ERCC2.pD312N,

TPMT.pY240C; n = 8 patients); capecitabine (DPYD.

pC29R, FDA-approved; n = 9); gemcitabine (CDA.

pK27Q; n = 1); imatinib (ABL1.pK266R; n = 1), pacli-

taxel (CYP2C8.pR139K; n = 4); mercaptopurine/

thioguanine (TPMT.pA154T, TPMT.pY240C; n = 2);

trastuzumab (ERBB2.pI655V; n = 2); and doxorubicin

(CBR3.pC4Y; n = 1).

There was a considerable overlap between the drugs

suggested by TREATMENTMAP and those recommended

by PharmGKB for the patients in the present study.

Similarly, there was a strong overlap between the

drugs suggested for the entire group by PharmGKB

and the drugs that were more probable of demonstrat-

ing adverse drug reactions to the patients as individu-

als based on the TREATMENTMAP data.

4. Discussion

For the first time, in an exploratory way, the present

study applied NGS with a panel of 620 genes in com-

bination with a novel evidence-based software tool in

the clinical setting of patients with pancreatic cancer.

The turnaround time of 2 weeks will enable applica-

tion for clinical routine use. The quality and quantity

of the DNA extracted from FFPE was sufficient to

run NGS with good coverage and sufficient reads. Our

mutational analysis found the driver mutations known

to be frequently altered in pancreatic adenocarcinoma,

namely KRAS, TP53, and SMAD4 (Witkiewicz et al.,

2015a,b).

The patients received one of the standard-of-care

(Seufferlein et al., 2012, 2013) chemotherapy regimens

for advanced pancreatic cancer (i.e. gemcitabine
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monotherapy, combination therapy with capecitabine,

erlotinib) (Conroy et al., 2011a,b) or FOLFIRINOX

(5-fluorouracil, folinic acid, irinotecan and oxaliplatin)

(Conroy et al., 2011a,b), or gemcitabine in combina-

tion with Abraxane (Von Hoff et al., 2011), as first-

line therapy, with varying success (Pelzer et al., 2011;

Zaanan et al., 2014). Because this was not an interven-

tional study, no changes in the therapeutic regimen

were made based on the NGS/TREATMENTMAP analysis

and patients did not receive any of the recommended

regimens, with most of them being off-label uses in

pancreatic cancer.

Fig. 1. (A) Example of the software-driven analysis of NGS data resulting in a report that details potentially effective, ineffective or adverse

drugs. (B) Example of the more detailed description of a potentially effective drug and drug–drug interactions related to the potentially

effective drug.
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In addition, potential adverse drug reactions yielded

several important topical examples where they produced

a clear benefit to current treatment recommendations;

for example, the DPYD mutations as FDA-approved

biomarkers for toxicity when 5-fluorouracil (5-FU) and

the oral 5-FU prodrug capecitabine are used, or cytidine

deaminase (CDA) for gemcitabine. Four of the fourteen

patients had a predicted toxicity to paclitaxel, which is

striking considering that recent studies have shown that

the addition of nab-paclitaxel to standard gemcitabine

Fig. 1B. Continued
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therapy may provide an additional therapeutic effect

in patients with metastatic pancreatic cancer (Von

Hoff et al., 2013). Also, two of the patients showed

genetic susceptibility to an adverse drug event when

using FOLFIRINOX, a regimen that has otherwise

shown a significant survival advantage when compared

to gemcitabine, despite an increased toxicity that per-

haps represents the relative commonness of genetic

susceptibility to an adverse drug event (Conroy et al.,

2011a,b).

The results of the present study also clearly demon-

strate that precision medicine has several hurdles

before it can be expected to be regularly utilized in

pancreatic oncology practice (Crane, 2013; Knudsen

et al., 2015). One such hurdle is the turnover time until

the analysis is completed, especially because these

patients often have rapid deterioration, as reported

from the IMPaCT trial (Chantrill et al., 2015). Two

patients in the present study did not receive any

chemotherapy as a result of rapid deterioration

(Chantrill et al., 2015). Nevertheless, the turnaround

time of 2 weeks appears to be clinically sufficient and

feasible, especially in patients undergoing surgery with

a postoperative recovery time of around 4 weeks.

Another lesson from the IMPaCT trial is to include all

drugable targets, and not just concentrate on a few of

them. With a median of 30 genetic aberrations in

PDAC (Waddell et al., 2015) in almost every cellular

system and pathway (Jones et al., 2008), all mutations

should be taken into account, thus requiring an auto-

mated analysis to be fast and feasible for clinical use.

In summary, software-based approaches that include

the genetic susceptibility to an adverse drug event and

potential ineffectiveness of a number of treatments are

becoming increasingly available to clinicians. Precision

medicine analyses as reported in the present study may

provide opportunities to reduce the costs and time for

drug approval by broadening the use of approved drugs

to new applications in cancer therapy, or even repurpos-

ing noncancer drugs for use in oncology (Lamb et al.,

2015). In the present study, an evidence-based analysis

of the NGS data of a panel of pharmacogenomic

biomarkers revealed potential new therapeutic options

for pancreatic cancer therapy. However, most recom-

mended chemotherapeutic agents are currently only

used for nonpancreatic cancer malignancies. Addition-

ally, the pharmacogenetic diversity identified in these

patients could help explain the lack of treatment

response to conventional therapeutic approaches used

in pancreatic carcinoma (e.g. cetuximab, imatinib, dox-

orubicin), as well as the toxicity reported in some.

Taken together, NGS in combination with evidence-

based software analysis of the sequence data is feasible

in the clinical setting of pancreatic cancer: unraveling

novel treatment options and indicating important

biomarkers of increased toxicity.
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