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Abstract

Generic red, green, and blue images can be regarded as data sources of coarse (three bins) local

spectra, typical data volumes are 104 to 107 spectra. Image data bases often yield hundreds or

thousands of images, yielding data sources of 109 to 1010 spectra. There is usually no calibration,

and there often are various nonlinear image transformations involved. However, we argue that

sheer numbers make up for such ambiguity. We propose a model of spectral data mining that

applies to the sublunar realm, spectra due to the scattering of daylight by objects from the generic

terrestrial environment. The model involves colorimetry and ecological physics. Whereas the

colorimetry is readily dealt with, one needs to handle the ecological physics with heuristic

methods. The results suggest evolutionary causes of the human visual system. We also suggest

effective methods to generate red, green, and blue color gamuts for various terrains.
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Motivation

We consider the colors of essentially the sublunary sphere of Aristotelian physics (itself
derived from Greek astronomy). The sublunar region comprises the four classical elements
(earth, air, fire, and water), the part of the cosmos where physics rules, the realm of changing
nature. Nowadays, we might say ‘‘the natural environment.’’

Digital photographs capture spectral information in a format that is closely related to the
human visual system. This implies that the red, green, and blue (RGB) channels roughly
contain counts of low-energy, medium-energy, and high-energy photons within the narrow
visual range (about 1.8 to 3.4 eV). Enormous numbers of photographs from around
the globe, each containing millions of spectral samples are readily available over the
Internet. It would be a shame if such spectral data could not be mined and put to good use.
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However, there are numerous hurdles to be taken in order for this to be possible. We consider
how to overcome some of them.

In order to motivate our methods, we start with a cursory look at the modest data source
shown in Figure 1. The data volume is about 5� 106 samples. The average RGB color is
f0:50, 0:46, 0:45g, which seems right from the perspective of optimal channel capacity.1

However, this optimistic guess is immediately shown to be wrong from a cursory glance at
the covariance matrix, which is

CRGB ¼

97 94 92

94 97 97

92 97 100

0
B@

1
CA ð1Þ

where we have scaled the largest entry to 100. Clearly, the RGB color channels are highly
correlated. As shown in following sections, this is entirely typical of photographs from the
sublunar realm. In this case, the normalized eigenvalues are f1, 2:3� 10�2, 2:3� 10�3g, and
thus, the dominant dimension carries 40 times the power of the other two combined. The
third dimension carries only a 10th of the power of the second one.

These correlations must be due to the width of the autocorrelation function of the radiant
power spectra of the natural (sublunar) environment. We consider this in some detail in this
article. The RGB color channel correlations have immediate consequences that are
important. Here we illustrate some of these, continuing our discussion of the pebbles image.

The eigenvectors are very close to the normalized versions of {1, 1, 1}, f1, 0, �1g, and
f�1, 2, �1g, as shown in Figure 2. Such an ‘‘opponent’’ basis effectively decorrelates the
RGB channels. The opponent channels are white–black, red–blue and green–purple.2 They
have an obvious interpretation in terms of physics, as discussed later.

The fact that ‘‘opponent channels’’ serve to decorrelate color-related signals, such as the
RGB, has been known for a long time. However, this insight came from analysis of the color
matching functions (Buchsbaum & Gottschalk, 1983), that is to say, the structure of the
human visual system. Here we have a quite different perspective; the correlations between
the RGB channels are correlations between subregions of the radiant power spectra of the
sublunar realm. We do not consider the human color system, but rather the ecological optics,

Figure 1. Pebbles image.
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that is, environmental physics. This does not address the vision of any specific species. Of
course, we will come back to human color vision in this article, but only by way of a detour:
No doubt, human color vision evolutionary adapted to the environmental physics.

Two facts are important here. First, a default prior yields very different results. Second, as
we will show later, just about all photographs deriving from the sublunar domain have
essentially the same structure as that of the arbitrarily picked pebbles example (Figure 1).
Why is that? This appears to be a key question from an evolutionary perspective.

The first fact results immediately from elementary probability calculus. Suppose the RGB
channels are mutually independent and uniformly distributed on the interval ½0, 1�. This
appears to be a rational default assumption that also happens to optimize the channel
capacity. Then the normalized covariance matrix will be the unit matrix and the
eigenvectors (except from being mutually orthogonal) essentially unconstrained. All
dimensions will carry an equal share of the power. But this apparently reasonable ‘‘default
assumption’’ is totally in the wrong ballpark.

The second fact is less easy to understand. It evidently involves the ecological physics of
the sublunar realm. Accounting for this observation is a hard problem that can only be
approached in a rather roundabout and approximate manner. It is dependent on the
meaning of ‘‘ecological,’’ which not only involves the physics of the environment but also
the structure of the human visual system.

In this article, we propose a model of spectral data mining that applies to the sublunar
realm, involving spectra that are mainly due to the scattering of daylight by objects from the
generic terrestrial environment. The model necessarily involves both colorimetry and
ecological physics. The colorimetry is readily dealt with using standard tools. Because of
the huge variety and complexity of the sublunar, the ecological physics has to be approached
through heuristic, approximate methods of great generality.

Figure 2. The blue vectors are f1, 0, � 1g=
ffiffiffi
2
p

, f�1, 2, � 1g=
ffiffiffi
6
p

and f1, 1, 1g=
ffiffiffi
3
p

and the red vectors are

the eigenvectors of the pebbles image. The pole is the f1, 1, 1g=
ffiffiffi
3
p

direction. Note that the pebbels

eigenvectors are really close to the fiducial ‘‘opponent system.’’
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The results yield handles on the evolutionary causes of the structure of the human visual
system.

The methods described here also yield effective methods to generate RGB color gamuts for
various terrains, something that might find a variety of applications.

Psychophysical, Physiological, and Physical Backgrounds

Although we consider these backgrounds separately, they are evidently closely connected,
because humans have been shaped by evolution to match their generic Umwelts.3 Because we
are not considering visual awareness, but only discriminability, the visual part is readily dealt
with using well known and standardized colorimetry. The physical part is far more involved.

Psychophysical and Physiological Background

The human observer samples a linear projection of the radiant power spectra available at the
eyes. The complement of the projection’s null-space is three dimensional for the generic
human observer. The null-space of the generic projection is well known, it was established
empirically in the 19th century by Maxwell and Helmholtz (Koenderink, 2010a).4 Nowadays,
a projection matrix is available on the Internet. There is no natural basis for ‘‘color space,’’
that is the complement of the null-space, nor is there a natural metric.

We consider a highly simplified model of the sublunar realm in which the radiant spectra
are spectrally selectively attenuated versions of the daylight spectrum. This implements
‘‘object colors.’’ For simplicity, we use a standard daylight spectrum available for
download on the Internet (www.cie.co.at/index.php/LEFTMENUE/DOWNLOADS; see
Figure 3).

The colors of such attenuated daylight spectra fill a finite region in color space. Because
the daylight spectrum defines an infinitely dimensional cuboid in the space of spectra, this
region is a convex, centrally symmetric volume in color space.5 Its structure has been
described by Schrödinger (1920). Colors on the boundary of this ‘‘color solid’’ are proper
‘‘parts of daylight’’ in the sense that their spectra are characteristic functions of connected
spectral ranges or complements thereof.

Figure 3. At left, the CIE illuminant D65 (average daylight). The colors show the spectral bins for the cut-

loci 483 nm and 565 nm. At right, the color matching functions of the CIE 1964 supplementary standard

colorimetric observer. The tables may be downloaded from the CIE site, the cut-loci can immediately be

computed from them.
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This can be used to find the nature of spectral sampling by the human visual system. Split
the spectrum into three parts by way of two cuts. Place the cuts thus that the resulting RGB
space claims the largest possible volume fraction of the full Schrödinger color solid. This is a
well-defined optimization problem because volume ratios are invariant against arbitrary
colorimetric transformations. One finds (numerically, using the CIE color matching
functions shown in Figure 3 right) that there is a unique solution, and the cuts should be
at wavelengths of 482.65 nm and 565.43 nm (Figure 3 left). This yields a unique RGB basis
for color space. The convex hull of the basis vectors is the parallelepided of largest volume
that can be inscribed in the color solid, making it the optimum RGB basis (Figure 4 right).
The corresponding color matching functions (Figure 4 left) are predominantly nonnegative
and are mutually only weakly correlated.6

Phenomenologically, the resulting parts look red, green and blue to generic observers,
whereas unions of two parts look yellow, turquoise, and purple and the union of all three
parts looks white.7 Thus, one has a true RGB representation, exactly what display
manufacturers aim for. If a display deviates significantly from this optimum, it is unlikely
to attract customers. The reason is simply that the physiology dictates it.

Of course, there is no necessity for display manufacturers to produce ‘‘parts of
daylight’’ as such. For display purposes, they are already in good shape when they get the
colors—not necessarily the spectra—right. Thus, one might even use (quasi-)monochromatic
sources. In practice, the spectra will often derive from the electronic structure of rare
earth elements, from various organic molecules and so forth and often be rather
rough. Nevertheless, the gamuts of current display units approximate that of the parts of
daylight.

The same does not apply to the sensors. Ideal sensors would implement the human
projection (Figure 4 left). The parts of daylight would be a good choice that is
approximately physically possible because the sensor sensitivities should be nonnegative
throughout most of the spectrum. Of course, such an ideal cannot be achieved. In
practice, one makes do with coarse approximations. This typically involves a mosaic of
absorption filters in front of the CCD or CMOS photosensitive chip. Fortunately, this

Figure 4. At left, the color matching functions for the parts of daylight RGB colors. At right two (mutually

symmetric) halves of the surface of the Schrödinger color solid. The skeleton cube is the parallelepided

spanned by the red, green, and blue parts of daylight. This is a straight calculation from the CIE tables. The

RGB cube snugly fits the color solid, in practice the overwhelming majority of object colors lies in the cube.

This is the theoretically optimal representation of RGB colors.
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tends to work out fine because almost all spectra of interest are not highly articulated. This is
a topic to be discussed in the next section.

This suggests that human physiology effectively implements hyperspectral imaging with
three bins per pixel, the bins being ð0, 483 nmÞ, ð483 nm, 565 nmÞ and ð565 nm,1Þ,
where—in practice—‘‘0’’ is really somewhat like 380 nm and ‘‘1’’ somewhat like 700 nm.
The effective visual range subtends hardly an octave.8 Of course, the precise locations of the
bin boundaries depend upon the daylight spectrum and the color matching functions. From a
biological perspective, the key role of the daylight spectrum in setting up the RGB basis
makes good ecological sense. The color matching functions are expected to be evolutionary
tuned to it, indeed, various suggestions have been proposed in the literature.

This spectral description in terms of three bins is a natural RGB system, to which the camera
and display industries have to comply—of course, approximately and by various heuristics. In
practice, one notices that displays have largely converged, whereas there is quite a bit of
variation among sensor sensitivities. That is why the ‘‘color rendering’’ of cameras tends to
be debated in websites reviewing the latest consumer cameras. However, to the first
approximation, all cameras are very similar, or they would not attract any customers at all.

This is essentially all the colorimetry needed in this article. Note that we do not refer to
qualities of visual awareness, nor to just noticeable differences and so forth.

Physical Background

The physics is rather more involved. In order to avoid unfortunate confusion, it is necessary to
distinguish between the spectrum of radiative power (henceforth called RP spectrum) and the
spectrum of the articulation of the RP spectrum (henceforth called SA spectrum). The SA
spectrum is the Fourier transform of the envelope of the RP spectrum. It can be quantified in
terms of cycles per octave of the RP spectrum (Koenderink, 2010a). Both the amplitude and
phase of the SA spectrum are relevant.

From the perspective of physics, the visual range subtends only a narrow window of the
electromagnetic radiant power spectrum (about 380–700 nm as mentioned above). This is
highly relevant from an ecological perspective, for the physical causes of spectral articulations
change categorically over the electromagnetic spectrum (Feynman, Leighton, & Sands, 1963–
1965). Molecular rotation bands occur in the infrared spectrum, while effects of electronic
transitions in atoms occur in the ultraviolet spectrum. Articulation in the visual range is
largely due to processes involving chemical binding energies. Since the set of physical
causes is the same over the visual range and the width of the range is only an octave, the
range will be statistically uniform. For spectral articulation, the important processes may be
taken as translationally (along the wavelength axis!) invariant. This implies that a spectral
analysis (the SA spectrum) makes sense. The articulation can have a variety of causes, there
appears to be no particular absolute dimension. Thus, the default assumption would be scale-
invariant (or self-similar) spectral statistics (Chapeau–Blondeau, Chauveau, Rousseau, &
Richard, 2009)

It is hard to put this to an empirical test. Estimates of the SA spectra for a small number of
rather narrowly focused databases appear to confirm the notion. However, one is stuck with
an annoying lack of data (Kohonen, Parkkinen, & Jaäskelaı̈nen, 2006). An analysis of the
available data appears to conform to expectations though. Some examples can be found in
Koenderink (2010a).

Perhaps surprisingly, these simple notions are already sufficient to draw some
important consequences. Given that the visual range is narrow and its structure translation
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invariant, one expects the covariance matrix of the RGB color channels to have a structure
roughly like

CRGB /

1 1� "1 1� "2

1� "1 1 1� "3

1� "2 1� "3 1

0
B@

1
CA ð2Þ

where the "1,2,3 are positive and (typically much) smaller than 1, whereas—because covariance
will be a monotonic function of spectral separation—one expects "1 � "3 and "2 to be
significantly larger than "1,3. This approximate form is expected because there is no reason
why the color channels should be distinguished, the covariance should only depend
monotonically upon spectral distance9 (Koenderink, 2010b). Indeed, letting the data speak
(section ‘‘Let the data speak’’) fully bears this out.

For simplicity, we consider the case "1 ¼ "3 ¼ ", "2 ¼ 2" as an illustration. To the lowest
relevant order in " (zero or one), the eigenvectors of CRGB are

e1 ¼
1ffiffiffi
3
p

1

1

1

0
B@

1
CA, e2 ¼

1ffiffiffi
2
p

1

0

�1

0
B@

1
CA, e3 ¼

1ffiffiffi
6
p

�1

2

�1

0
B@

1
CA ð3Þ

and the corresponding eigenvalues proportional to 1, 2
3 ", and

2
9 ". These eigenvectors are

similar to white–black, red–blue, and green–purple ‘‘opponent’’ channels as originally
proposed by Hering (1920) on phenomenological grounds.

The first eigenvalue strongly dominates. It carries Z ¼ 9=ð8"Þ times the power of the other
dimensions combined. This ratio Z is a useful characteristic number that is easy to derive
from image databases, and it will be used in the section on data mining (section ‘‘Let the data
speak’’). It tends to be significantly larger than one (about three to thirty in practice). Note
that the higher the Z, the closer the images are to being effectively monochrome. In almost all
ecologically relevant cases, the first eigenvalue so strongly dominates that it will typically
make sense to treat the second and third dimensions as essentially independent of the first
one. These two eigenvalues are seen to be in a fixed ratio (here three).

This rough analysis is interesting in view of the significant literature on principal
component analyses of collections of empirically determined spectral reflectance factors
(Fairman & Brill, 2004; Tzeng & Berns, 2005).10 Resulting principal components are
invariably similar to the eigenvectors derived above (further illustrated below), there is
essentially no valid reason to go through the trouble of measuring them and there is little
reason to expect differences for various collections of samples. Indeed, there are not.
The minor differences reported are probably due to the necessarily (very) limited size of
the samples, which is perhaps an additional reason to prefer a fixed, formal basis.

The reason for the prominence of the two (instead of three11) opponent-like eigenvectors is
that they implement the first- and second-order derivatives of the SA spectrum (see below).
Thus, these opponent channels represent the structure of the SA spectrum at a point. This also
explains why they are mutually independent, it derives from the independence of derivatives
of noise signals (such as the SA spectrum) of even and odd order (Longuet–Higgins, 1957).

This analysis, indeed, accounts for the major traits of the empirical data is illustrated by
the simulations presented in Appendix A.

The physics of ‘‘object colors’’. Object colors are due to radiant spectra that largely result from
the scattering of radiation—here to be taken as average daylight say—by solids. Generic
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examples are colored papers, fabrics, human skin, soil, and rocks, . . .There are various
processes that may play a role.

An important process is the radiative transport in layered turbid media. A well-known,
approximate model is the Kubelka–Munk theory of turbid layers (Kubelka &Munk, 1931).12

It is an approximate treatment of the radiative transport in layered turbid media that is very
successful in applications and widely used in the paint, paper, and so forth industry. We
introduce it here as a heuristic aid.

The key expression of the Kubelka–Munk analysis is

1� R2
1

2R1
¼ � ¼

K

S

� �
ð4Þ

where R1 is the reflectance of an infinitely thick layer, K is the specific absorption cross-
section, and S is the specific scattering cross-section. Solving for R1 yields the inverse
relation

R1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ð Þ2

q
� � ¼ F �ð Þ ð5Þ

The function Fð�Þ maps between the nonnegative reals ð0,1Þ and the unit interval (0, 1).
From a global perspective, the structure of the Kubelka–Munk result is that the

nonlinear part of the theory is packaged in the left side of Equation (4), whereas
the right side of this equation describes fundamental physical causes—responsible for the
spectral articulation—which are dominated by linear processes. We use these observations as
a heuristic.

In ecological optics, one really does not have explicit theories; rather, a possibly large
number of mutually different processes is likely to play some role. There is a need to capture
this in a general, overall way. Here, one may take a lead from the formal structure of the
Kubelka–Munk equation (though not necessarily the explicit Kubelka–Munk theory itself).
That is what will be attempted here.

The scattering and absorption cross-sections are nonnegative physical quantities for which
there exists no preferred absolute scale. Thus their noninformative Jeffreys’ prior distribution
(Jaynes, 1968; Jeffreys, 1939, 1946) is hyperbolic, that is uniform on the logarithmic scale.
Moreover, the quantities K and S are mutually uncorrelated. Thus, the parameter � (the ratio
K/S) also has the hyperbolic prior.

The physical parameters combine multiplicatively, rather than additively, so a logarithmic
representation is a natural one for the statistics.

A convenient way to capture this is to define a transformation � from the full real line R

(on which the ‘‘physical parameters’’ are uniformly distributed) to the unit interval I (the
observer intensities in the RGB channels, taking values between zero and one) and back. For
convenience, one may use the pair

�ðxÞ ¼
1

2
ð1þ tanhxÞ � : R � I ð6Þ

and

��1ð yÞ ¼ atanhð2y� 1Þ ��1 : I � R, ð7Þ

because these transformations have fast implementations on most computing platforms. This
is important since they may have to be applied a hundred million times in some typical
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example. From a general point of view about any sigmoid shaped function, such as
ð1þ erfðxÞÞ=2 and so forth, would serve as well.

Note that the cases ��1ð0Þ ¼ �1 and ��1ð1Þ ¼ þ1 are always to be avoided for
technical reasons since the boundaries of the interval tend to accumulate physically
meaningless observations due to under or overexposure.

In practice, one transforms observations on the unit interval to the ‘‘physical domain’’
(the full real line), does some calculations, and transforms back. It is an instance of the
so-called homomorphic filtering (Oppenheim, Schafer, & Stockham, 1968), where the
observations and calculations take place in distinct, appropriate domains. In our
case, we collect data in the observation domain and study its statistics in the physical
domain; in other applications, one generates artificial data in the physical domain
and studies it in the observation domain. Examples follow below. It is a way to avoid
nonlinear unpleasantness cheaply.

The physics of the imaging process. In the case of imaging, one may use a formally very similar
phenomenological model (Barrett & Myers, 2003).13 Here, the radiances in the scene are
mapped on the unit interval for each of the color channels. When log radiance is mapped
with the function �, the parameters are usually termed ‘‘exposure’’ (the location) and
‘‘contrast’’ (the width). Such a mapping is usually followed with a ‘‘gamma
transformation’’ (Poynton, 2003), for example, r� ðr=r0Þ

� with �4 0 and not to different
from 1.

Although perhaps surprising at first blush, it makes intuitive sense that RGB photographs
should retain the signature of the articulation of the radiative power spectral envelope, at
least in some coarse fashion. If it was not the case, the images would not be acceptable to
generic viewers. A formal calibration is not required, but typically one should be able to judge
the distinction between red and green image details from the relative magnitudes of the RGB
channels.

Of course, there are a variety of other factors that might put the value of potential ‘‘data’’
in jeopardy. The transformations considered above also handle the spatial nonuniformity,
such as the focal plane illumination fall-off of generic cameras. The major remaining source
of worry is probably transverse chromatic aberration. Fortunately, it is not too prominent (at
least after correction by the in-camera firmware) in most contemporary camera models. It is
unlikely to have an important effect on the statistics anyway, since it occurs at linear features,
whereas the bulk statistics derives from areas.

A Phenomenological Ansatz. In the present application to the colors of the sublunar, the data
are the color channels of images obtained by some familiar process (CCD or CMOS
camera using RGB Bayer pattern say) and distorted for visual display (the Internet say).
There are no radiometric calibrations. It is a very roundabout and most likely distorting way
to observe physical parameters in the scene. Only by considering relations between relations
one can expect to zoom in to relevant structure, absolute values cannot be expected to
be informative.

Suppose the ‘‘true’’ radiometric signals in some specific case were {r, g, b}. Let the display
distortion apply different magnifications fAr,Ag,Abg (say) and different gamma corrections
f�r, �g, �bg (say) to the color channels, so one observes ðArrÞ

�r instead of r, and so forth. Does
this have a major impact on the observed covariance structure? The question is most
conveniently answered through a simulation. With �’s in the range ð0:5, 1:5Þ and
magnifications in the range ð0:5, 1:5Þ, which is a wide range for typical ‘‘corrections,’’ the
median correlation became 0.991, with interquartile range ð0:973, 0:998Þ. Apparently,
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the covariance structure of the color channels easily survives maltreatments as one expects
them for images retrieved from the Internet.

More generally, monotonic transformations due to a variety of physical factors are
unlikely to have much effect. This is perhaps intuitively reasonable given the fact that at
least rank order correlations are not sensitive to such factors at all.

The physics may be statistically modeled by a normal distribution on the logarithmic scale,
characterized by location and width, for some physical parameter % (say) in analogy to the �
parameter of the Kubelka–Munk theory. A highly schematic model of the generalized physics
might be a sigmoid function �, mapping the log % domain on the unit interval. This leads to
reflectances whose distribution depends on two parameters. Depending on the values of the
parameters, one obtains histograms that are unimodal and skewed to either zero or one, or
histograms that are bimodal with peaks at zero and one (see Figure 5). This is indeed very
similar to what is encountered in empirical data. Such a schematic model of the generic
physics captures the essential structure. (Kubelka–Munk theory being one illustrative
instance.) The two parameters have to be estimated from empirical data, for this is a
purely phenomenological model.

Let the Data Speak

Even a medium-sized image14 contains many pixels, for instance a 512� 512 image contains
more than a quarter million pixels (262, 144 pixels). Thus, it is often possible to obtain useful
statistics from a single image. On the other hand, the typical RGB image uses byte encoding,
thus resolves 2563, that is almost 17 million bins in the RGB cube. The 512� 512 image can

Figure 5. Example of histograms in the observation domain due to normal distributions of various means

and variances in the physical domain. Note that these are far from normal in the observation domain.
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at most fill 1.6% of the bins with one sample each. In order to have an average bin content of
a hundred one needs more than 6,000 of such images.

Typical images today range from about 32� 32 (‘‘icon’’, 1 kp) to 4096� 4097 (consumer
digital camera, 16Mp). For a typical field of view of 50�, a pixel averages over 1–2�, down to
1–0.50. In terms of linear size, one needs to multiply with the distance, which typically ranges
from arm’s length (immediate environment) to many miles (landscapes). Thus, the relevant
physics might be mutually very diverse for the pixels.

As an example of single image statistics, we proceed with the image of pebbles (Figure 1).
It is a medium-sized image, it measures 2736� 1824 pixels (thus about 5 Mp). The image is
JPEG compressed, thus contains numerous artifacts on the local spatial scale. The overall
mean RGB pixel value is {50, 46, 45},15 thus somewhat skewed towards the red, but
approximately a median gray, as expected.16 We already reported the covariance of the
raw {r, g, b} values.

As a first operation, the RGB channels are transformed to %��, or ‘‘physical space’’ (using
the function ��1). The normalized covariance matrix becomes

C%�� ¼

92 90 89

90 95 96

89 96 100

0
B@

1
CA ð8Þ

It has a very similar structure as found for the raw values (Equation (1)). What has
changed are the distributions. The raw {r, g, b} values have histograms that may vary a
lot, whereas the transformed values are close to being normally distributed. The
transformation

�

�

�

0
B@

1
CA ¼ T

%

�

�

0
B@

1
CA, where T ¼

1

12

4 4 4

6 0 �6

�3 6 �3

0
B@

1
CA ð9Þ

finally yields the parameters f���g that will be used in the analysis of the data. These
parameters are nearly decorrelated and the first one, �, strongly dominates. Indeed, one
finds (here normalized on a maximum coefficient of 1,000)

C��� ¼

1000 �25 6

�25 39 �4

6 �4 4

0
B@

1
CA ð10Þ

The various covariance matrices thus have pretty much the form expected from first
principles. Thus, already from a single image, the major aspects of the sublunar color
gamut are apparent. Note that the scene contains mainly diffusely scattering solids, no
sources or metallic reflectors and so forth.

For this image Z ¼ 24:6, as expected, much higher than unity. Since the � channel
dominates so strongly over the �� ones, it makes sense to split the two. One uses the
fraction of the variance captured by the � channel as one observation and the
(normalized) covariance matrix for the �� plane as another. The � channel accounts for
almost all of the remaining variance, which is entirely typical. Moreover, one has

C�� ¼
100 �10

�10 9

� �
.
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An important gain of this transformation is that the %�� histograms in the ‘‘physical
domain’’ are much closer to normal than in the bare color channel domain. The �
histogram is close to normal too, whereas the � and � histograms look somewhat more
complicated. Indeed, typically most of the idiosyncrasy of an image tends to be found in these
components.

Of course, this is just a very small sample. Because a small sample, it is perhaps in danger
of being atypical. For larger databases, the idiosyncratic nature of singular images tends to be
drowned in the crowd.

More extensive statistics is available from a variety of databases in the public domain.
The landscapes database from Torralba and Oliva at MIT (Torralba & Oliva, 2002) is an
example (Figure 6). It is an interesting case because it also allows a distinction between
what is intended as ‘‘sublunar’’ here and what might be termed ‘‘aerial,’’ or
‘‘atmospheric.’’ The database contains 410 ‘‘open country’’ images in total. All are
256� 256 pixels, 8 bit per RGB channel. The majority has a strip of sky on top and a strip
of foreground at bottom (see Figure 7 left). In the analysis, the ‘‘top’’ was defined as the
upper 64 rows of the image pixel array and the ‘‘bottom’’ as the lower 64 rows of the image
pixel array. Although obviously not exact, this certainly serves to split the data in a group
that is predominantly sky, or atmospheric and a group that is predominantly ‘‘sublunar’’ in
the intended sense of this article. This reduces the volume of the top and bottom sets to about
6.7 Mp samples each.

Indeed, simply averaging over all images in the database yields a ‘‘generic landscape’’
image that is brownish below and bluish on top. Many of the images include blue sky
(Strutt, 1899). It is the kind of priming, which a landscape painter might use in
preparation of a painting. The human visual system is also tuned to this type of color
banding (Koenderink, van Doorn, Albertazzi, & Wagemans, 2015).

Of course, the averaging removes all local variety. The nature and extent of this variety is
retained in sampled images (see Figure 7 right). Each instance of such a sampled image is
different, because pixel values are randomly sampled over the whole database, the only
invariant being location in the pixel plane.

Figure 6. A mosaic composed of a subsample of the ‘‘open landscape’’ set of the MIT database.
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The effect of the air–light (Koschmieder, 1924) is visible in the average image, both in the
ground plane and in the sky. The colors of the distant ground plane and the low sky become
very similar at the horizon (Middleton, 1952). Apparently, such facts of ecological physics are
quite robust in the sense that they survive noncalibration and likely maltreatment of image
processing. Large data speak so loudly that these problems are overcome in the statistics.

The average RGB levels of the top part is {50, 63, 73}, that of the bottom part is {39, 40,
28}. Thus, the bottom part indeed looks brownish on the average, the top part bluish. This is
also evident from the RGB histograms (Figure 8). Note that the histograms are far from
normal, as could hardly be expected otherwise.

A transformation to physical space makes the histograms, although somewhat skew,
appear much more normal. Of course, the precise form depends somewhat on the
choice of the sigmoid transfer function. The f�,�,�g values are nearly normally
distributed (Figure 8).

The differences between the sky and earth parts of the open landscape images are well
captured by the means and standard deviations of the f�,�,�g parameters. One has
� ¼ �0:350� 0:500, � ¼ 0:153� 0:239, � ¼ 0:009� 0:068 for the earthy part of the
images and � ¼ �0:273� 0:595, � ¼ �0:311� 0:320, � ¼ 0:078� 0:081 for the aerial part.

Such parcellated structure as in the open country database is quite typical for focused
databases. As an example, the global mean of the Leeds butterfly database (762 images after
removal of the images of pinned insects from museum collections) clearly reveals a ‘‘generic
butterfly’’ (Figure 9). Such material is evidently unsuited to the present purpose. The same
goes for images that depict various mutually very different items. An example is the parrots
image (Figure 10). Not surprisingly, the ��� histograms are far from normal here. Thus, the
method of chromatic data mining as discussed here only makes sense for reasonably
homogeneous images or databases.

Here, we show some examples aimed at various types of terrain, some based on fairly
large, representative images, other on databases focused on particular topics. For more
information on the databases, see Appendix B.

An image like the desert soil image (Figure 11) is obviously quite homogeneous. It is a
fairly large image (3264� 2448 pixels), yielding a data volume of 8 Mp. The structure is

Figure 7. Local mean (left) and local samples (right) for the open landscape database.
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entirely standard, with Z ¼ 8:3. The ��� histograms are close to normal. Here, the analysis
applies perfectly. The same applies to most images of landscapes selected for uniformity.

Databases tend to be less overall uniform, though this need not be much of a problem if
the fraction of ‘‘outliers’’ is small. As an example, consider the forest database (Figures 12
and 13). Here, two distinct types of nonuniformity occur.

First, there are outliers such as autumn foliage. Since these are true outliers, they are not
problematic due to sheer numbers.

Figure 8. Histograms for the open landscape database. Top row for the observation domain and bottom

row for the physical domain (black: �, blue: �, and red: �). The left column relates to the lower (earth) part

and the right column to the upper (aerial) part of the images.

Figure 9. The Leeds butterflies database. At left some samples, at right the overall mean.
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Figure 12. Samples from the forest data base. It is very inhomogeneous.

Figure 11. Desert soil image with its histograms in the physical domain (colors as in Figure 8).

Figure 10. Parrots image with its histograms in the physical domain (colors as in Figure 8).
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Second, there is a systematic trend for blue sky intruding on the top part. Here, large
numbers do not help as can be seen from the global average. As a result the ��� histograms
appear as perturbed normal distributions. The only remedy is to cut off the top part of all
images.

There are evidently detectable differences in the available databases, although the overall
structure is quite invariant. This can be judged in the larger databases by sampling random
subsets. One finds that the statistical estimates for samples of say a hundred images (that is
still good for millions of pixels) are very stable and well determined. Since any sample from
one of the databases yields pretty much the same results, the databases have a unique
signature, despite their global similarity. This suggests that the description might have
some merit as a descriptor of the ‘‘gist’’ (Oliva & Torralba, 2006)—in colorimetric
respects—of a database.

As to be expected, the images one encounters are almost invariably normalized so as to be
overall medium gray with maximum contrast. The overall RGB means scatter all about the
achromatic point in a chromaticity diagram (Figure 14). A measure of the monochrome
contrast is the standard deviation in �. Empirically it varies over the range 0.65–1.38
(quartiles ½0:99, 1:07, 1:10�). This range is very limited, no doubt due to automatic, in-
camera range selections, thus essentially meaningless for ecological research.

Meaningful measures are necessarily modulo �. For the examples analyzed in this article,
the characteristic number Z ranged from 1.8 to 23, quartiles f2:97, 4:43, 8:00g. Thus, all were
much larger than the value expected for mutually independent, normally distributed with
equal variance %,�,� channels. The number Z and the average value of � are mutually
uncorrelated, thus Z is a meaningful number.

As can be seen in Figure 15, the opponent channel frame indeed fits almost universally. In
this figure, the eigendirections of the ��� covariance matrix have been plotted in a
stereographic projection from the white point (thus f1, 1, 1g=

ffiffiffi
3
p

). The first eigendirection is
closely centered on the origin, much as expected. The remaining two eigendirections are
indeed strongly clustered and are close to the expected �f�1, 0, 1g=

ffiffiffi
2
p

(red–blue opponent)
and �f�1, 2, � 1g=

ffiffiffi
6
p

(green–purple opponent). Thus, the data speak strongly in favor of

Figure 13. Local overall mean and local samples from the forest database.
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Hering’s (1920) opponent system. These directions, thus, are strongly implicated by billions
of spectral samples, there is no phenomenology of chromatic qualia involved.

For the data in Figures 14 and 15 (see Appendix B), we used a set of 5 large single images
and 11 databases, some very large. The collection is very heterogeneous, for instance,

Figure 15. Opponent color frame. These are stereographic projections of the sphere of eigendirections

from the point f1, 1, 1g=
ffiffiffi
3
p

. The circle is the locus of orthogonal directions to f1, 1, 1g=
ffiffiffi
3
p

. There is an

obvious clustering along the ‘‘opponent directions.’’ The ellipses show the one and two standard deviations

boundaries. The indices refer to the list of data sources (see Appendix B). In total, this figure is based on

5� 109 RGB samples.

Figure 14. The overall RGB mean. The horizontal and vertical guidelines denote the one-third values, thus

their intersection marks the point R¼G¼ B. The ellipses show the one and two standard deviations

boundaries. The indices refer to the list of data sources (see Appendix B). In total, this figure is based on

5� 109 RGB samples.
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the landscapes were not segmented into foreground and sky, the flowers and butterfly
databases were used as is and so forth. It is interesting to see how the structure of all
these sets is rather similar although very different from the apparently obvious default
assumption (mutually independent, uniformly distributed RGB channels).

For large samples, the pixel RGB data are largely captured by four parameters, describing
the level variability of the spectral articulation as described by � and �. For smaller samples,
one encounters deviations from normality in the distributions of � and �, sometimes finding
bimodality, more typically heavy tails instead of normality. The � and � distributions
capture the spectral articulation, which will naturally vary from sample to sample when
the sample size is small.

The standard deviation in � varied over the range 0.21–0.76 (quartiles ½0:35, 0:47, 0:55�).
It is a measure of the cool–warm contrast (Benson, 2000), the variation of spectral slope.

The standard deviation in � varied over the range 0.05–0.29 (quartiles ½0:10, 0:13, 0:19�).
It is a measure of the moist–dry contrast (Benson, 2000), the variation of spectral curvature.

There is a high correlation (R2 ¼ 0:72) between the standard deviation of � and �
(Figure 16). The best fit is nearly linear (power 1:016 . . . ), with a slope is � ¼ 0:114 . . . ,
which apparently is a characteristic universal constant for the sublunar realm.

Although perhaps understood in retrospect (such a dependence is also predicted
by Equation (3)), this is evidently a remarkable finding. Most of the variance is in the
red–blue, rather than the green–purple. This is due to the autocorrelation length of
the articulation spectrum. This general structure is easily reproduced through very
simple statistical models that capture the major facts of the ecological optics (see
Appendix A).

Figure 16. Correlation plot of the natural logarithms of the variances of the parameters � and � for the

same databases as mined in the previous two figure. The regression line has slope close to unity, indicating a

linear dependence. The indices refer to the list of data sources (see Appendix B). In total, this figure is based

on 5� 109 RGB samples.
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Algorithmic Generation of Sublunar Color Gamuts

An obvious method to obtain random instances of a color gamut defined by some database is
to simply randomly sample from the database. No generic algorithm needed! However, this
involves sampling randomly from hundreds, perhaps thousands of images and randomly
sampling pixels from these.

This may well be a viable method if the data source is a single, large image. However, in
most cases, an algorithmic synthesis is the only practical way to proceed. It may well be the
preferred way too, since it enables the possibility to automatically skip the unavoidable effects
of saturation and subthreshold samples.17

Since the structure of the sublunar color gamut is well determined and quite simple, it is
easy to construct a random generator that will yield as many samples as desired for most
purposes. All that is needed is to generate artificial ��� triples. Free parameters—within
reasonable bounds—are the variances and the nature of the histogram. For a global random
gamut generator, one may assume normal distributions of all channels in the physical
domain.

It is perhaps most natural to generate the values in the physical domain. Then there are six
free parameters, namely, the location and widths of the physical values of the three channels.
Thus, the algorithm becomes two tiered. In the first step, one generates random deviates

� ¼ N ��, ��ð Þ, 	 ¼ N �#, �#ð Þ, � ¼ N ��, ��
� �

ð11Þ

where N �, �ð Þ is a random normal deviate of mean � and standard deviation �. At the next
step, one calculates

%

�

�

0
B@

1
CA ¼ T�1

�

	

�

0
B@

1
CA where T�1 ¼

1

2

3 1 �2

0 2 4

3 �3 �2

0
B@

1
CA ð12Þ

and, finally,

r ¼ � %ð Þ, g ¼ � �ð Þ, b ¼ � �ð Þ ð13Þ

This may yield apparently very different RGB histograms. Starting values for the
parameters may be obtained from the analyses of examples.

In most cases, this will almost perfectly simulate samples from the actual image or
database (Figure 17 left for the pebbles image). Exceptions are cases of very
inhomogeneous data sources (Figure 17 right for the parrots image). However, even in
these cases, the results may well be acceptable for many purposes.

Note that the functions �, ��1 model mutually extremely diverse types of physics, ranging
from something like Kubelka–Munk theory of radiative propagation in layered turbid media
to photoelectronic imaging. The parameter that sets the overall level is ��, whereas the
variety of different levels in the scene is captured by ��. The parameters �#,��, �#, ��
model the spectral articulation. Typically �# dominates the articulation, it is the slope of
the SA spectrum. It controls the red–blue spread. The parameter �� tends to be of least
importance. It sets the curvature of the SA spectrum, controlling the green–purple spread.

Automatic digital cameras are designed to set �� to a standard level (e.g., the gray card
level) and to set �# and �� to zero (the automatic ‘‘white balance’’). There might even be an
attempt to control �� (the ‘‘contrast’’), although this is less common.
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Thus, the most informative data is in the three parameters f��, �#, ��g. This triple is useful
as a global spectral signature for the gist of the database.

In applications, one would estimate the parameters from a fiducial set of images, like done
in the previous section. It is even a reasonable proposition to estimate parameters from a
single, large image. A simple application might be to find a generator for typical terrain
colors for use in military camouflage. All that is needed is to provide representative
images. In Figure 18, three instances are shown. All conform closely to the assumptions
(prairie image Z ¼ 2:8, Arizona desert Z ¼ 9:6, black moor Z ¼ 11:2). Note how the
camouflage colors indeed neatly represent the terrain colors.

In cases, an ‘‘alien’’ effect is aimed at (like in SF movies), parameters can be assigned more
freely, or indeed almost arbitrarily. A simple example is to set f��,�#,��g to zero and

f��, �#, ��g all to the same value, chosen such that the RGB histograms become

approximately flat. Then the RGB covariance matrix will be roughly proportional to the
unit matrix, very much unlike the typical form for the sublunar. An array of sampled
colors looks ‘‘garish’’ and unlike anything you might expect to find in nature.
An example is shown in Figure 19 at right. The RGB covariance matrix for this sample is

CRGB ¼

98 6 16
6 100 3
16 3 96

0
@

1
A. In the same figure (Figure 19) at left is a sample with parameters

that might belong to the sublunar. In this case, the RGB covariance matrix is

CRGB ¼

98 95 91
95 97 96
91 96 100

0
@

1
A. The alien sample differs from the sublunar sample in various

ways, but these are perhaps most striking:

—almost all colors are far away from the achromatic axes;
—there is an overdose of saturated greens and purples.

Figure 17. The large square is filled with simulated color samples, whereas the central square inset is filled

with actual database samples. The inset has been outlined at right, because in this case (the pebbles image) the

simulated gamut cannot be discriminated from the true one. The case of the parrots image (left) is expected

to be about ‘‘worst case’’ and indeed, the inset square can be discriminated even without the outline.
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Figure 18. Photographs of the prairie, the Arizona desert and the black moor with insets filled with

artificially generated samples based on the statistical analysis of the images.
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Thus, the algorithm offers a very wide range of readily parameterized color gamuts, which
renders it useful for vision research.

The algorithm is sufficiently simple that an interactive developing environment is not hard
to implement, allowing a designer to arrive at desirable ��� values through an intuitive
interface.

Discussion

We discuss three major topics, the ecological optics of the sublunar realm, the consequences
of the generic structure of the SA spectrum for the understanding of the structure of the
human visual sense from an evolutionary perspective, and possible applications in
computer graphics and image processing.

Ecological Optics of the Sublunar

Sublunar color gamuts have a simple structure that is invariant over mutually very different
domains. This is the case because they all derive from a few generic properties of ecological
physics. The main facts of relevance are the narrowness of the visual window and the extent
of the SA spectrum autocorrelation length.

Taking account of the mapping of essentially linear physical interaction domains to the
observation domain greatly simplifies the descriptions. The six parameters
f��,�#,��, ��, �#, ��g typically suffice to characterize the empirical observations of diverse
domains. Estimating these parameters from a set of typical images yields useful generic
descriptions of these domains. It is likely to be more productive and useful than the
conventional methods of acquiring a necessarily rather limited set of reflectance spectra
and characterizing these via principal components analysis. The latter is especially
problematic in the observation domain because linear combinations of the principal
components often assume nonphysical, negative values.

Figure 19. Two random gamuts, obtained with different parameter settings. At left a gamut that might well

belong to the sublunar realm and at right a clearly ‘‘alien’’ gamut.
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The constant � ¼ 0:114 . . . appears to be a universal constant for the sublunar domain. It
specifies how fast the autocorrelation of the articulation spectrum falls off with the width of
the visual band. Most important deviations from this global pattern—seen from a
phenomenological perspective—are the ‘‘sky colors’’ and the colors due to atmospheric
perspective. Changes in illumination—be it changes in mere radiative power or (slight)
changes in spectral distribution (say from sunlight to skylight)—will hardly imprint
themselves on the covariances used in this study.

They will merely make the environment appear a little lighter or darker and will most
likely contribute a trend to normality in all channels. Finally, outliers on smallish spatial
scales are generally due to flowers, butterflies, some minerals, and on a slightly broader scale
human artifacts like paints and so forth. Such outliers are unlikely to be of much
consequence, due to their relative scarcity.

Depending on one’s aims, it may be of interest to refine the statistics. Obvious targets are
the deviations from normality of the ��� distributions. Since the precise form of the
sigmoid function is arbitrary, one may force the � distribution to normal form. Then the
deviations from normality of the � and � channels become meaningful parameters. They are
likely to be domain specific.

Our results are in accordance with Attewell and Baddeley (2007) who measured full
spectral reflectance functions in the field. However, these authors remain in the reflectance
domain and do not consider spectral correlations.

Full (high-resolution) spectral imaging (Ruderman, Cronin, & Chiao, 1998) also yields
results close to these found here. Their estimation of the precise opponent directions is similar
to ours. Apparently true hyperspectral imaging (a major chore) does not yield much beyond
mere RGB crowd sourcing. This is only to be expected.

Articulations of the SA Spectrum and the Human Visual Sense

As we have shown, the opponent directions as phenomenologically identified by Hering
(1920), turn out to derive from ecological physics. Their dominant appearance in the
ecological optics is due to the nature of the spectral articulations. The structure of the SA

spectrum in a three-bin representation is characterized by the SA spectral slope and the SA
spectral curvature, two properties that are expected to be mutually uncorrelated, whereas the
first order (slope) is expected to dominate the second order (curvature). This gives rise to the
dominant eigendirections found in essentially any image of the sublunar realm.

Thus, Hering’s opponent colors, identified from a phenomenological analysis, may well
have resulted from an evolutional drive toward the informationally desirable decorrelation of
sensor channels.

In view of the empirical value of �, it appears a good design objective to limit the
biological spectral resolution to a mere two or three degrees of freedom, as indeed resulted
from evolutionary pressure. Because the correlation length of the SA spectrum is of the order
of a spectral bin width, there is hardly a pressure for tetrachromacy from an ecological
perspective.

Thus, both trichromacy and opponency appear as adaptations to the ecological optics of
the sublunar realm.

That opponent channels serve to effectively decorrelate the spectrally related optics nerve
activity was already suggested by Buchsbaum and Gottschalk (1983). However, these authors
effectively find the principal components of the color matching functions, not the spectral
covariance. Thus, they implicitly treat the spectrum as white noise and the correlation
structure as due to the mutual overlap of the color matching functions. This is
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categorically different from our perspective. However, from a biological perspective, the color
matching functions are evolution’s answer to the spectral correlation, so the similarity of
results is perhaps not a miracle, though certainly far from trivial.

Technology arrives at similar insights by a process of successive improvements driven
by practical constraints. That the RGB channels tend to be highly correlated was already
used in the 1953 (second) NTSC standard for analog TV. The luminance–
chrominance encoding was already invented in 1938 by Georges Valensi.18 The
FCC version of the NTSC standard uses an intensity signal Y ¼ 0:30Rþ 0:59Gþ 0:11B
(which may serve to drive monochrome receivers) and chrominance signals
I ¼ 0:599R� 0:2773G� 0:3217B and Q ¼ 0:213R� 0:527Gþ 0:3121B, thus the I signal
is a red–cyan and the Q signal is a magenta–green opponent signal. The Y signal is
allotted a bandwidth of 4Mhz, the I-signal 1.3 Mhz, and the Q signal 0.4 Mhz, this
evidently reflects the typical covariances found in RGB images. The YIQ encoding is often
construed as fitting the human visual system, in reality it fits the covariance of the spectra of
the sublunar realm.

Applications in Computer Graphics and Image Processing

Random gamut generators are likely to find applications in computer graphics, where it is
often desirable (for instance in synthesizing various landscapes) to generate large numbers of
instances of colors belonging to a restricted setting in an intuitively parameterizable way. Of
course, such reflectance factors can be combined with various spectral illuminants to
transform the gamut, say from a noon to a later afternoon setting.

Such color generators may also find application in interior design, textiles design, and so
forth. They yield color gamuts that can be made to perfectly fit any well-defined environment
in a simple, principled manner.

Although this exercise in capturing the ‘‘color gamuts of the sublunar’’ is possibly useful,
there remain—of course—numerous loose ends. Some are due to the extreme generalizations
that had to be made. As a consequence, numerous important effects of ecological optics were
fully ignored. Perhaps most blatantly, no account was taken of the effects of geometry,
obviously of major importance to the irradiation of the scattering surfaces and thus to the
radiance scattered to the camera or eye. Such issues become relevant in applications of
machine vision and image processing. Examples include image segmentation (Comaniciu &
Meer, 1997) and recognition on the basis of color gamuts (Gevers & Smeulders, 1999). Here,
more intricate statistical analysis, as mentioned above, may well turn out to be useful.

Conclusions

So what are the gamuts of the sublunar like? In view of the correlations shown in Figure 16
and perhaps surprisingly, a rather specific answer is possible. First of all, they are quite gray,
touches of hues being special—thus biologically important. The variations are dominated by
monochrome contrast. The major chromatic variations are in the range from orange to
greenish–blue, or—as painters have it—‘‘warm’’ to ‘‘cool.’’ Minor variations are in the
range green to dark purple, what painters sometimes denote as ‘‘moist’’ to ‘‘dry’’ (Benson,
2000).

The big picture is evidently dominantly GRAY contrast with some red–blue and even fewer
green–purple variations. This is largely due to basic physics (especially clear in Figure 21 of
Appendix B) and constraints of human physiology which—by way of evolution—most likely
have been shaped by the ecological structure itself.
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Notes

1. The R, G, and B values are taken to be confined to the range ½0, 1�.

2. Note that the colorimetric literature would use ‘‘magenta’’ instead of ‘‘purple’’ and ‘‘cyan’’ instead

of ‘‘turquoise.’’ We prefer the more common terms used in the visual arts and so forth.

3. The notion of ‘‘Umwelt’’ derived from biology, or, more precisely ethology. One means that part of

the sublunar realm that is causally involved in stimulating an animal’s senses and that part of an

animal’s effectors that may change the environment. Different animals tend to have different

Umwelts, even though they coexist in a single physical environment.

4. Two spectra that cannot be visually discriminated differ by an element of the null-space. There are

infinitely many of such ‘‘metameric blacks.’’

5. Linear projections conserve convexity and central symmetry.

6. The normalized covariance matrix is

100 �22 �24

�22 86 �26

�24 �26 89

0
B@

1
CA .

7. The CIE xy-chromaticity coordinates are f0:6084, 0:3916g for the red, f0:2219, 0:6632g for the green,
and f0:1442, 0:0574g for the blue, whereas the Y-coordinates are in the ratio 38:55:7. The

chromaticity of the white point is f0:3138, 0:3310g.
8. Of course, one could easily make it a ‘‘true octave’’ by taking the tails of the color matching functions

into account. We would say that ‘‘somewhat less than an octave’’ is the most useful statement.
9. This is a generic example, of course. In practice, the diagonal elements often differ somewhat and so

forth. The main conclusions from the example remain unchanged when the matrix is somewhat

perturbed. In contradistinction, the ‘‘default’’ case mentioned above gives rise to a roughly diagonal

matrix.
10. The reflectance factor defined as the ratio between a radiometric reading for sample surface and the

reading for a white card held in the same spatial attitude and location.
11. Purely phenomenologically one might expect red–cyan, green–magenta and blue–yellow as

opponent colors, for these are the only complementary cardinal color pairs and there is no a

priori reason to choose between them. Picking any two from these three requires a reason, which

appears to be lacking.
12. Kubelka–Munk theory is not essentially involved with spectral descriptions. Kubelka-Munk theory

is important for other reasons that are explained below.
13. Imaging is not essentially involved with spectral descriptions. Imaging is important for other

reasons that are explained below.
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14. In Google Image ‘‘Search Tools’’ one has ‘‘Any size,’’ ‘‘Large’’ and ‘‘Medium.’’ Medium size is

around 512 � 512–pixels.
15. In this section, all channel values are given as rounded values between 0 and 100. This is preferable

from typographic perspectives and reads easily. From a coding perspective, the range 00–99 (all

two-digit numbers, in contradistinction to 0–100, which has one, two- and three-digit numbers) is
perhaps most convenient.

16. Often done automatically by the in-camera firmware, otherwise usually by some image correction
process, often automatic, sometimes manually (the ‘‘levels’’ or ‘‘curves’’ methods of programs like

Adobe’s Photoshop). One expects r : g : b � 1 : 1 : 1 on the average.
17. In most images, one finds an accumulation of debris at the limits. This is due to radiance levels

exceeding the dynamic range of the sensor. In the case of the (typical) byte (0–255) representation it

is always a wise decision to limit the range to 1–254, perhaps even better to 5–250. This has the
additional advantage that the inverse sigmoid transformation will never meet an argument it cannot
handle.

18. FR patent 841335, Valensi, Georges, ‘‘Procédé de télévision en couleurs’’, published 1939–05–17,
issued 1939–02–06.
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Appendix A

Simulation of Sublunar Spectra

Using the basic physical insights that the spectral envelope is statistically translation invariant
along the spectral axis and that its autocorrelation function is peaked, falling symmetrically
and monotonically off toward both sides, one readily simulates the basic structure of the
sublunar colors.

Since we have no data on the shape of the autocorrelation function, we simply use a
Laplace distribution (note that

Rþ1
�1

Lðx, 
Þdx ¼ 1)

Lðx, 
Þ ¼
e�
jxj



2

ð14Þ

with Fourier transform

Sð f Þ ¼
1ffiffiffiffiffiffi
2�
p

1

1þ f 2
2
ð15Þ

Other peaked functions, like the Gaussian, yield very similar results. It seems possible that
more homogeneous data might render it reasonable to attempt to differentiate further, we do
not attempt that here.

Random spectra are computed by convolving this kernel with white noise, generated as a
list of normal deviates. This yields signals with a SA power spectrum that falls off with the
square of the SA frequency. (Typically the convolution is computed via FFT, which assumes
periodic boundary conditions. Thus, it is important to compute spectra over a much longer
interval than will be used in an observation. Failing to do so introduces a spurious correlation
between the outermost bins.)

The resulting spectra are generated in the physical domain. Before transforming to the
observation domain, one may arbitrarily scale and shift the functions so as to obtain a fairly

Figure 20. At left, 10 random spectra from the model. The parameter 
 taken equal to the bin width. The

SA power spectrum varies with the inverse square of the frequency. At right, a histogram based on a thousand

of such spectra, pooled across wavelengths.
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typical histogram of the values. The exact choice is of hardly any relevance to the eventual
result. However, it increases the illusion of ‘‘reality’’ of the simulation.

The resulting spectral samples could hardly be distinguished from a set of a few thousand
observations from the sublunar realm (Figure 20). This is perhaps due to an overdose of
detail. Translation invariance and the overall nature of the autocorrelation function, or,
equivalently, the mean spectral articulation power spectrum, are the determining factors.

The covariance matrices of this type of simulation can be readily appreciated from about a
thousand samples or so. A million samples are easily computed in reasonable time, but are
really overkill. In this case

C��� ¼

100 1 7

1 28 1

7 1 7

0
B@

1
CA ð16Þ

thus the ratio of the opponent variances is 4. The result depends mainly on the choice of the
correlation length 
 (here taken equal to the bin width), relative to the bin width.

It is of some interest to consider the distribution of RGB values in the RGB cube (Figure 21
left). As expected, there is a much wider range in the orange–greenish blue than in the green–
purple. The distribution over the white–black axis is mainly due to the setting of offset and
width in the physical domain, they hardly affect the resulting opponent covariance matrix.

Setting the shift to zero and the scaling very high, the generated spectra become
approximately random telegraph waves. This is the limit we have considered in an earlier,
mainly theoretical, investigation (Koenderink, 2010b). The RGB colors largely concentrate
on the edge color series black–red–yellow–white and white–turqoise–blue–black. The green–
purple dimension is hardly populated (see Figure 21 right). The covariance matrix becomes

Figure 21. Left: A thousand random RGB samples from the model. The parameter 
 taken equal to the bin

width. Right: A thousand random RGB samples from the model in the case of zero shift and large scaling. The

spectra are approximately degenerated to random telegraph waves. Note that the random RGB colors

accumulate on six of the edges of the cube, the other edges remaining unpopulated. These colors are

Goethe’s edge colors (G. Kantenfarben).
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C��� ¼

100 0 8
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8 0 11

0
@

1
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thus the ratio of the opponent variances is 3. The material discussed here is available on the
website of the publisher as Mathematica Notebooks, that can be read with the free
Mathematica Reader, or run in the Mathematica application. (For Mathematica see
https://www.wolfram.com/mathematica/).

Appendix B

The Data Sources

The data sources range from single images to databases containing over 5,000 images:
Overall, about 10, 000 images were used in a variety of sizes. The square sizes (the ‘‘square

size’’ is defined as the rounded square root of the total number of pixels in the image; it is a
convenient measure, since aspect ratios vary all over the place) range from 256 to almost
3,000 (quartiles {256, 410, 1483}). This yielded a total data volume of 4:84� 109 pixels. The
distributions over the items are obviously very uneven, the range is 1:96� 106–3:88� 109, the
quartiles f6:49� 106, 2:09� 107, 2:78� 107g.

The images are rather uniform data sources, they were selected for that. The databases are
also uniform in a sense, although there is quite a bit of variation. Overall, it makes sense to
treat the images and the databases (which may contain numerous images) as individuals in
the analysis.

Index Name #Items Size Data volume

1 MIT db: Coast 361 256 23 658 496

2 Image: Desert soil 1 2827 7 990 272

3 MIT db: Forest 329 256 21 561 344

4 Image: Heath 1 1399 1 958 400

5 MIT db: Highway 261 256 17 104 896

6 MIT db: InsideCity 309 256 20 250 624

7 Leeds db: Butterflies 762 662 333 473 896

8 MIT db: Mountain 375 256 24 576 000

9 MIT db: OpenCountry 411 256 26 935 296

10 Oxford db: Oxford buildings 5064 875 3 878 103 040

11 Oxford db: Flowers 1360 565 434 358 354

12 Image: Pebbles 1 2234 4 990 464

13 Image: Prairie 1 1648 2 714 340

14 Image: SchwarzesMoor 1 1567 2 455 864

15 MIT db: Street 293 256 19 202 048

16 MIT db: Tall building 357 256 23 396 352
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