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Abstract

Seasonal influenza is a serious public health and societal problem due to its consequences 

resulting from absenteeism, hospitalizations, and deaths. The overall burden of influenza is 

captured by the Centers for Disease Control and Prevention’s influenza-like illness network, which 

provides invaluable information about the current incidence. This information is used to provide 

decision support regarding prevention and response efforts. Despite the relatively rich surveillance 

data and the recurrent nature of seasonal influenza, forecasting the timing and intensity of seasonal 

influenza in the U.S. remains challenging because the form of the disease transmission process is 

uncertain, the disease dynamics are only partially observed, and the public health observations are 

noisy. Fitting a probabilistic state-space model motivated by a deterministic mathematical model 

[a susceptible-infectious-recovered (SIR) model] is a promising approach for forecasting seasonal 

influenza while simultaneously accounting for multiple sources of uncertainty. A significant 

finding of this work is the importance of thoughtfully specifying the prior, as results critically 

depend on its specification. Our conditionally specified prior allows us to exploit known 

relationships between latent SIR initial conditions and parameters and functions of surveillance 

data. We demonstrate advantages of our approach relative to alternatives via a forecasting 

comparison using several forecast accuracy metrics.
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1. Introduction

Between 1976 and 2006, estimates of annual influenza-related deaths in the United States 

range from 3000 to 49,000 people [Centers for Disease Control and Prevention (2014b)]. 

Intervention strategies such as targeted vaccination campaigns [Harris, Maurer and 

Kellermann (2010)] and public education efforts [Centers for Disease Control and 

Prevention (2014a)] help mitigate and counteract the potentially severe effects of seasonal 
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influenza. Despite these successful efforts, seasonal influenza persists and poses a serious 

risk to both national security and public health [Germann et al. (2006)].

Disease surveillance systems play an integral role in public health preparedness against 

seasonal influenza. The Centers for Disease Control and Prevention’s (CDC) Outpatient 

Influenza-like Illness Surveillance Network (ILINet) monitors influenza-like illness (ILI) 

levels in the United States, with more than 2900 outpatient healthcare providers from all 50 

states, Puerto Rico, the District of Columbia, and the U.S. Virgin Islands participating 

[Centers for Disease Control and Prevention (2015)]. ILINet is considered the gold standard 

for ILI surveillance [Nsoesie, Mararthe and Brownstein (2013)].

Compartmental models have been used to describe infectious disease transmission since the 

early 1900s [Ross (1911)]. When coupled with disease surveillance data, compartmental 

models are invaluable tools for analyzing historical disease transmission dynamics [e.g., 

Mills, Robins and Lipsitch (2004)], systematically discriminating between the transmission 

properties of various pathogens [e.g., Yang, Lipsitch and Shaman (2015)], and estimating 

meaningful functions of model parameters [e.g., Heffernan, Smith and Wahl (2005)].

Recently, attention has turned from characterizing historical influenza outbreaks to 

forecasting them. Reliable forecasts with actionable lead times of meaningful outbreak 

metrics, such as the peak intensity (PI) and timing of the peak intensity (PT), would be 

valuable to public policy makers. Accurate forecasts of the anticipated overall impact of an 

outbreak would provide public health practitioners additional information when making 

decisions about resource allocation, intervention strategy implementation, and timely 

communications to the public [Chretien et al. (2014), Nsoesie et al. (2014)]. Location-

specific flu forecasts with lead times of multiple weeks or months would also benefit the 

staffing decisions and last push vaccination efforts of hospitals and clinics. Though accurate 

forecasting multiple weeks or months out is currently not a capability of flu forecasting, it is 

the goal.

Nsoesie et al. (2014) and Chretien et al. (2014) independently reviewed the influenza 

forecasting literature and noted a variety of forecasting and modeling approaches, including 

statistical approaches (e.g., time series models, generalized linear models, classification 

models) and compartmental modeling approaches [e.g., the susceptible-infectious-recovered 

(SIR) model, the susceptible-exposed-infectious-recovered (SEIR) model, the susceptible-

infectious-recovered-susceptible (SIRS) model].

Probabilistic, state-space modeling approaches that mimic compartmental models, on 

average, have recently been proposed in the literature. We refer to these probabilistic state-

space models as being motivated by a compartmental model. Shaman and Karspeck (2012) 

considered a humidity-driven state-space model motivated by a SIRS compartmental model, 

while the ensemble adjustment Kalman filter [Anderson (2001)] was used for fitting. They 

showed the potential near real-time value of a state-space modeling approach by forecasting 

the influenza season given only a few weeks of ILI data. Shaman and Karspeck (2012) made 

a normality assumption for the likelihood, assumed no process error, and used external plug-

in estimates for the observational noise. Dukic, Lopes and Polson (2012) considered a state-
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space model motivated by an SEIR model to track seasonal influenza. Dukic, Lopes and 

Polson (2012) provided model flexibility and hedged against model misspecification by 

allowing for an estimating process and measurement error. Furthermore, Dukic, Lopes and 

Polson (2012) worked with the growth rate of the infectious population rather than the ILI 

data directly, justifying their normality assumptions. Both Shaman and Karspeck (2012) and 

Dukic, Lopes and Polson (2012) adopted a simulation-based or Bayesian approach to 

estimation. They specified a joint prior on the parameter vector by specifying prior 

distributions to the components of the parameter vector marginally.

In this work, we consider a state-space model motivated by a compartmental model, and 

take a Bayesian approach to inference and forecasting, similar to Shaman and Karspeck 

(2012) and Dukic, Lopes and Polson (2012). Like Dukic, Lopes and Polson (2012), our 

approach allows for both process and measurement error. However, unlike Dukic, Lopes and 

Polson (2012), our primary interest lies in influenza forecasting, not tracking. Unlike the 

work of both Shaman and Karspeck (2012) and Dukic, Lopes and Polson (2012), we make 

distributional choices that account for various modes of uncertainty and circumvent the need 

to either transform out of the original scale [Dukic, Lopes and Polson (2012)] or implement 

ad hoc approaches to deal with support boundaries [Shaman and Karspeck (2012)].

We consider a state-space model motivated by the parsimonious SIR model rather than an 

SEIR or SIRS model. The SIR model choice was made for multiple pragmatic reasons: (1) 

The SIR model has known analytical relationships between the initial conditions (ICs) and 

parameters of the SIR model and functions of surveillance data not available to either the 

SIRS or SEIR models. These known relationships can subsequently be leveraged in an 

informative prior specification. (2) As noted by Capaldi et al. (2012), the deterministic SIR 

model is effectively unidentifiable when only incidence data is available [the situation we 

share with Dukic, Lopes and Polson (2012) and Shaman and Karspeck (2012)]. Model 

unidentifiability can make estimation and sampling challenging. As the SIRS and SEIR 

models can be viewed as adding complexity to the SIR model, sampling and estimation 

problems are likely exacerbated. (3) Deterministic SIRS and SEIR models are more flexible 

than the deterministic SIR model, possibly making them more attractive choices. At no 

point, however, are we fitting a deterministic SIR model. Rather, we are fitting a state-space 

model motivated by the SIR model. The stochastic state-space modeling framework makes 

our modeling approach quite flexible.

A major contribution of our work is the conditional rather than marginal specification of the 

prior. The conditional prior specification is facilitated by relating the deterministic SIR 

model to the stochastic state-space model and expanding the parameter vector by carefully 

chosen latent quantities.

In Section 2, we describe the data. Section 3 provides a general overview of the SIR model, 

while Section 4 describes our SIR motivated state-space model. In Section 5, we discuss 

posterior simulation. Section 6 describes our prior specification procedure. Section 7 

presents forecasting results. We finish with a discussion of future work with Section 8.
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2. Data description

The CDC collects, organizes, and analyzes flu activity information year round. They 

accomplish these tasks via a collaborative effort with state, local, and territorial health 

departments, public health and clinical laboratories, and emergency departments [Centers for 

Disease Control and Prevention (2015)]. One such collaborative effort is ILINet. ILINet 

consists of more than 2900 outpatient healthcare providers within the United States. Each 

week, approximately 2000 outpatient healthcare providers around the country report data to 

the CDC on the total number of patients seen for any reason and the number of those 

patients with ILI, where ILI is defined as a temperature of 100 degrees Fahrenheit or higher 

and a cough and/or sore throat without a known cause other than influenza [Centers for 

Disease Control and Prevention (2015)]. Estimates of ILI are updated weekly and are 

available nationally and regionally, where regions correspond to Health and Human Service 

(HHS) regions [U.S. Department of Health and Human Services (2017)].

By virtue of its construction, ILI data will include patients with respiratory viruses other 

than influenza. To better approximate the proportion of ILINet patients with influenza, we 

couple ILINet data with virologic surveillance data for influenza from the National 

Respiratory and Enteric Virus Surveillance System (NREVSS) and US-based World Health 

Organization (WHO) Collaborating Laboratories. Data from these approximately 350 

clinical laboratories include the weekly total number of specimens tested, number of positive 

influenza tests, and percent positive by influenza type.

There are two main types of influenza viruses, A and B. Both types cause flu outbreaks and 

co-circulate every year. Influenza A, however, is typically more prevalent than B (Figure 1 

for reference). Type A flu virus is constantly mutating and is generally responsible for the 

large epidemics. Type B flu virus does not mutate as frequently as A and is typically milder. 

Stratifying the different types of influenza is important for monitoring the temporal and 

geographic differences in the infectious population.

Following the approach of Shaman et al. (2013), we multiply ILI data by the proportion of 

ILI samples that tested positive for influenza based on virologic surveillance data, and refer 

to this metric as ILI+, where ILI+ is a proportion. Furthermore, we compute ILIA+ and ILIB

+ analogously to ILI+ for influenza types A and B, respectively. In what follows, we work 

only with ILI+, ILIA+, and ILIB+. For more details on the ILI adjustment, the reader is 

directed to the methods section of Shaman et al. (2013). For more information about the 

influenza testing procedure performed by the NREVSS and WHO Collaborating 

Laboratories, the reader is directed to the Centers for Disease Control and Prevention 

(2015).

We consider ten influenza seasons, 2002–2007 and 2010–2013 where, for example, 

influenza season 2002 means 2002–2003. We omit the H1N1 dominant influenza seasons of 

2008 and 2009 because they correspond to a pandemic, and we chose to focus only on 

forecasting seasonal influenza. Seasonal and pandemic flu transmission dynamics are very 

different. People tend to have residual immunity to seasonal influenza strains, but little to no 

immunity to pandemic strains. Furthermore, seasonal flu outbreaks follow somewhat 
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predictable patterns and occur every year. Pandemics are comparatively unpredictable and 

rare, with only three pandemics occurring in the 20th century: 1918, 1957, and 1968 

[CDC.gov (2017)].

In what follows, epidemiology week 40 is referred to as week 1 (t = 1). This date roughly 

corresponds to the first week of October, a common choice for the start of the influenza 

season [e.g., Nsoesie, Mararthe and Brownstein (2013)]. We define the duration of the 

influenza season to be 35 weeks, roughly corresponding to the end of May. Both national 

and regional data are analyzed in this paper. We compute ILI+, ILIA+, and ILIB+ regionally 

in the same manner as described earlier in this section. For illustrative and simplifying 

purposes, we discuss our modeling approach with respect to nationwide ILI+. Modeling 

comments, however, extend to regional levels and other flu types. For reference, nationwide 

ILI+, ILIA+, and ILIB+ for 2002–2007 and 2010–2013 are shown in Figure 1.

3. Susceptible-infectious-recovered model

We first present a basic transmission model for a directly transmitted infectious disease, the 

SIR model [Kermack and McKendrick (1927)]. Our presentation of the SIR model is meant 

to introduce the reader to the motivating model for the state-space model presented in 

Section 4.

Consider a closed population of individuals, partitioned into three compartments: susceptible 

(S), infectious (I), and recovered (R). At any time t = 0, 1, …, T, every individual is a 

member of exactly one of these three compartments. We denote the proportion of the 

population in the susceptible, infectious, and recovered compartments by St, It, and Rt, 

respectively, such that St + It + Rt = 1 for all t.

The SIR model is described by the following set of nonlinear, ordinary differential 

equations:

(3.1)

where β > 0 is the disease transmission rate and γ > 0 is the recovery rate. Conceptually, 

susceptible individuals become infectious (i.e., move from the susceptible compartment to 

the infectious compartment), and then ultimately recover from the infection (i.e., move from 

the infectious compartment to the recovered compartment). The rates at which they move 

from one compartment to another depend on the proportion of the population in each of 

these compartments, as well as the transmission and recovery rates associated with the 

disease. For illustration, a simulated SIR curve is shown in Figure 2 with ICs S0 = 0.9, I0 = 

0.0002, R0 = 0.0998, and parameters β = 2 and γ = 1.4. We note that, in this paper, R0 

represents the proportion of the population in the recovered compartment at time t = 0 for 

the SIR model and does not represent the “basic reproductive number” (i.e., the average 

number of secondary infections produced by a typical case of an infection in a completely 

susceptible population). Note that an SIR curve is comprised of three trajectories—one for 

each compartment. ILI+ provides an estimate of the infectious trajectory. To the best of our 
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knowledge, data related to the susceptible or recovered trajectories are either not publicly 

available or do not exist. Not having data for the susceptible and recovered trajectories 

restricts model validation to only the infectious trajectory. Estimated susceptible and 

recovered trajectories should thus be viewed as plausible but not validated.

Weiss (2013) presents a useful property of the SIR model, the Epidemic Threshold Theorem 

(ETT). For SIR models defined as in equation (3.1), if S0 ≤ γ/β, then It decreases 

monotonically to zero as t → ∞ (designated as nonepidemic). If S0 > γ/β, then It starts 

increasing, reaches its maximum, and then decreases to zero as t → ∞ (designated an 

epidemic). The data presented in Figure 1 exhibit the characteristics of an epidemic. We will 

return to this epidemic/nonepidemic distinction in the prior specification of Section 6.

4. Dirichlet-Beta state-space model

Consider two generic random variables X and Y. We adopt the notation where brackets 

around a random variable X, [X], represent shorthand notation for the probability density 

function of X. Similarly, [X|Y] corresponds to the probability density function of X given Y. 

In what follows, we denote time-indexed latent states as θt, and denote model parameters by 

non-θ Greek letters, generically referred to as ϕ.

We introduce a probabilistic state-space model motivated by the deterministic SIR model of 

Section 3 (i.e., a state-space model that, on average, mimics the dynamics of the 

deterministic SIR model). Additionally, we desire a model that obeys both the sum to unity 

constraint of the latent state vector and the support of the ILI+ data without the need to 

transform out of the original scale. The devised probabilistic state-space model is more 

flexible than the deterministic SIR model, as it accounts for uncertainty in the parameters, in 

the form of the disease transmission mechanism (i.e., process error) and in the ILI+ data 

(i.e., measurement error) simultaneously. The state-space model we propose, henceforth 

referred to as the Dirichlet-Beta state-space model (DBSSM), is defined as

(4.1a)

(4.1b)

where yt is ILI+ at time t = 1, 2, …, T,  represents the true but unobservable 

susceptible, infectious, and recovered proportions of the population, respectively, ϕ = {θ0, 

γ, β, κ, λ} where γ > 0 is the recovery rate, β > 0 is the disease transmission rate, κ > 0 

controls the variance of equation (4.1b), λ > 0 controls the variance of equation (4.1a), and f 

(θt−1, β, γ) ∈ ℝ3 is defined in detail in the following paragraph. Furthermore, 

and  for all t. The DBSSM assumes θ0:T = (θ0, θ1, …, θT) is a first-order 

Markov chain (i.e., [θt|θ0:(t−1)] = [θt|θt−1] for all t) and for all t ≠ s, yt is independent of ys, 

given θt.
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We define f(·) as the solution to equation (4.2),

(4.2)

starting the ODE at θt−1. The solution to equation (4.2) is not known explicitly, and thus f(·) 
is replaced with a numerical approximation. We set f(·) equal to the fourth order Runge–

Kutta (RK4) approximation known to be numerically stable for a wide range of nonlinear 

systems. Other choices for approximations to f(·) are possible, however (e.g., Euler’s 

method). The details of the RK4 approximation to f(·) are described in the Supplementary 

Material [Osthus et al. (2017)]. We emphasize that f(·) plays the role of propogating the 

latent state θt forward in time one step.

We model the yt|θt, ϕ with a beta distribution, a natural modeling choice for data restricted to 

the [0, 1] interval. The parameterization in equation (4.1a) was chosen such that

(4.3a)

(4.3b)

The conditional expectation of yt is unbiased for the true but unobservable infectious 

proportion of the population, . The conditional variance of yt is a function of  and λ. The 

parameter λ plays a role in controlling the conditional variance, but does not play a role in 

the conditional expectation. As λ tends toward infinity, the conditional variance (i.e., the 

measurement error) of yt tends toward zero.

We model θt|θt−1, ϕ with a Dirichlet distribution, a natural modeling choice for vector-

valued data subject to the constraint that all elements of the vector are non-negative and sum 

to unity. The parameterization in equation (4.1b) was chosen such that

(4.4a)

(4.4b)

where “○” is the Hadamard product and 1 is a 3 × 1 vector of ones. The conditional mean 

structure of the latent state process (i.e., the conditional expectation of θt) is unbiased for the 

one-step-ahead solution to equation (4.2) starting at θt−1. The conditional variance of θt is a 

Osthus et al. Page 7

Ann Appl Stat. Author manuscript; available in PMC 2017 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



function of f(θt−1, β, γ) and κ. The parameter κ plays a role in controlling the conditional 

variance, but does not play a role in the conditional expectation. As κ tends toward infinity, 

the conditional variance (i.e., the process error) of yt tends toward zero.

We note that other, possibly more conventional approaches to modeling a stochastic SIR 

model exist, such as the stochastic differential equation version of the SIR model (SDE-SIR) 

or the continuous time Markov chain version of the SIR model (CTMC-SIR) [e.g., Brauer, 

van den Driessche and Wu (2008)]. We, however, elected not to use either of these 

approaches for various reasons. The Gaussian error term of the SDE-SIR model does not 

ensure compartmental support boundaries are respected, resulting in potentially impossible 

(e.g., negative) forecasted numbers of infections. On the other hand, the Dirichlet and beta 

distributions of the DBSSM were chosen primarily to respect the supports of the latent states 

and observations, ensuring all forecasted latent states and observations are plausible. The 

CTMC-SIR is most commonly used for modeling emerging epidemics rather than seasonal 

epidemics because its ability to capture the stochastic nature of the timing of epidemic onset. 

Furthermore, the CTMC-SIR model treats the latent state variable as discrete, requiring step 

sizes small enough such that the “infinitesimal transition probabilities” are applicable. 

Nationally, flu incidence counts from week to week can be in the hundreds of thousands, 

requiring an exceedingly small step size to apply the CTMC-SIR method, resulting in 

increased computation time. The DBSSM, however, working with proportions rather than 

discrete counts and using the RK4 method, requires step sizes of only one week, keeping 

computational cost relatively low. For more information on the CTMC-SIR model and the 

SDE-SIR model, we direct the reader to Brauer, van den Driessche and Wu (2008).

5. Posterior simulation and forecasting

We take a Bayesian approach to inference and forecasting within the state-space modeling 

framework. For t′ ∈ 1, 2, …, T, our interest lies in estimating the joint posterior density of 

all latent states and parameters given the observed data,

(5.1)

where [ϕ] is the prior density for ϕ. The equality of equation (5.1) holds because of the 

DBSSM’s conditional independence assumptions.

The posterior density of equation (5.1) is unavailable in closed form. Thus, simulation-based 

methods are used to approximate (5.1). We use Markov chain Monte Carlo (MCMC) 

methods, specifically Gibbs sampling [Geman and Geman (1984)], to simulate from the 

posterior distribution. Gibbs sampling requires sampling iteratively from the full conditional 

distributions of each latent state and each parameter, conditioned on the most recent draws 

of all other latent states, parameters, and the observed data. To execute the sampling, we 

used the rjags package [Plummer (2014)] within the R programming language [R Core 

Team (2015)], which calls the software “Just Another Gibbs Sampler,” or JAGS [Plummer et 
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al. (2003)]. JAGS queries a library of internal samplers ranging from efficient but specialized 

samplers to highly generic, but possibly inefficient base samplers (e.g., the slice sampler).

Forecasts for the future observations, y(t′+1):T, are based on the posterior predictive 

distribution, whose density is given by

(5.2)

To sample from all T posterior (predictive) distributions, we adopt a parallelized off-line or 

batch sampling approach. This is a computationally viable sampling strategy because offline 

posterior inference for each t′ is trivially parallelizable.

6. Prior specification of ϕ

For the purposes of forecasting seasonal influenza, prior specification is challenging because 

the parameters of the DBSSM have a nonlinear relationship to the data, forecasting is 

necessarily done with incomplete data, and the forecasts are sensitive to the prior 

specification. Furthermore, combinations of parameters of the DBSSM that agree with ILI+ 

early in the influenza season will not necessarily result in reasonable forecasts when 

propogated forward in time. For example, consider the task of forecasting weeks 10 through 

35 of the 2010 influenza season, after observing weeks one through nine. The left of Figure 

3 plots the mean of the process defined by equation (4.1b) corresponding to two 

combinations of parameters over the first nine weeks. Both mean processes are consistent 

with these ILI+ observations. However, when these mean processes are propagated forward 

in time, they take divergent trajectories. The forecasted trajectory in the top right of Figure 3 

appears reasonable, in that it is consistent with historically observed ILI+ for weeks 10 

through 35. The forecasted trajectory in the bottom right of Figure 3, however, is 

unreasonable, as it departs dramatically from historically observed ILI+.

Figure 3 illustrates that forecasts are sensitive to parameter choices, and thus forecasts will 

in general be sensitive to the prior specification, stressing the importance of specifying a 

prior thoughtfully and defensibly. Thus, the goal of this section is to specify a joint prior 

distribution on ϕ such that the prior predictive distribution is consistent with historically 

observed ILI+, where the density of the prior predictive distribution is

(6.1)

To accomplish our prior predictive specification goal, we expand the parameter vector ϕ by 

the latent quantity z = (PI,PT). The latent quantity PI represents the peak/maximum 

infectious proportion during the influenza season, and the latent quantity PT represents the 

week on which PI occurs. We expand ϕ with z to facilitate an informative prior specification 

with desired forecast properties.
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The joint prior distribution of (ϕ, z) is conditionally specified where [ϕ, z] is factorized into 

the product of conditional distributions via the product rule. Specifically, we factorize [ϕ, z] 

as follows:

(6.2)

where ρ = γ/β. Furthermore, we assume

(6.3)

What remains is the specification of [κ] and the conditional prior distributions of (6.3).

We illustrate prior specification using historical nationwide ILI+ for years 2002–2007 and 

2010–2013 to derive hyperparameters. The resulting prior would subsequently be used for 

fitting and forecasting the 2014 nationwide influenza season. We emphasize, however, that 

we are outlining a prior specification procedure. All hyperparameters derived from historical 

data are specific to this 2014 nationwide flu illustration. To avoid using the data twice, the 

historical data used to determine hyperparameters should not contain the data the prior will 

subsequently be used to model.

6.1. Specification of [κ] and [λ]

The parameter κ governs the magnitude of process error in equation (4.1b). The parameter λ 
governs the magnitude of measurement error in equation (4.1a). Relatively flat prior 

distributions with relatively large expected values were assigned to κ and λ, reflecting little 

prior information about these two parameters. Specifically,

(6.4)

(6.5)

with E(κ) = 2 × 104 and Var(κ) = 2 × 108.

6.2. Specification of [θ0]

We follow the precedent of Dukic, Lopes and Polson (2012) and Nsoesie, Mararthe and 

Brownstein (2013) and treat  as fixed. In what follows, we assume 90% of the population 

is initially susceptible to seasonal influenza, and assign the following degenerate distribution 

to :
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(6.6)

where δ() is a Dirac delta function (i.e.,  is a point mass prior at 0.9).

We assign a beta distribution to , which we assume is equal to the distribution of . 

The hyperparameters are determined by fitting a beta distribution to historical ILI+ for t = 0. 

For the purposes of forecasting the 2014 influenza season, we define the prior on  as

(6.7)

where  and .

Recall the latent state constraint  for all t = 0, 1, …, T. The prior distribution 

for  is specified to preserve latent state balance, namely,

(6.8)

Putting together equations (6.6)–(6.8), the joint prior specification for θ0 is

(6.9)

6.3. Specification of [z|θ0]

Specifying a prior on the latent quantity z = (PI,PT) allows us to more easily encode 

complex dependencies on the joint prior of ϕ than specifying a joint prior on ϕ directly. 

Figure 4 plots the bivariate distribution of historically observed peak intensities vs. peak 

timings for ILI+ (black points). Influenza seasons with early peaks correspond to more 

intense peaks, while seasons with later peaks are often less intense. Explanations for this 

relationship have been posited in the literature [e.g.,Towers et al. (2013)].

A truncated, bivariate normal distribution was fit to the data (black points) in Figure 4. The 

bounds of the truncated normal distribution respect support constraints and enforce prior 

beliefs. We enforce our prior belief that an epidemic will occur by setting the lower bound 

on PI to . PI is a proportion, and thus the upper bound was set to 1. The lower and upper 

bound for PT was set to 1 and 35, respectively, aligning with the support of the influenza 

forecasting season. The full specification for [z|θ0] is
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(6.10)

where T N(µ, Σ, lower, upper) stands for “truncated normal” distribution with mean µ, 

covariance matrix Σ, lower bound “lower,” and upper bound “upper.” 10,000 draws from the 

distribution of equation (6.10) are displayed in Figure 4.

6.4. Specification of [ρ|z, θ0]

Expanding the parameter vector ϕ by the latent quantity z in the prior specification allows us 

to leverage relationships between the ICs and parameters of the SIR model in equation (3.1) 

and functions of observable ILI+. As κ tends toward infinity in equation (4.1b), the mean 

process of equation (4.1b) tends toward the deterministic SIR model [assuming (S0, I0, R0, 

β, γ) in equation (3.1) equals ( , , , β, γ) in equation (4.1b)]. For suitably large κ, we 

expect the mean process of equation (4.1b) to be close (in some sense) to the deterministic 

SIR model. Furthermore, in this large κ regime, we expect the known analytical 

relationships between the ICs and parameters of the SIR model and functions of ILI+ to 

provide relevant guidance for constraining the parameter space of (ϕ, z).

One such analytical relationship between PI and the ICs and parameters of the SIR model of 

equation (3.1) is noted in Section 2.2.7 of Weiss (2013):

(6.11)

where ρ = γ/β. That is, for the SIR model, the quantity PI is a known deterministic function 

of S0, I0, and ρ. If we consider S0 and I0 known in equation (6.11), then PI = g(ρ|S0, I0) is a 

function only of ρ. For ρ ∈ [0, S0) (i.e., epidemics by the ETT), ρ = g−1 (PI, S0, I0) exists 

and is single valued because g is a monotone transformation over this range. For κ suitably 

large, we expect the relationship in equation (6.11) to hold for the mean process of equation 

(4.1b) with  and . Thus, for the DBSSM, we specify [ρ|z, θ0] as

(6.12)

6.5. Specification of [β|ρ, z, θ0]

We do not know PT to correspond to a known analytical function of ϕ, thus one must be 

estimated. To estimate this relationship, we simulated SIR curves and recorded the PT of 

each curve for the full factorial design of 10 evenly spaced values of ρ between 0.6 and 0.89, 

35 evenly spaced values of β between 0.75 and 4.5, and 15 evenly spaced values of I0 

between 0.00001 and 0.001, for a total of 5250 simulated SIR curves. For all simulated SIR 
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curves, S0 = 0.9. We then regressed log(β) on a subset of a fourth degree polynomial 

interaction model using log(PT), log(I0), and log(ρ) as covariates. The estimated parameters, 

τ̂, can be found in the Supplementary Material [Osthus et al. (2017)].

As in Section 6.4, we expect the relationships between PT and the ICs and parameters of the 

deterministic SIR model to carry over to the mean process of the DBSSM for suitably large 

κ. We specified the degenerate distribution for β|ρ, z, θ0 as the mean of a log-normal 

distribution and chose to ignore the variability in the estimates of τ because of the high 

estimated R2 (0.99) and correspondingly small estimated mean squared error (0.04212). 

Specifically,

(6.13)

where X is a 1 × 17 design matrix with columns corresponding to the rows of Table 1 

(replacing I0 with ) in the Supplementary Material [Osthus et al. (2017)], τ̂ is the vector of 

corresponding parameter estimates found in Table 1 of the Supplementary Material [Osthus 

et al. (2017)], and σ̂2 = 0.04212.

6.6. Prior predictive distribution for y1:T

With [ϕ, z] in equation (6.2) specified, we can sample from [y1:T] of equation (6.1). The 

prescription to do so is outlined in the Supplementary Material [Osthus et al. (2017)].

For illustration, M = 5000 samples were drawn from the prior predictive distribution. For 

each t = 1, 2, …, T = 35, we plotted the median (black line) and 95% prediction intervals 

(grey bands), and overlaid historical ILI+ in Figure 5. The prior predictive distribution is 

visually consistent with historically observed ILI+, as desired.

7. Forecasting results

7.1. Forecasting illustration

For the illustration in this section and for each t′ ∈ 1, 2, …, T, we simulated 62,500 draws 

from the posterior density, [θ1:t′, ϕ|y1:t′], discarding the first 12,500 as burn-in and thinning 

the remaining 50,000 every tenth iteration for each of four chains. Posterior summaries are 

thus based on M = 20,000 draws. For the full analysis presented in Section 7.2, summaries 

are based on M = 5000 draws, as we ran only one chain. Given M draws from the posterior 

distribution, the prescription for simulating from the posterior predictive density, [y(t′+1):T|

y1:t′], is outlined in the Supplementary Material [Osthus et al. (2017)].

Gibbs sampling can have difficulties sampling from compartmental models due to highly 

correlated posterior structures. The DBSSM is not a compartmental model, but shares some 

of these difficulties. Gibbs sampling proved tractable due to our informative prior 

specification and choice to work with ρ = γ/β [equation (6.12)] and β [equation (6.13)] 

rather than γ and β directly. The informative prior specification placed little to no prior 

weight on low probability regions of the posterior parameter space, helping focus the Gibbs 

sampler. The parameter transformation facilitated the sampling of two relatively 
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uncorrelated parameters (ρ and β) instead of two highly correlated parameters (γ and β). 

Chain mixing and stationarity for various estimands of interest were assessed with the 

Gelman–Rubin diagnostic [Gelman and Rubin (1992)] and effective sample sizes. For more 

details on both posterior correlation structure and MCMC diagnostics, the reader is directed 

to the Supplementary Material [Osthus et al. (2017)].

Percentiles of the posterior density for the latent infectious states, , and 

the posterior predictive density, [y(t′+1):T|y1:t′], for the 2010 nationwide influenza season are 

shown in Figure 6. For t′ = 1 (upper left of Figure 6), the 95% prediction intervals capture 

the unknown future observations. The forecast has much uncertainty, as expected with only a 

single observation for the 2010 influenza season. As more data are observed and 

incorporated into the analysis, plausible forecast trajectories become constrained, resulting 

in tighter prediction intervals. We note that the deterministic SIR model cannot capture the 

two peaks exhibited by 2010 nationwide ILI+, as the infectious curve of the SIR model can 

have at most one peak. However, the DBSSM is able to capture the two peaks exhibited by 

the 2010 influenza season because the DBSSM explicitly accounts for process error.

7.2. Forecasting comparison

It is our desire to compare the forecast accuracy of the DBSSM with competing models. 

Accurately reproducing these competing models for the purposes of comparison, however, is 

challenging due to the varied and, often times incomplete, available model descriptions. 

Even comparing reported forecast accuracy metrics with competing models can be 

challenging, as forecasting methods, forecasting outcomes, and reported validation metrics 

vary widely in the literature [Chretien et al. (2014)]. For these reasons, we leave the 

comparison of the DBSSM’s forecasting accuracy with competing models to future work.

Some degree of comparison of forecast accuracy is needed, however. To judge the 

forecasting quality and justify the complexity of the DBSSM, we compare the DBSSM’s 

ability to forecast quantities related to PT and PI marginally, as well as jointly, to two readily 

available models. The first model (SM1) is the prior predictive distribution of the DBSSM. 

The second model (SM2) is the model presented in Hickmann et al. (2015). For all historic 

influenza seasons not forecasted, SM2 computes the mean and standard deviation of ILI+ for 

each time point. A draw from SM2 is a time series, where each point of the time series is 

independently drawn from a normal distribution with a time point specific mean and 

standard deviation. Comparing the DBSSM forecasts to the forecasts of SM1 allows us to 

directly investigate whether updating the DBSSM when new data become available is 

beneficial to forecasting, relative to our prior. Comparing the DBSSM forecasts to the 

forecasts of SM2 allows us to directly investigate whether fitting the DBSSM is worth the 

effort. Note that neither SM1 nor SM2 incorporate observations into the analysis within a flu 

season, while the DBSSM does. We refer to the incorporation of observations into the model 

fitting within a flu season as “assimilating data.” The forecasts for SM1 and SM2 are 

produced on the basis of historical influenza seasons, not the current season.

For t′ = 1, 2, …, 34 and m = 1, 2, …, M, let
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(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

where qa(x) returns the sample quantile of x for probability a ∈ [0, 1]. We consider three 

metrics (M1, M2, and M3) to assess a model’s ability to forecast PI and PT both marginally 

(M1 and M2) and jointly (M3). Each metric can be viewed as a score, where M1, M2, and 

M3 ∈ [0, 1] and 1 is a perfect score. The score itself is a weighted combination of accuracy 

(coverage) and confidence (prediction interval width). M1, M2, and M3 are respectively 

defined as follows:
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where T* = min(PT + 4, T − 1). The quantity T* represents an early cutoff for the influenza 

season determined by the week the peak occurs. For example, in the nationwide 2010 

influenza season used for illustration in Section 7.1, PT = 18 so that T* = min(18 + 4, 35 

− 1) = 22. The metrics M1, M2, and M3 are evaluated over the time period [1, T*] rather 

than [1, T] since shortly after the PI and PT are observed, the DBSSM is able to accurately 

identify them. Therefore, comparing DBSSM to SM1 and SM2 over [1, T] would give an 

unfair advantage to the DBSSM, as neither SM1 nor SM2 assimilate data. Also, by 

restricting M1, M2, and M3 to [1, T*], we can focus on a model’s ability to forecast the PI 

and PT prior to observing the PI and PT.

We consider 330 scenarios comprised of all year-region-type combinations of ten years 

(2002–2007 and 2010–2013), eleven geographic regions (ten HHS regions and nationwide), 

and three strains of influenza (ILI+, ILIA+, and ILIB+). For each scenario, we compute M1, 

M2, and M3 for the DBSSM, SM1, and SM2. For each scenario and metric, we determine 

the best model, where best means the model with the corresponding metric closest to 1. The 

results are summarized in Table 1.

The DBSSM is the preferred model for forecasting PI marginally and jointly with PT, as it 

was the best model in the highest percentage of scenarios for M1 and M3, respectively. 

SM2, however, is the preferred model with respect to forecasting PT marginally, as it was 

the best model in the highest percentage of scenarios for M2. SM1 is the least preferred 

model with respect to all considered metrics. Thus, based on the results of Table 1, there is 

strong evidence to support the claim that assimilating data is beneficial relative to the prior 

of the DBSSM.

It would appear the DBSSM and SM2 are competitive with each other but with different 

strengths. Examination of the distribution of M1, M2, and M3 scores, however, provide 

more insight into the differences between the DBSSM and SM2 models. The distribution of 

scores across all scenarios are displayed in Figure 7.

For SM2, we see a spike at zero and a clustering of scores generally above 0.5 for all 

metrics. Because SM2 does not assimilate data, the forecast made for every t′ is identical. 

The forecast for each scenario is either accurate or inaccurate, with inaccurate forecasts 

assigned a score of zero. The spike at zero in Figure 7 for SM2 is thus the marking of a 

nondata assimilating model.

The relatively high volume of zeros coupled with relatively high scores, however, is the 

marking of a nondata assimilative model which is overconfident in its predictions. Small 

prediction interval widths (i.e., confident forecasts) have the potential to yield high scores, 

but carry an increased likelihood of inaccuracy (i.e., scores of zero). For SM2, roughly 50%, 

30%, and 60% percent of all scenarios were inaccurate for metrics M1, M2, and M3, 

respectively.

Assimilating data hedges against the dichotomy of accuracy and inaccuracy. As can be seen, 

the DBSSM seldom has a score near zero, but also seldom has a score near one.
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Finally, for each model, scenario, and t′, it is of interest to know if the worst of the influenza 

season has occurred. Knowing this has implications for resource allocation and 

communication approaches with the public. We estimate the probability the peak intensity 

has not yet been observed, P(PT > t′|y1:t′), by

(7.7)

For each model, Figure 8 displays P̂(PT > t′|y1:t′) averaged over all scenarios versus 

standardized time, where standardized time is t′ − PT.

Figure 8 shows the superiority of the DBSSM over both SM1 and SM2 with respect to 

estimating P(PT > t′|y1:t′). The DBSSM can correctly and confidently predict that the peak 

intensity has not yet been observed prior to observing it. The same cannot be said for either 

SM1 or SM2. The DBSSM has difficulty recognizing the peak intensity has been observed 

on the week the peak intensity is observed. However, the DBSSM is able to quickly 

recognize the PI has been observed one to two weeks after observing it. By three weeks after 

observing the peak intensity, the DBSSM is able to correctly and confidently predict the 

peak intensity has occurred. Knowing that the worst of the influenza season has been 

observed shortly after observing it has practical value and is a strength of the DBSSM.

8. Discussion

In this paper, we present the DBSSM, a probabilistic statespace model motivated by the 

deterministic SIR model. The beta and Dirichlet distributions of equations (4.1a) and (4.1b), 

respectively, naturally obey support constraints without the need for transforming the data. 

Parallel sampling with JAGS [Plummer (2014), Plummer et al. (2003)] proved 

computationally feasible, even for the forecasting analysis with 330 scenarios.

A major contribution of this work was the prior specification of Section 6. By expanding ϕ 
by the latent quantity z and conditionally specifying the prior, we were able to exploit both 

known and estimated relationships between the ICs and parameters of the SIR model and 

functions of ILI+. Incorporating prior information into the prior specification is a crucial 

component to forecasting seasonal influenza. Forecasts are most desired and valuable when 

data for the current influenza season are scarce. The prior distribution is the mechanism by 

which to incorporate information from historical influenza seasons. We stress that results 

depend critically on the prior specification, emphasizing the importance of its thoughtful and 

careful specification.

Fitting flu seasons sequentially to obtain a prior via a Bayesian updating procedure is a 

plausible alternative modeling approach. We, however, chose not to pursue a sequential 

updating approach for a couple reasons. By specifying the prior conditionally rather than 

adopting a sequential approach, we were able to leverage known analytical relationships for 

the SIR model and, in a sense, open up the “black box” that is the prior distribution. 

Furthermore, a sequential approach to prior specification works well when the underlying 
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data-generating mechanism remains relatively constant. For seasonal influenza, this is not 

the case. We know influenza changes from year to year based on factors such as weather, 

vaccine efficacy, and mutating flu strains. Flu transmission dynamics one year are not 

necessarily predictive of flu transmission dynamics the following year.

Arguably, a more natural Bayesian modeling approach than our approach would be a 

hierarchical model. This approach would model all flu seasons jointly and could avoid much 

of the prior specification details presented in Section 6. We speculate the main drawbacks to 

such an approach would be increased computation time (fitting all available flu seasons 

rather than one) and a diminished ability for forecasts to quickly adjust to newly observed 

data (as our approach can, as displayed in Figure 8).

Alternative disease surveillance systems to ILINet include variants of the recently defunct 

Google Flu Trends [e.g.,Ginsberg et al. (2009)]. One such variant is Wikipedia 

[e.g.,Generous et al. (2014),Hickmann et al. (2015)]. Rather than select one disease 

surveillance system for influenza forecasting, multiple disease surveillance systems could be 

incorporated into a principled, probabilistic, data-assimilating model. This multiple data 

stream modeling approach has the potential to leverage the accuracy of traditional 

surveillance systems (i.e., ILINet) and the timeliness and geographic resolution of 

alternative surveillance systems (e.g., Wikipedia).

As more forecasting models are developed, the need for standard and meaningful forecasting 

metrics along with approaches to compare competing models will increase. Nsoesie et al. 

(2014) and Chretien et al. (2014) note the importance for studies to clearly define the 

predicted event and corresponding accuracy measures and the need to report head-to-head 

comparisons between competing forecasting approaches. We agree with these general 

conclusions and recommendations. When comparing forecasting models, the determination 

of the “best” model will necessarily be relative to a forecasting metric or multiple 

forecasting metrics. Figure 7 suggests comparisons between forecasting methods should be 

broadly demonstrated, not narrowly illustrated. Undesirable features of a forecasting 

approach (e.g., overconfidence) will not be apparent when applied to a single or even a few 

scenarios.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
ILI+ (top), ILIA+, and ILIB+ (bottom) for influenza seasons 2002–2007 and 2010–2013. 

Weeks 1 and 35 roughly correspond to the beginning of October and the end of May, 

respectively.
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Fig. 2. 
Simulated SIR curve with S0 = 0.9, I0 = 0.0002, R0 = 0.0998, β = 2, and γ = 1.4.
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Fig. 3. 
The mean process defined by equation (4.1b) for two sets of parameters are displayed. The 

parameters corresponding to the dashed trajectory (top) are , , 

, β = 2.22, γ = 1.7017, and κ = 20,000. The parameters corresponding to the 

dotted trajectory (bottom) are , , , β = 0.3912, γ = 0.077, and 

κ = 20,000. Points are 2010 ILI+ observations for weeks one through nine. Grey lines are 

the ILI+ trajectories for years 2002–2007 and 2011–2013 for weeks 10 through 35.
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Fig. 4. 
The peak intensity (PI) on the y-axis vs. the timing of peak intensity (PT) on the x-axis for 

years 2002–2007 and 2010–2013 (black points). 10,000 samples were drawn from the 

truncated normal distribution of equation (6.10) with  and plotted in grey.
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Fig. 5. 
The median (thick black line) and 95% prediction intervals (grey band) based on M = 5000 

draws from the prior predictive distribution. Historical ILI+ observations are displayed for 

reference (thin grey lines).
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Fig. 6. 
95% posterior predictive intervals for [y(t′+1):T|y1:t′] (light grey bands) and 95% credible 

intervals for  (dark grey bands). Posterior medians (black lines) and ILI+ 

observations (points) are also displayed for the 2010 nationwide, influenza seasons. The 

number at the top of each panel is t′. All plots are based on 5000 simulations.
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Fig. 7. 
Distribution of M1, M2, and M3 scores for the DBSSM (top) and SM2 (bottom).
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Fig. 8. 
P̂(PT > t′|y1:t′) averaged over all scenarios versus standardized time.
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Table 1

Percentage of scenarios model was deemed best, by metric. Bold numbers indicate the largest percentage for 

each metric

Model M1 M2 M3

DBSSM 60.3 38.8 54.8

SM1 5.5 0.0 6.1

SM2 34.2 61.2 39.1
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