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Abstract

Dystonia is a movement disorder that produces involuntary muscle contractions. Current 

pharmacological treatments are of limited efficacy. Dystonia, like epilepsy is a disorder involving 

excessive activty of motor areas including motor cortex and several causal gene mutations have 

been identified. In order to evaluate potential novel agents for multitarget therapy for dystonia, we 

have developed a computer model of cortex that includes some of the complex array of molecular 

interactions that, along with membrane ion channels, control cell excitability.

Introduction

A number of movement disorders, as well as epilepsy are associated with increased activity, 

and likely with hyperexcitability, in cortex. Dystonia is a movement disorder which produces 

involuntary muscle contractions. It involves pathology in multiple brain areas including 

basal ganglia, thalamus, cerebellum, and sensory and motor cortices. Although much of the 

research in dystonia has looked at the role of the basal ganglia, pharmacological treatment is 

often provided directly to the muscle through injection of botulinum toxin, anticholinergic 

agents and benzodiazepines. Motor cortex is another possible target for drug therapy, with 

manifestations that include augmented beta oscillations. Using a mechanistic multiscale 

model of primary motor cortex, we have assessed parameter combinations that produce 

dystonia to suggest potential drug combinations that might interfere with these pathological 

dynamics.

Schematized and mechanistic models for dystonia

Dystonia is a movement disorder that produces intermittent prolonged involuntary muscle 

activation that results in twisting, turning or posturing of a limb or other body part and 

repetitive prolonged movements. As with other movement disorders, the difficulty in 

modeling dystonia stems from the complexity of the motor system itself: the large set of 
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specialized nuclei in brain and spinal cord that are interacting to produce movement in 

continuous concert with sensory areas in the sensorimotor loop. These areas include basal 

ganglia, thalamus, cerebellum, red nucleus, anterior horn, etc. Even when a primary 

pathology can be localized to a particular area, plastic responses in other motor and sensory 

areas will alter the expression of the disease in a way that can either ameliorate or exacerbate 

disability, and treatments may target areas other than the area of primary pathology. For 

example, although task-specific focal dystonia such as writers cramp is thought to occur due 

to overlearning in sensory and motor cortical areas, some of the treatments used are targeting 

basal ganglia.

The large number of areas involved in motor activity would be best served by simulations 

that encompass all of these areas. Such an approach requires working out plausible input and 

output signal patterns for each nucleus or area, and then requires working with highly 

schematized models. Schematized models typically use mean-field approximations, where 

brain areas are approximated by scalar signals representing overall activity. Some 

schematized models may include more detailed integrate-and-fire or scalar (perceptron) 

neural network models (O’Reilly and Munakata, 2000; Eliasmith et al., 2012; Kerr et al., 

2013). However, this intermediate modeling level also lacks the cell and molecular details 

useful for comparison with pharmacological intervention.

Sanger and Merzenich (2000) used a schematized model to identify likely patterns of 

positive feedback between sensory and motor cortical areas that would lead to runaway 

excitation. Their cortical control-theory model was able to identify particular dynamical 

patterns that could potentially be interrupted to prevent the recurrence of these pathological 

patterns. Interestingly, this provided some suggestion as to the mechanism of self-treatment 

using “sensory tricks”, where the patient relaxes the dystonia by touching a particular spot – 

e.g., often on the side of the chin to reduce the head-turning of torticollis. However, the 

limitation of this model, as for other schematized models, was that it could not suggest drugs 

or drug targets for treatment.

Mechanistic multiscale modeling is an alternative to schematized models that does afford the 

opportunity to reach down to the molecular scale of pharmacology and thereby assist in the 

development of novel treatments. These models will include more levels or scales than are 

included in the schematized model, and for purposes of drug discovery should include some 

molecular detail.

A mechanistic model of cortical hyperexcitability

Dystonia is a dynamical disorder that can be defined by its particular patterns of muscle 

activation. The excessive muscle activity of dystonia is a consequence of dynamical disorder 

in brain and spinal cord, associated with higher than normal activity patterns. To the extent 

that the disease is caused by cortical dysfunction, as assumed by control theory models 

(Sanger and Merzenich, 2000), we identify hyper-activity as a manifestation of 

hyperexcitability.
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The major disorder of cortical hyperexcitability is epilepsy, manifested by seizures. In both 

epilepsy and dystonia, underlying causes will include changes or anomalies in ion channel 

and receptor densities, as well as in cortical wiring (Dyhrfjeld-Johnsen et al., 2009), which 

produce excitation/inhibition imbalances and with excessive cortical firing and excessive 

synchrony (Dupont et al., 1998; Lytton, 2008; Neymotin et al., 2010; Lytton et al., 2014; 

Lytton et al., 2014). The intensity, pattern, and spread of hyper-synchrony differs between 

epilepsy and dystonia. Electroencephalographic signatures of the two disorders also differs, 

with seizures characterized by powerful discharges that may be time locked to the movement 

while dystonia shows an increase in beta (12–25 Hz) oscillations (Crowell et al., 2012; 

Mallet et al., 2008; Jin et al., 2011). In addition to there being various patterns of 

hyperexcitability in cortex, there are various ways to produce hyperexcitability in silico.

We developed a mechanistic multiscale model of cortex (Fig. 1) in which we could identify 

patterns of activity for: 1. normal; 2. dystonia; 3. epileptiform (seizure) (Neymotin et al., 

2016). Model scales ranged from molecular to network so as to permit us to associate 

potential pharmacological manipulations with alterations in network dynamics. These 

models therefore combine the domain of computational systems biology – molecular 

interactions, with the traditional approach to computational neuroscience – models of cells 

as electrically interacting units with only ion channels represented at the molecular level.

Varying the densities of voltage-sensitive ion channels and receptor densities on pyramidal 

neurons and interneurons within reasonably ranges resulted in families of models that could 

be classified as having normal, dystonia-like, or epileptiform activity patterns (Fig. 2). 

Dystonia models were characterized by syn-chronous population discharges at beta 

frequency (~20 Hz). In each case, there were multiple parameter sets that produced similar 

dynamics (Golowasch et al., 2002; Prinz and Marder, 2003; Bucher et al., 2005; Prinz et al., 

2004). This phenomenon is well known in biology where the combinatorics of multiple 

alleles for every feature, for every ion channel, enzyme and receptor, means that no two 

people are entirely alike. Despite not being alike, all people show similar dynamics, a 

phenomenon referred to as parameter degeneracy (Edelman and Gally, 2001).

We locate particular models that produce dystonia in high-dimensional parameter space. A 

three-dimensional slice of the eleven-dimensional parameter space (Fig. 3), shown in a 

normalized space relative to a baseline value, demonstrated that dystonia cases tend to have 

higher levels of voltage-gated Ca2+ channels (L-, N-, T-types; labeled Ca), lower levels of 

BK K+ channels in the plasma membrane, and higher levels of ryanodine (RYR) channels in 

endoplasmic reticulum. In a particular case, we can indicate a direction in parameter space 

(Fig. 3, arrow) going from a dystonia parameter-set to a normal parameter-set. For any 

dystonic case in our set, we can identify a simple path, involving one or two parameter 

changes, which leads to a normal set, indicating alterations to be effected in our simulated 

“patient” that would treat the disorder (personalized medicine); the same manipulation 

would not work for other cases and would therefore not be expected to provide a universal 

therapeutic approach (similarly we know of many types of dystonias and different gene 

mutations that can produce hereditary forms). Furthermore, the normal (blue) and dystonia 

(red) groups do not form well defined clouds. It is difficult to separate normal from dystonic 

sets, or to separate out different groups of dystonic patients to be treated in a common way. 
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We therefore could not separate out different groups of dystonic patients who could be 

treated identically within group – precision medicine – despite different treatments between 

groups.

While it is already difficult to navigate among cases and controls in the three dimensional 

subspace of Fig. 3, it is impossible to visualize higher dimensions to identify separations 

between groups in 4 or more dimensions. Instead, machine-learning algorithms are used to 

identify what is where in high-dimensional parameter spaces. In this case, we first tried an 

entirely unsupervised algorithm, k-means, which attempts to find a certain number k of 

galaxy-like clusters of points in the space. Consistent with our difficulties identifying such 

clusters in 3-space (e.g., Fig. 3), the algorithm failed to separate the data into 2 well-

separated groups corresponding to normal and dystonic parameters or, to provide multiple 

group separations when run with higher k.

We then turned to support vector machines (SVM), a supervised machine-learning algorithm 

which separates groups based on user-provided labels - in this case dystonia vs control. 

SVMs were run for every potential subspace to determine which combination at that 

dimensionality gives the best separation. SVMs were able to separate out the 2 groups with a 

gradual increase in the quality of separation at higher dimensions up to 6 dimensions (Fig. 

4). From there, plateauing was seen up to 10 dimensions, likely indicating further 

improvement in distinction masked by the “curse of dimensionality” (using a constant 

number of data points, the density of points falls off exponentially with increase in 

dimension making the separation problem correspondingly harder for algorithms to perform, 

and thereby providing an underestimate of the predictive strength of the optimal separation 

(Bishop, 2006; Noble, 2006)).

The value of these SVM results of Fig. 4 is that they not only suggest the number of 

parameters that might need to be modified to relieve pathology (6–10), but also identify the 

individual parameters in order of importance. These parameters at the molecular level are 

therefore governing, in combination, the ability to define a plane separating two subspaces 

that best separates pathology from normal physiology. We would then predict that a 

mathematical “therapy” for our dystonic simulations could be effected by following the 

direction normal to this separation across that set of parameters. Going from mathematical 

therapy to patient therapy, these parameter changes would be brought about by using drugs 

that modulate that particular channel or signaling interaction.

In making the translation from simulation to therapy, we would want to remain mindful that 

some combinations of parameter alterations may tend to simply shut down the network, 

suggesting that the corresponding drug treatments might not be tolerated due to these types 

of side effects that are typically seen with drugs that reduce activity (e.g., benzodiazepines). 

For example, we can propose a hypothetical 4-drug cocktail using Fig. 4. We would start by 

addressing the first 2 parameters identified, the fast sodium and delayed rectifier potassium 

channels. These are of course the channels responsible for fast spiking. We might therefore 

start with a drug that reduces fast spiking, such as diphenylhydantoin. Noting now that the 

voltage-gated calcium channel parameter at the top of Fig. 4b is red in the third column, we 

might then consider the addition of a VGCC blocker, for example verapamil. Similarly, we 
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would look for a drug that would augment KA and a drug that blocks the ryanodine (RYR) 

receptor. We note that the mapping from parameter to drug will never be one-to-one. Most 

drugs have effects at multiple targets – so-called “dirty drugs”. However this is something 

that we could test directly in the model by modulating the multiple drug targets 

simultaneously, thereby making this limitation into a positive feature by identifying drugs 

with a particular molecular spectrum of action that more closely match directions in 

parameter space that are identified by the model.

Conclusions

Multiscale mechanistic simulations could be used to develop polypharmaceutical drug 

cocktails or to inform the use of multi-target therapeutic agents (dirty drugs) through 

parameter space assessments after separation of pathological from physiological activity 

patterns for dynamic diseases such as dystonia and epilepsy.
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Figure 1. Schematic of cortical model showing (A) neuronal network connectivity; (B) molecular 
interactions in pyramidal cells
(A) Red rectangles represent populations of 5-compartment excitatory cells (largest 

rectangle represents soma, 3 apical-dendrite compartments point upward, basal dendrite 

compartment points downward; multiple compartments allow more realistic spatial/temporal 

integration of synaptic inputs); green circles represent fast-spiking interneurons; blue 

ellipses represent low-threshold firing interneurons. Lines (with arrows) indicate 

connections between the populations. E cells synapse with AMPAR/NMDARs; I cells 

synapse with GABAAR / GABABRs. Filled circles represent GABAAR / GABABRs. Open 

circles and rectangles represent AMPAR/NMDARs. (B) Schematic of chemical signaling in 

pyramidal cells showing fluxes (black arrows) and second- (and third-etc) messenger 

modulation (red back-beginning arrows). We distinguish membrane-associated ionotropic 

and metabotropic receptors and ion channels involved in reaction schemes in red. External 

events are represented by yellow lightning bolts – there is no extracellular diffusion; the only 

extracellular reaction is glutamate binding, unbinding and degradation on mGluR1 after an 

event. Ca2+ is shown redundantly in blue – note that there is only one Ca2+ pool for 

extracellular, 1 pool for cytoplasmic, and 1 pool for ER. (PLC: phospholipase C, DAg: 
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diacyl-glycerol, cAMP: cyclic adenosine monophosphate; PIP2: phosphatidylinositol 4,5-

bisphosphate).
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Figure 2. 
Raster plot showing 1 s patterns of normal activity (left column) compared to dystonia 

activity (right column) in multiple cortical models. Red, blue, green dots are from excitatory 

neurons, low-threshold spiking interneurons, and fast-spiking interneurons respectively. 

Spikes are arranged by cortical layer (Layers 2/3 at top, layer 6 at bottom). (Within each 

model, channel densities of neurons of a given type are identical.)
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Figure 3. 
Navigating through three dimensions. Dystonia cases in red and control in blue.

Neymotin et al. Page 10

Drug Discov Today Dis Models. Author manuscript; available in PMC 2018 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. SVM classification accuracy generally increases when using 1–10 parameters, 
indicating utility of multitarget pharmacy approach to treating dystonia
(a) Best classification accuracy from all combinations of x parameters (solid line: mean 

cross-validation accuracy (n = 10); dotted line: standard error). (b) Best parameter 

combinations (red: parameter used; blue: parameter not used). x-axis in (a),(b) indicates 

number of parameters used.
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