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Introduction

Neurofibromatosis 1 (NF1) is an autosomal dominant 
disease caused by mutations in the gene encoding 
neurofibromin, a tumor suppressor protein that nega-
tively regulates multiple proliferative cellular path-
ways.1–3 The RAS oncogene is the primary target of 
neurofibromin, a Ras-GAP (GTPase-activating pro-
tein) that inhibits Ras signaling by promoting its con-
version to the GDP-bound inactive form.4 As a 
consequence, loss of neurofibromin increases the 
activity of Ras and its numerous downstream 

effectors, including the Raf/MEK/ERK and PI3K/Akt/
mTOR pathways.2,3,5–13 Hyperactivated Ras drives 
tumorigenesis through increased cell proliferation and 
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Summary
Neurofibromatosis type 1 (NF1) is a common, cancer-predisposing disease caused by mutations in the NF1 tumor gene. 
Patients with NF1 have an increased risk for benign and malignant tumors of the nervous system (e.g., neurofibromas, 
malignant peripheral nerve sheath tumors, gliomas) and other tissues (e.g., leukemias, rhabdomyosarcoma, etc.) as 
well as increased susceptibility to learning disabilities, chronic pain/migraines, hypertension, pigmentary changes, 
and developmental lesions (e.g., tibial pseudoarthrosis). Pigs are an attractive and upcoming animal model for future 
NF1 studies, but a potential limitation to porcine model research has been the lack of validated reagents for direct 
translational study to humans. To address that issue, we used formalin-fixed tissues (human and pigs) to evaluate 
select immunohistochemical markers (activated caspase-3, allograft inflammatory factor-1, beta-tubulin III, calbindin 
D, CD13, CD20, desmin, epithelial membrane antigen, glial fibrillary acidic protein, glucose transporter-1, laminin, 
myelin basic protein, myoglobin, proliferating cell nuclear antigen, S100, vimentin, and von Willebrand factor). The 
markers were validated by comparing known expression and localization in human and pig tissues. Validation of these 
markers on fixed tissues will facilitate prospective immunohistochemical studies of NF1 pigs, as well as other pig 
models, in a more efficient, reproducible, and translationally relevant manner. (J Histochem Cytochem 65:607–618, 
2017)
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survival.14 In fact, nearly all NF1 patients develop 
benign neurofibromas while a smaller percentage 
(roughly 15–20%) develops cancers, including optic 
gliomas, rhabdomyosarcoma, leukemias, and malig-
nant peripheral nerve sheath tumors (MPNST).15–18 In 
addition to tumors, NF1 patients are also prone to a 
spectrum of clinical features including pigmentary 
changes, skeletal deformities, and cognitive and 
behavioral disorders, to name a few.16,19

Numerous genetically engineered mouse models 
targeting the NF1 gene have been generated. Unlike 
humans, however, mice expressing a single mutant 
allele of Nf1 fail to develop the classic features of NF1 
and are considered inaccurate models of the disease. 
The Nf1+/− mice do exhibit learning and memory defi-
cits that are common in NF1 patients, but they fail to 
develop the hallmarks of NF1 including neurofibro-
mas, pigmentation defects, enhanced pain perception, 
and various malignancies such as MPNSTs.20–22 To 
successfully model typical NF1 tumor types, condi-
tional inactivation of both Nf1 alleles or combined 
alteration of other cancer genes, such as p53 or 
INK4a/ARF, with Nf1+/− mutation is required.23–28 
Several of these more recent mouse models have 
served as valuable preclinical tools for testing novel 
therapeutics for NF1 tumors. Unfortunately, the ani-
mals only replicate select aspects of NF1 and are, 
thus, limited by their inability to mimic the full spectrum 
of NF1 lesions. As such, there is an ongoing effort 
within the NF1 research community to develop new 
animal models that better recapitulate the many NF1 
phenotypes seen in patients.

Over the past few years, genetically modified pig 
models of human diseases have been increasingly 
and successfully used to study a broad range of dis-
eases including cystic fibrosis,29–32 muscular dystro-
phy,33 cancer,34,35 cardiovascular disease,36,37 and 
ataxia telangiectasia,38 to name a few. There are sev-
eral reasons for using pig models, including the simi-
larities to humans such as comparable anatomy, 
physiology, metabolism, and pathology.39,40 However, 
compared with rodent models, pig models have limited 
access to validated reagents and techniques for trans-
lational research.41 In this article, we validate IHC 
markers for pig and human tissues that will have trans-
lational relevance in the study of NF1 in novel pig 
models.

Materials and Methods

Tissues

Archival tissues (non-NF1 tissues, i.e., “wild type”) from 
pigs and humans were acquired from the Comparative 

Pathology Laboratory (University of Iowa). All tissues 
had been fixed in 10 percent neutral buffered formalin 
and processed as previously described.42 Pig tissues 
were acquired from paraffin-embedded tissue blocks 
previously used in studies that had received University 
of Iowa Institutional Animal Care and Use Committee 
approval. These tissues samples were taken from pigs 
(Sus scrofa domestica) and included multiple breeds 
(e.g., Large White, Yucatan, etc.) from commercial farm 
and/or research sources because (to date) we have not 
observed variations in immunohistochemical staining 
between various breeds of pig. Tissues were from pigs 
less than one year of age and for each marker, a total 
of three pigs (at least one of each sex) were evaluated. 
No overt sex-related differences in immunostaining 
were noted. Human tissues were acquired from de-
identified autopsy tissues previously used as IHC con-
trol tissues, or through the Cell Culture Core Repository 
(University of Iowa) that has institutional approval from 
the University of Iowa Institutional Review Board (IRB 
#:199507432) for collection of human tissues. Unless 
otherwise specified, tissues came from individuals that 
were generally healthy and lacked overt clinical dis-
ease. Importantly, we used tissues that had been 
placed into fixative in a timely manner following harvest 
to mitigate autolysis, a cellular process that can con-
found IHC studies.42

IHC

Markers for optimization and validation were selected 
based on three criteria: (1) prospective relevance to 
NF1 studies—for example, through identification of 
normal tissue structure, diagnostic utility, or study of 
NF1-related pathogenesis; (2) availability of organs/tis-
sues (human and pig) with known marker expression; 
and (3) distinct microanatomical localization of the 
marker for morphological corroboration of human and 
pig expression. We preferentially evaluated select anti-
bodies/techniques from our lab that were previously 
optimized/validated for human tissues. Markers and 
their respective techniques that were successfully 
optimized and validated are shown in Table 1. For 
these studies, 3,3′-diaminobenzidine (DAB, brown 
staining) was used as the chromogen, and Harris 
hematoxylin (basophilic staining) was used as the 
counterstain.

Results

Translational markers of the nervous system would be 
useful as it is commonly affected in NF1.16 Specifically, 
markers that allow identification of normal central or 
peripheral neural structure/organization, or markers 
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that increase the diagnostic sensitivity or specificity for 
NF1-specific lesions (e.g., neurofibromas) would be 
useful (see marker selection criteria in section “Materials 
and Methods”). Myelin basic protein (MBP) was found 
in myelinated (e.g., white matter) tracts of the brain 

(Fig. 1A) and can serve as a landmark of brain organi-
zation.43 Calbindin-D28K is a marker of Purkinje cells,38 
specialized neurons of the cerebellum and serve as a 
marker of cerebellum organization. We observed 
Purkinje cell immunostaining in the cerebellum (Fig. 

Figure 1.  IHC of human (top panel) and pig (bottom panel) tissues. (A) MBP immunostaining was localized to white matter (asterisks) in 
the cerebrum. (B) Calbindin-D28K immunostaining was localized to Purkinje cells (arrows) in the cerebellum. (C) GFAP immunostaining 
was localized to glial cells (arrows) in the cerebrum. (D) AIF1 immunostaining was localized to microglial cells (arrows) in the cerebrum. 
(E) S100 immunostaining was localized to peripheral nerves (arrows) in skeletal muscle. (F) beta-tubulin III immunostaining was localized 
to axons within peripheral nerves (arrows) of skeletal muscle. Scale bar = 26 (C, D, F), 40 (B, E), and 800 (A) µm. Abbreviations: MBP, 
Myelin basic protein; GFAP, glial fibrillary acidic protein; AIF1, allograft inflammatory factor 1.
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1B). Glial fibrillary antigen protein (GFAP) is a marker of 
glial cells (e.g., astrocytes) and can be useful to detect 
astrocyte activation (i.e., astrogliosis) in NF1.44,45 GFAP 
immunostaining was seen in astrocytes of the brain 
(Fig. 1C). Microglia are resident macrophages in the 
brain and may play a role in pathogenesis of optic glio-
mas (an NF1-related tumor) and the ensuing sexual 
dimorphism of optic glioma-associated retinal injury.46,47 
Allograft inflammatory factor 1 (AIF1, also known as 
ionized calcium-binding adapter molecule-1) is a marker 
for microglia and can label alveolar macrophages of the 
lung of pigs and humans.42 We optimized the AIF1 tech-
nique so it immunostained microglia in the brain (Fig. 
1D). S100 can be a useful marker in the clinical diagno-
sis of neurofibromas, intraocular gliomas, and normal 
peripheral nerves.48–52 We localized S100 in peripheral 
nerves of muscle tissue (Fig. 1E). Neuronal markers, 
such as beta-tubulin III,53 can highlight axonal structure 
within peripheral nerves. We localized beta-tubulin III in 
axons of peripheral nerves (Fig. 1F).

The vasculature is emerging as an important tissue 
in NF1 pathogenesis. For example, aneurysms and 
stenoses are vascular anomalies that have been 
reported in people with NF1.54 Furthermore, Schwann 
cells from NF1 neurofibromas have been reported to 
produce midkine, an angiogenic and mitogenic factor.55 
We evaluated the endothelial marker CD34 using a 
rabbit polyclonal antibody (#250591, Abbiotec LLC, 
San Diego, CA), but the immunostaining in both 
human and pig tissues did not meet our standards for 
sensitivity and specificity (data not shown) and, thus, 
did not meet our threshold for inclusion in this study 
(see section “Materials and Methods”). So, instead, 
we used von Willebrand Factor (vWF) as a vascular 
marker,56 and it distinctly labeled vessels within lym-
phoid tissues of both species (Fig. 2A). Apoptosis and 
proliferation are common cellular markers that can be 
useful in evaluating tumor grade and effects of tumor 
therapy.57,58 We examined markers of apoptosis 
(cleaved caspase-3) and proliferation (proliferating 
cell nuclear antigen, PCNA), and both markers had 
expected immunostaining that was similar between 
human and pig tissues (Fig. 2B and C). Epithelial 
membrane antigen (EMA),10 glucose transporter 1 
(GLUT1), and laminin IHC have been used to rule out 
other tumors (e.g., perineurioma) and help classify 
soft tissue tumors.59–61 EMA was localized in the 
glands (e.g., sebaceus) of normal skin (Fig. 2D).62 
GLUT1 is known to be highly expressed in the lower 
(more basal) epidermis in humans and was localized 
there in both species (Fig. 2E).63 Laminin is expressed 
in basement membranes and in the perineural tissue, 
so it can be useful in diagnostics of soft tissue tumors 
such as neurofibromas and malignant peripheral 

nerve sheath tumors.60 Laminin was localized in base-
ment membranes of renal tubules (Fig. 2F).

Inflammation (macrophages and lesser numbers of 
lymphocytes) has been associated with NF1 muta-
tions in glioblastomas.64 Recently, panels of immune 
cell markers were evaluated in pig and human tissues42; 
however, the B cell immunostaining in pigs (i.e., 
CD79a) was not as robust as in humans. We tested 
another B-cell marker CD20, and it had the expected 
B-cell distribution in lymphoid tissues (Fig. 3A), but in 
similar fashion to CD79a, it had less robust staining in 
pigs than humans. Children with NF1 may be predis-
posed to myelogenous leukemias,65 and CD13 is a 
myeloid lineage marker that can aid in its diagnosis.66 
CD13 is highly expressed and localized in the renal 
tubules, and this localization was seen in our tissues 
(Fig. 3B). Rhabdomyosarcoma is a malignancy of 
muscle that has increased risks in the NF1 popula-
tion.15–17 Myoglobin, desmin, and vimentin are poten-
tial markers useful for diagnosing skeletal muscle 
tumors.67,68 In skeletal muscle, these markers exhib-
ited sarcoplasmic-specific staining except for vimen-
tin, which had more sarcoplasmic staining in pigs 
compared with the scant immunostaining in humans 
(Fig. 3C–E). In general, vimentin specificity was low 
as it was seen in other interstitial and mesenchymal 
tissues (e.g., vascular walls, adipocytes, etc.). The 
potential for broad or even false positive artifactual 
immunostaining patterns for vimentin have been rec-
ognized69,70 when studying in tissues. Together, these 
features might limit vimentin usage in situations to 
corroborate more specific immunostaining (e.g., myo-
globin, desmin).

Discussion

In this study, we were able to validate several IHC tis-
sue markers in pig and human formalin-fixed paraffin-
embedded tissues. Importantly, we did this using the 
same reagents (i.e., primary antibodies) with infre-
quent, minor species variation in incubation/concen-
tration (Table 1). We specifically targeted markers that 
were applicable for prospective NF1 pig studies and, 
through this, were able to expand the scope and fill in 
the gaps of validated markers that are available for 
translational pig studies.

Study of tissues in the nervous system is vital for 
NF1 research.16 Tumors of nervous system origin 
(e.g., neurofibromas) are common in NF1 patients as 
are cognitive/social deficits, migraines, and chronic 
pain.71,72 In this study, we were able to validate several 
markers that would allow for examination of structural 
organization (e.g., beta-tubulin III, S100) and remod-
eling (e.g., GFAP, AIF1) of the nervous system in 
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tissues. Markers to study proliferation (e.g., PCNA) 
and apoptosis (e.g., activated caspase-3), which may 
be relevant in interrogating the cellular biology of NF,73 
were also validated. These tools allow for detection of 
abnormal neural structure/organization and tissue 

remodeling that can help to better detect and clarify 
the progression of lesions in early NF1 pathogenesis.

People with NF1 are prone to various benign and 
malignant tumors originating from the nervous system 
as well as from other tissues. Classification of the 

Figure 2.  IHC of human (top panel) and pig (bottom panel) tissues. (A) vWF immunostaining was localized to endothelial cells (arrows) 
of vessels. (B) Cleaved Caspase-3 immunostaining was localized to apoptotic cells (arrows) and debris in lymphoid tissues. (C) PCNA 
immunostaining was localized to nuclei of proliferating epithelial cells (arrows) in the crypts of the colon. (D) EMA10 immunostaining was 
localized to adnexal glands (arrows) of the skin. (E) Glut1 immunostaining was localized to the lower, basal-oriented cells (arrows) of 
the epidermis. (F) Laminin immunostaining was localized to the tubular basement membranes in the kidney. Scale bar = 26 (B, C), 40 (A, 
D, E), and 80 (F) µm. Abbreviations: vWF, von Willebrand Factor; PCNA, proliferating cell nuclear antigen; EMA, epithelial membrane 
antigen; Glut1, glucose transporter 1.
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tumors in terms of grade (e.g., benign to malignant), 
cell lineage, and exclusion of other tumors with similar 
morphology can be critical components in under-
standing NF1 pig model phenotype and comparing 
with that of NF1 disease in humans. For instance, 

S100+ immunostaining is a useful marker to corrobo-
rate neurofibroma diagnosis, whereas immunostaining 
for other markers (e.g., EMA, GLUT1) may point 
toward different diagnoses (e.g., perineurioma) and, 
thus, should generally be negative in neurofibromas.50,61 

Figure 3.  IHC of human (top panel) and pig (bottom panel) tissues. (A) CD20 immunostaining was localized to B-cell rich regions (e.g., 
germinal centers, asterisks) in lymphoid tissue. (B) CD13 immunostaining was localized to the tubular brush borders of the kidney. (C) 
Vimentin immunostaining of muscle tissue was preferentially localized to vascular walls (arrows) and interstitial connective tissue with 
less intense immunostaining of muscle sarcoplasm (pig > human) and adipocytes. (D) Desmin immunostaining of muscle tissue was local-
ized to muscle sarcoplasm (asterisks). (E) Myoglobin immunostaining of muscle tissue was localized to muscle sarcoplasm (asterisks). 
Scale bar = 80 µm.
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We also were able to validate select markers that could 
be useful for rhabdomyosarcoma (e.g., myoglobin, des-
min) and myelogenous leukemia (CD13)—tumors that 
are preferentially seen in NF.15–17,65,66

Validated IHC markers, such as these demon-
strated in this article, offer investigators a resource for 
simplicity, consistency, and repeatability in studies of 
pig models of NF1 as well as other human diseases. 
With the prospective development of NF1 mutant pigs 
(unpublished), we expect to further validate and 
expand the scope of markers that can be used to 
investigate these models. These markers are part of 
an emerging “toolbox” that are essential for character-
ization, diagnostics, and phenotyping of current and 
future pig models.
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