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Summary

A treatment regime is a deterministic function that dictates personalized treatment based on 

patients’ individual prognostic information. There is increasing interest in finding optimal 

treatment regimes, which determine treatment at one or more treatment decision points so as to 

maximize expected long-term clinical outcome, where larger outcomes are preferred. For chronic 

diseases such as cancer or HIV infection, survival time is often the outcome of interest, and the 

goal is to select treatment to maximize survival probability. We propose two nonparametric 

estimators for the survival function of patients following a given treatment regime involving one or 

more decisions, i.e., the so-called value. Based on data from a clinical or observational study, we 

estimate an optimal regime by maximizing these estimators for the value over a prespecified class 

of regimes. Because the value function is very jagged, we introduce kernel smoothing within the 

estimator to improve performance. Asymptotic properties of the proposed estimators of value 

functions are established under suitable regularity conditions, and simulations studies evaluate the 

finite-sample performance of the proposed regime estimators. The methods are illustrated by 

application to data from an AIDS clinical trial.
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1. Introduction

For many complex diseases, such as cancer, HIV infection, and mental disorders, there is 

generally not a uniformly best treatment for all patients. Rather, different patients may 

benefit from different treatments due to individual heterogeneity. For example, in AIDS 

Clinical Trials Group (ACTG) Study 175 (Hammer et al., 1996), the primary composite 

outcome of interest was time to having a larger than 50% decline in CD4 count, a measure 

of immunological status; progression to AIDS; or death. For the comparison of two 

treatments, zidovudine plus didanosine (coded as 1) and zidovudine plus zalcitabine (coded 

as 0), the data suggest that zidovudine plus zalcitabine leads to more favorable outcomes for 

younger patients than zidovudine plus didanosine. Figure 1 shows treatment-specific 

Kaplan-Meier estimates of the survival function for the two age strata defined by the 

observed median age, 34 years, in ACTG 175. It is clear that, among younger patients with 

age ≤ 34, those receiving zidovudine plus zalcitabine have almost uniformly larger survival 
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probabilities those receiving zidovudine plus didanosine, whereas the situation is reversed 

for older patients with age > 34.

This type of situation suggests that individual patient characteristics should be used when 

selecting treatments to maximize an expected long-term outcome of interest for which larger 

outcomes are preferred, such as t-year survival probability, and has heightened interest in 

derivation of optimal dynamic treatment regimes. Because in many chronic diseases 

treatment decisions may be made sequentially over time, a dynamic treatment regime is a set 

of one or more decision rules determine which treatment to give from among the available 

options based on accruing individual patient information, including baseline characteristics, 

intermediate outcomes between decisions, and previous treatments. An optimal regime is 

one that maximizes the expected outcome, or so-called value, if used by the entire patient 

population to select treatments.

There is a large literature on statistical methods to estimate an optimal treatment regime 

based on data from a clinical trial or observational study and non-survival outcomes. Q-

learning (Watkins, 1989; Watkins and Dayan, 1992; Murphy, 2005; Zhao et al., 2009) and 

A-learning (Murphy, 2003; Robins, 2004) are two popular backward induction methods for 

estimating optimal dynamic treatment regimes based on regression-type modeling. The 

former involves positing parametric models for, roughly, the regression of outcome on 

accruing information and treatment, while the latter is based on semiparametric models in 

which only the part of the outcome regression representing contrasts among treatments is 

modeled parametrically, along with the propensity scores, the probabilities of observed 

treatment assignment given patient information at each decision point. Q-learning can be 

sensitive to misspecification of the required models, while A-learning enjoys the so-called 

double robustness property in that the corresponding estimating equations are asymptotically 

unbiased when either the propensity scores or main effects portion of the outcome models 

are correctly specified. An alternative class of approaches known as value or policy search 

methods is based on deriving and maximizing directly a consistent estimator for the value 

over a prespecified class of treatment regimes indexed by a finite-dimensional parameter. 

Zhang et al. (2012b) proposed inverse propensity score weighted (IPW) and augmented IPW 

(AIPW) estimators for the value in the case of a single decision point. Because the value 

estimator is nonsmooth, the optimization problem is challenging, and nonstandard 

optimization techniques are required. Zhao et al. (2012) and Zhang et al. (2012a) recast this 

approach as a weighted classification problem; the former refer to this method as outcome 

weighted learning. These approaches exploit approximations integrated into classification 

software to address the nonsmooth optimization problem, so that the class of regimes is 

dictated by a chosen classification method. Zhang et al. (2013) extended the value search 

methods of Zhang et al. (2012b) to more than one decision point, which share the 

computational challenges in the single decision case. Matsouaka et al. (2014) employed a 

kernel smoothing technique to nonparametrically estimate the conditional mean for the 

difference of the potential outcomes in a subgroup of patients and derived its associated 

treatment regime.

Although survival time is often the outcome of interest, to our knowledge there is relatively 

little development of methods for estimation of optimal treatment regimes where the goal is 
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to maximize survival probability. Some work is focused on maximizing expected survival 

time. Goldberg and Kosorok (2012) developed a Q-learning method for censored survival 

data for estimating optimal dynamic treatment regimes and derived its associated finite 

sample risk bounds on the generalization error of the estimated regime, while Zhao et al. 

(2015) proposed a doubly robust estimator for expected survival time based on censored data 

and use outcome weighted learning to estimate an optimal regime. Bai et al. (2014) 

developed a locally-efficient doubly robust estimator for survival probability rather than 

mean survival time and estimate an optimal regime by extending the methods from a 

classification perspective of Zhang et al. (2012a). The latter two methods involve 

transforming maximization of the value to a weighted classification problem, which allows 

classification software to be used to address the optimization challenge and thus dictates the 

class of regimes. All of these methods are relevant to a single decision point only.

In this article, we propose a value search method for estimating an optimal treatment regime 

within a prespecified class for which the goal is to maximize survival probability that 

addresses the optimization challenges in a novel way and is relevant to more than one 

decision point. In particular, we develop a framework employing kernel smoothing 

techniques to smooth the estimator of the value prior to optimization, which we show greatly 

improves finite sample performance over the corresponding estimator with no smoothing. 

This approach is different from the smoothing technique used by Matsouaka et al. (2014), 

and, to the best of our knowledge, this is the first time smoothing has been integrated into 

estimation of the value function and its associated optimal treatment regimes in this way. 

Development of optimal treatment regimes for multiple decision points with censored 

survival data is challenging, as timing of observations, censoring, and events must be 

properly taken into account. In addition, we extend our smoothing approach to this setting.

In Sections 2 and 3, we introduce the statistical framework and estimators for a single 

decision point and multiple decisions, respectively. Asymptotic properties of the proposed 

estimators are given in Section 4. Finite sample performance is studied via simulation in 

Section 5, and Section 6 presents application of the methods to data from ACTG 175. Proofs 

are relegated to the Appendix.

2. Estimation of Optimal Treatment Regime for a Single Decision Time Point

2.1. Notation and Assumptions

Consider a study with two treatment options ; = {0, 1} given at baseline. For the ith 

patient, i = 1, …, n, let Xi denote the p-dimensional vector of baseline covariates taking 

values x ∈  and Ai denote the actual treatment received by the patient. Let Ti be the 

associated continuous survival time of interest, with conditional survival function ST(t|a, x) 

≡ P(Ti > t|Ai = a, Xi = x) and corresponding conditional cumulative hazard function ΛT (t|a, 

x), where a = 0, 1. Let Ci denote right censoring time for patient i. The observed data are 

{(Xi, Ai, T̃
i, δi), i = 1, …, n}, independent and identically distributed (iid) across i, where T̃

i 

= min{Ti, Ci} and δi = I{Ti ≤ Ci}. We thus observe the counting process Ni(t) = I(T̃
i ≤ t, δi = 

1) and the at risk process Yi(t) = I(T̃
i ≥ t).
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A treatment regime is a deterministic function that maps x ∈  to ;. For simplicity, we 

assume the regimes of interest are from  = {gη : gη(x) = I{ηT x̃ ≥ 0}, ||η|| = 1}, where x̃ = 

(1, xT )T. However, the proposed method also applies to any other  indexed by finite-

dimensional parameters. Denote the potential survival time of a patient if he/she were given 

treatment a, which may be contrary to fact, as T*(a). Accordingly, define the potential 

counting process N*(a; t) and at risk process Y *(a; t) under treatment a, where N*(a; t) = 

I{min(T*(a), C) ≤ t, T*(a) ≤ C} and Y *(a; t) = I{min(T*(a), C) ≥ t}. If a patient follows a 

given regime gη, we can write the corresponding potential survival time as T*(gη) = T*(1)gη 
+T*(0)(1−gη), whose survival function is given by S*(t; η) = E(P[T*{gη(X)} > t|X]), as well 

as the potential counting process N*(gη; t) = N*(1; t)gη + N*(0; t)(1 − gη) and potential at 

risk process Y* (gη; t) = Y* (1; t)gη + Y* (0; t)(1 − gη). We wish to find an optimal treatment 

regime in  that maximizes t-year survival probability; that is , where 

ηopt = arg max||η||=1 S*(t; η). Here, t is a pre-determined time point.

To find an optimal treatment regime, we first derive consistent estimators of S*(u; η) for any 

u. We make the uninformative censoring assumption: {T*(1), T*(0)} ⫫ C|A, X, where “⫫” 

means “independent of”. Let SC(t|a, x) denote the survival function of the censoring time 

given A = a and X = x. If we were able to observe the gη-specific potential counting process 

 and at risk process , an intuitive estimator for S*(u; η) is the inverse 

probability of censoring weighted Kaplan-Meier estimator

(1)

However, because  and  are generally not observable, Ŝ*(u; η) is not 

computable based on the observed data. To obtain proper estimators that are computable 

from the observed data, we make the following two assumptions, which are widely used in 

the causal inference literature (Rubin, 1974): (i) stable unit treatment value assumption 

(SUTVA); i.e. T = T*(1)A+T*(0)(1−A); and (ii) no unmeasured confounders assumptions; 

i.e. {T*(1), T*(0)} ⫫ A|X.

2.2. Estimation Procedure

Following Zhang et al. (2012b), we cast estimation of S*(u; η) in a missing data framework. 

By SUTVA, for those patients whose actually received treatment matches the treatment 

dictated by gη,  and , which are observed. For other 

patients, they are missing. This motivates us to modify the estimator given in (1) by 

incorporating inverse propensity score weighting. Formally, the weight for the ith patient is 

given by

(2)
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where π(Xi) = P(Ai = 1|Xi) is the propensity score. In practice, π(Xi) is known by design, as 

in a randomized clinical trial, or must be modeled and estimated from the data as in 

observational studies. In the latter case, a parametric model, say a logistic regression is 

usually used for estimating π(Xi), specifically,

(3)

where logit(z) = log{z/(1−z)}. Let θ̂ denote the maximum likelihood estimator of θ, and 

define π̂ (Xi) = exp(θ̂T X̃ i)/{1 + exp(θ̂T X̃
i)}. If the logistic regression model is correctly 

specified, θ̂ is a consistent estimator of θ.

To derive the estimator for S*(u; η), we also need to estimate the censoring time survival 

function SC(s|Ai, Xi). In many clinical studies with satisfactory follow-up, it is reasonable to 

assume that censoring times are independent of treatment assignment and covariates, i.e. 

independent censoring. Here, the Kaplan-Meier estimator for censoring times consistently 

estimates SC(s|Ai, Xi). For some applications, the independent censoring assumption may be 

restrictive, but can be relaxed to a certain extent. For example, if censoring times are 

assumed to depend only on treatment assignment, the stratified Kaplan-Meier estimator can 

be used to estimate the treatment-specific censoring time survival function. For more general 

dependence, we can build a semiparametric model, say a proportional hazards model for 

censoring times, and obtain the model based estimator of SC(s|Ai, Xi). For simplicity, from 

now on we make the independent censoring assumption and let ŜC(·) denote the Kaplan-

Meier estimator for censoring times.

Let ŵηi denote the estimator of wηi obtained by replacing π(Xi) with π̂(Xi) in wηi. We 

propose the inverse propensity score weighted Kaplan-Meier estimator (IPSWKME) for 

S*(u; η) given by

(4)

Note that the IPSWKME dose not depend on the Kaplan-Meier estimator ŜC(·) for censoring 

times, as it cancels from numerator and denominator under the independent censoring 

assumption. In Section 4, we show that ŜI (u; η) is a consistent estimator of S*(u; η) under 

certain conditions. Based on ŜI (u; η), the estimated optimal treatment regime to maximize t-

year survival probability is given by , where .

The IPSWKME (4) relies on correct specification of the propensity score model. If it is 

misspecified, the IPSWKME is inconsistent. To improve the robustness of the IPSWKME, 

we propose augmented IPSWKME (AIPSWKME) by incorporating assumed model 

information. For example, we may posit a proportional hazards (PH) model (Cox, 1972) for 

the conditional cumulative hazard function of T by
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(5)

where Λ0(t) is the baseline cumulative hazard function, and β is a (2p + 1)-dimensional 

parameter. The term  is augmented by

where ST (s|Ai, Xi) and SC(s) are the conditional survival functions of T and C, respectively. 

Similarly, the term  is augmented by 

. It can be shown that the two 

augmented terms have the so-called double robustness property, i.e. they are unbiased for 

 and , respectively, when either the propensity 

score model or the posited PH model is correctly specified. Therefore, we propose the 

AIPSWKME for S*(u; η) as

(6)

where ŜT (s|Ai, Xi) is the estimated survival function of T based on the fitted PH model and 

ŜC(s) is the Kaplan-Meier estimator for censoring times. Based on ŜA(u; η), the estimated 

optimal treatment regime to maximize t-year survival probability is given by , 

where . The asymptotic properties of ŜA(u; η) and 

are studied in Section 4.

2.3. Computational Aspects

Note that ŜI (t; η) and ŜA(t; η) are not smooth functions of η. As an illustration, we plot ŜI 

(t; η) and ŜA(t; η) as functions of η1 in Figure 2 for a simple example with one covariate and 

the intercept term in η being set as 1. The estimates are very jagged, and direct 

maximization of them with respect to η is challenging and may lead to local maximizers. 

From our simulation studies in Section 5, estimated survival probabilities following the 

obtained optimal treatment regimes may show substantial biases. As studied in Matsouaka et 

al. (2014), cross-validation may be used to correct the finite sample biases of the 

unsmoothed estimators, but it may increase the computational burden.
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To reduce the biases of the estimators, we propose to smooth the estimators ŜI (t; η) and 

ŜA(t; η) using kernel smoothers. Specifically, we replace gη(xi) = I{ηT x̃i ≥ 0} in ŜI (t; η) 

and ŜA(t; η) with g̃η(xi) = Φ(ηTx̃i/h) to obtain the smoothed IPSWKME (SIPSWKME) ŜI (t; 
η) and smoothed AIPSWKME (S-AIPSWKME) ŜA(t; η), where Φ(s) is the cumulative 

distribution function for the standard normal distribution, and h is a bandwidth parameter 

that goes to zero as n goes to infinity. For bandwidth selection, we set h = c0n−1/3sd(ηTX̃), 
where c0 is a constant and sd(v) is the sample standard deviation of v. In our numerical 

studies, we found that c0 = 41/3 generally gives good results for all scenarios. We plot in 

Figure 2 the smoothed estimates with the chosen bandwidth parameter for the same 

example. The smoothed estimates approximate the original estimates well and have unique 

maximizers around the true value η1 = 0.5. Because the treatment regime I(ηT X̃ ≥ 0) 

remains the same when η is multiplied by k for any k > 0, choosing the bandwidth h to be a 

function of η, in particular, h being proportional to sd(ηT X̃), ensures the scale-free property 

of the regime, as the constant k cancels in Φ(ηT X̃/h). As shown in Figure 2, although the 

resulting smoothed value function is not convex in η, it generally has a unique mode, and the 

maximizer of the smoothed value function is much easier to obtain compared to the 

unsmoothed counterpart. In all our numerical studies, the non-convexity of the smoothed 

value function does not cause any difficulty in the maximization procedure. Such a 

bandwidth parameter has been widely used in the nonparametric smoothing literature and 

ensures that the original and smoothed estimators have the same asymptotic distribution (e.g. 

Heller, 2007). Let  and  denote the maximizers of ŜI (t; η) and ŜA(t; η), respectively. 

Then the associated estimated optimal treatment regimes are  and . In our 

implementation, we first conduct the optimization without the norm-one constraint. Instead, 

we search the maximizer in the domain −1 ≤ ηj ≤ 1 for all j’s and then we rescale η to have 

norm one. This does not change the estimated value function, ŜI and ŜA, and their smoothed 

counterparts.

3. Estimation of Optimal Treatment Regime for Multiple Decision Time 

Points

We now extend the foregoing methods to estimation of optimal dynamic treatment regimes 

incorporating multiple decision points. For simplicity, we illustrate for the case of two 

decision points. Specifically, treatments can be given at baseline and at a fixed interim time 

point s, 0 < s < t. For the ith patient, let X0i denote his or her p0-dimensional vector of 

baseline covariates and A0i ∈ ;0 = {0, 1} denote the initial treatment received at baseline. 

If the patient survives beyond s and is not censored before s, let X1i denote his or her p1-

dimensional vector of intermediate covariates collected by s after assigning treatment A0i 

and A1i ∈ ;1 = {0, 1} denote the follow-up treatment given at s. Thus, the observed data 

are {X0i, A0i, X1iI(T̃
i > s), A1iI(T̃

i > s), T̃
i, δi, i = 1, …, n} and iid across i.

As for a single decision point, we consider a class of linear dynamic treatment regimes for 

simplicity, i.e. = {gη = (g0, g1)}, where
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η0 is a (p0+1)-dimensional parameter with ||η0|| = 1, and η1 is a (p0+p1+2)-dimensional 

parameter with ||η1|| = 1. Here, a patient following a treatment regime gη is given treatment 

g0(X0; η0) at baseline, and, if he or she survives beyond s and is not censored before s, is 

given treatment g1(X0, X1; η1) at s. For patients whose initial treatments coincide with those 

assigned by g0(X0; η0) and who die before s, their treatment assignments are consistent with 

the regime gη. However, for patients whose initial treatments coincide with those assigned 

by g0(X0; η0) but who are censored before s, it is not known whether their treatment 

assignments at the second decision follow the regime gη. Let T*(gη) denote the potential 

survival time for a patient if he or she were given treatment according to gη(X0, X1). We are 

interested in finding the optimal dynamic treatment regime 

 in  that maximizes the t-year survival probability 

S*(2)(t; η) = E(P[T*{gη(X0, X1)} > t|X0, X1]). As is standard in the causal inference literature 

for studying dynamic treatment regimes (e.g., Murphy, 2003), we assume: (i) SUTVA, i.e. a 

patient’s observed outcome agrees with the corresponding potential outcome if his or her 

actually received treatments are consistent with the assigned treatments and (ii) sequential 

randomization assumption (SRA), i.e. the treatment assignment at current stage only 

depends on the past received treatments and observed covariates, but not the potential 

outcomes. Under these two assumptions, the above defined t-year survival probability can be 

estimated from the observed data.

We propose a similar inverse propensity score weighted Kaplan-Meier estimator for the 

survival function S*(2)(u; η) given any treatment regime gη. However, the derivation of 

proper weights becomes more difficult, as some patients may be censored before s and 

whether their received treatments follow the regime gη is unknown. To take this into 

account, we define the following new weight for patient i, i = 1, …, n:

where π̂
A0 (X0i) = π̂

0(X0i)A0i+{1− π̂
0(X0i)}(1−A0i), π̂A1X0i, A0i, X1i) = π1̂(X0i, A0i, 

X1i)A1i+ {1 − π̂
1(X0i, A0i, X1i)}(1 − A1i), and π0̂(X0i) and π̂

1(X0i, A0i, X1i) are the 

estimates of the propensity scores P(A0i = 1|X0i) and P(A1i = 1|X0i, A0i, X1i, T̂
i > s), 

respectively. In randomized studies, π̂0 and π1̂ are known by design, while in observational 

studies, they must be estimated, e.g. using logistic regression. The IPSWKME for S* (u; η) 

is given by

(7)
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Let . Then the estimated optimal 

dynamic treatment regime is given by .

To improve the finite sample performance of the IPSWKME, we again introduce kernel 

smoothing and replace the indicator functions g0(X0i; η0) and g1(X0i, X1i; η1) in 

by  and , where the bandwidth 

parameters h0 and h1 are chosen as before. Let  denote the resulting smoothed 

IPSWKME and  denote the maximizer of . To improve the robustness of 

IPSWKME, we can similarly derive the augmented IPSWKME based on a posited model for 

survival time, however, its formulation is very complicated and is not pursued here. 

Conceptually, the proposed IPSWKME can be generalized to accommodate more than two 

decision points. However, when there are more treatment decision points, the IPSWKME 

Optimal Treatment Regimes for Survival Endpoint may become less reliable because fewer 

patients will have assigned treatments consistent with a given dynamic treatment regime.

4. Asymptotic Properties

In this Section, we present the asymptotic properties of the proposed estimators in Theorems 

1 – 3. Theorems 1 and 2 are for the cases with a single decision point while Theorem 3 is for 

the case with two decision points.

Theorem 1

Under conditions (A1)–(A6) in the Appendix, if the propensity score model (3) is correctly 
specified, for any regime gη, we have, as n → ∞,

i. ŜI (u; η) →p S*(u; η) for any 0 < u ≤ t;

ii.  converges weakly to a mean zero Gaussian process;

iii.
, where the expression of ΣI (t; 

ηopt) is given in the Appendix;

iv. .

Theorem 2

Under condition (A1)–(A6) in the Appendix, if either the propensity score model (3) or the 
proportional hazard model (5) is correctly specified, we have, as n → ∞,

i. ŜA(u; η) →p S*(u; η) for any 0 < u ≤ t;

ii.  converges weakly to a mean zero Gaussian process;

iii.
, where the expression of 

ΣA(t; ηopt) is given in the Appendix;
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iv. .

Theorem 3

Under certain regularity conditions, if the two propensity score models π0(·) and π1(·) are 
correctly specified, for any regime gη, we have, as n → ∞,

i.
 for any 0 < u ≤ t;

ii.
 converges weakly to a mean zero Gaussian process;

iii.
, where 

;

iv.
.

Here the asymptotic variances ΣI (t; ηopt), ΣA(t; ηopt) and  can be 

consistently estimated from the observed data using the usual plug-in method. The proofs of 

Theorems 1–3 are given in the Appendix.

5. Simulation Studies

We examine the finite sample performance of the proposed estimators by simulation. We 

first consider scenarios with a single treatment decision time point at baseline. For each 

patient, baseline covariates X1 and X2 are independently and uniformly distributed on (−2, 
2). Given X1 and X2, the binary treatment indicator A is generated from the logistic model 

logit{π(X1, X2)} = X1 − 0.5X2. The survival time T is generated from a linear 

transformation model (Cheng et al., 1995), h(T) = −0.5X1 + A(X1 − X2) + ε, where h(s) = 

log(es − 1) − 2 is an increasing function, and the error term ε follows some known 

distribution, either the extreme value distribution or the logistic distribution, which 

corresponds to a proportional hazards and proportional odds model, respectively. The 

covariate-independent censoring time C is uniformly distributed on (0, C0), where C0 is 

chosen to achieve the censoring rate of 15% and 40%. The optimal treatment regime 

maximizing t-year survival probability is  for any t. We 

search the optimal treatment regime in the class of regimes given by  = {gη : gη(X1, X2) = 

I{η0 + η1X1 + η2X2 ≥ 0}, η = (η0, η1, η2)T}, which contains the true optimal treatment 

regime with ηopt = (0, 0.707,−0.707).

To implement the proposed estimators, it is necessary to posit a model for the propensity 

scores. We consider both a correctly specified model, logit{πA(X1, X2)} = θ0+θ1X1+θ2X2, 

and a misspecified model, logit{πA(X1, X2)} = θ0. For the augmented estimators, we must 

posit a model for the survival time T. Here, we always use the proportional hazard model 

λ(t|X1, X2) = λ0(t) exp{β11X1+β12X2+A(β20+β21X1+β22X2)}. Note that when ε follows 

the extreme value distribution, the posited survival model is correctly specified. On the other 

hand, when ε follows the logistic distribution, this model is misspecified. We compare the 
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performance of the IPSWKME (ŜI ) and AIPSWKME (ŜA), as well as their smoothed 

versions, S-IPSWKME (S̃
I ) and S-AIPSWKME (S̃

A), under different combinations of the 

assumed propensity score (PS) model, error term distribution, censoring rate, sample size (n 
= 250 or 500) and time point of interest (t = 1 or 2). For each scenario, we ran 1000 

replications and used a genetic algorithm to do the optimization, which is implemented by 

the R function genoud within the package rgenoud (Mebane, Jr. and Sekhon, 2011).

We report results for the scenarios with n = 250 and t = 2, which are given in Tables 1 and 2 

for the extreme value error and logistic error distributions, respectively. Results for other 

scenarios are similar. In the tables, we report the mean of estimated ηopt, the mean of 

estimated t-year survival probability following the estimated optimal treatment regime, 

namely the estimated optimal t-year survival probability (denoted by Ŝ(η̂opt)), the mean of 

estimated standard error of Ŝ (η̂opt) using the plug-in method based on the asymptotic 

variances established in Theorems 1–2 (denoted by SE), the empirical coverage probability 

of 95% confidence interval for the t-year survival probability following the true optimal 

treatment regime S(ηopt) (denoted by CP), the mean of simulated true t-year survival 

probability following the estimated optimal treatment regime (denoted by S(η̂opt)), and the 

mean of misclassification rate by comparing the true and estimated optimal treatment 

regimes (denoted by MR). The numbers given in parenthesis are the standard deviations of 

the corresponding estimates. Here, S(ηopt) and S(η̂opt) are computed using simulated 

survival times following the given treatment regime based on a large random sample of 5 × 
106 patients. We have S(ηopt) = 0.605 for the extreme value error distribution and S(ηopt) = 

0.672 for the logistic distribution. The misclassification rate for one simulation is calculated 

as the proportion of patients for which the true and estimated optimal treatment regimes do 

not select the same treatment.

From the results, when the PS model is correctly specified, all estimators of ηopt have 

relatively small biases, in particular, the mean of  is close to zero while the mean ratio of 

 to  is very close to negative one. The means of simulated true t-year survival 

probability following the estimated optimal treatment regimes, i.e. S(η̂opt), are all close to 

the true values. In addition, the estimates of ηopt based on the AIPSWKME and S-

AIPSWKME of t-year survival probability generally have smaller standard deviation than 

those based on IPSWKME and S-IPSWKME. The unsmoothed IPSWKME and 

AIPSWKME of the optimal t-year survival probability have relatively large biases mainly 

due to the very jagged estimates of t-year survival probability, as illustrated in Figure 2, and 

as a consequence, the associated coverage probability of 95% confidence interval is much 

lower than the nominal level. The smoothed S-IPSWKME and S-AIPSWKME of the 

optimal t-year survival probability greatly reduce the biases and thus give the proper 

coverage probability. In addition, the unsmoothed and smoothed estimators of the optimal t-
year survival probability have nearly the same standard deviation. When the PS model is 

misspecified, the IPSWKME and S-IPSWKME generally have relatively large biases as 

expected, while the AIPSWKME and S-AIPSWKME greatly reduce the biases and give 

much smaller MR. In particular, when the posited survival model is correctly specified under 

the extreme value error distribution, the S-AIPSWKME yields proper coverage probability. 

On the other hand, when the posited survival model is misspecified under the logistic error 
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distribution, although the S-AIPSWKME is not consistent in general, it still gives small 

biases with reasonable coverage probability. Performance of the estimators improves as the 

censoring rate decreases and sample size increases.

We also compare the proposed method with the methods of Zhao et al. (2013) and Zhao et 

al. (2015). For the comparison with the method of Zhao et al. (2013), we consider 

randomized studies with known propensity scores, i.e. πA ≡ 0.5, sample size n = 250, 

decision time point of interest t0 = 2, and censoring rate of 15%. When implementing the 

method of Zhao et al. (2013), we set the threshold ξ = 0, 0.1, …, 0.6 and find the associated 

treatment regime for each ξ value.

Table 3 summarizes the simulation results for the extreme value and logistic error 

distributions based on 1000 replications. The performance of the method of Zhao et al. 

(2013) depends on the choice of the threshold value ξ. For the extreme value error 

distribution, the best choice is ξ = 0.4, while for the logistic error distribution, the best 

choice is ξ = 0.3. In practice, the best threshold value to use is unknown and must be 

estimated from data, which may not be straightforward. Moreover, even with the best choice 

of ξ value, the performance of the method by Zhao et al. (2013) is still worse than that of 

our proposed smoothed estimators, S-IPSWKME and S-AIPSWKME, under all the 

considered settings.

For the comparison with the method of Zhao et al. (2015), we consider the same simulation 

settings as in Tables 1 and 2 with sample size n = 250, decision time point of interest t0 = 2, 

and censoring rate of 15%. For both methods, we consider the augmented estimation. Table 

4 summarizes the simulation results based on 1000 replications. The proposed methods and 

the method of Zhao et al. (2015) lead to comparable survival probabilities under the 

estimated treatment rules, while the proposed methods yield smaller misclassification rates 

under all the considered settings. In summary, the proposed methods demonstrate very 

competitive performance compared with existing approaches.

Next, we consider scenarios with two treatment decision time points, one at the baseline and 

the other at s = 1. The initial treatment assignment A0 and the follow-up treatment 

assignment A1, if applicable, are generated independently from a Bernoulli distribution with 

success probability of 0.5. A single baseline covariate X0 is generated from a uniform 

distribution on (0, 4). To generate the survival time T, we first generate a time T1 given A0 

and X0 from an exponential distribution with the rate function λ1(A0, X0). The censoring 

time C is generated from a uniform distribution on (0, C0). If a patient is neither dead nor 

censored at time s = 1 (i.e. min(T1, C) > 1), we generate a single intermediate covariate X1 

for this patient as X1 = 0.5 X0 − 0.4(A0 − 0.5) + e, where e is uniformly distributed on (0, 2). 

Then we generate another time T2 given A0, A1, X0 and X1 from an exponential distribution 

with the rate function λ2(A0, A1, X0, X1). The survival time T of interest is defined as T = 

T1 if T1 ≤ 1 and T = 1+T2 otherwise. The observed survival time is T̃ = min(T, C) with the 

censoring indicator δ = I(T ≤ C). Here, C0 is chosen to achieve censoring rates of 15% and 

40%. We consider three scenarios for the rate functions λ1 and λ2: (i) λ1(A0, X0) = 0.5 

exp{1.75(A0 − 0.5)(X0 − 2)} and λ2(A0, A1, X0, X1) = 0.3 exp{2.5(A1 − 0.4)(X1 − 2) − 

A0(X1 − 2)}; (ii) λ1(A0, X0) = 0.1 exp{2(A0 − 0.5)(X0 − 2)} and λ2(A0, A1, X0, X1) = 0.2 
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exp{3(A1 − 0.4)(X1 − 2) − 3(A0 − 0.5)(X0 − 2)}; (iii) λ1(A0, X0) = 0.2 exp{1.5(A0 − 0.3)

(X0 − 3)} and λ2(A0, A1, X0, X1) = 0.3 exp{2(A1 − 0.5)(X1 − 2) + 0.5(A0 − 0.7)(X0 − 1)}.

For the above three scenarios, the true optimal rule for maximizing t-year survival 

probability (t > 1) at time s = 1 is given by . However, the true optimal 

rule  at time s = 0 is a complicated nonlinear function of x0, which can be derived 

using backward induction as in Q-learning. In our implementation, for computation 

simplicity, we search for the optimal dynamic treatment regime in a class involving linear 

decision rules, specifically, η = {g0(x0) = I{η1 + η2x0 > 0}, g1(x1) = I{η3 + η4x1 > 0}, ||

(η1, η2)|| = 1, ||(η3, η4)|| = 1}. Then, the true optimal rule  at time s = 1 corresponds 

to  for all three scenarios.

For scenarios (i) and (iii), we take t = 3, while for (ii) we take t = 6. We use simulation to 

find the true optimal rule at s = 0 in η to maximize t-year survival probability. Specifically, 

we first generate X0, and for a given (η1, η2), we set A0 by the regime g0(X0). Then, we 

generate X1 given A0 and X0 the same way as in our design, and set A1 by the optimal rule 

. Finally, we generate T1 and T2, and define T the same way as before. Using generated 

T’s for a large random sample of 5 × 106 patients, we compute the associated empirical t-

year survival probability. We find ( ) to maximize the empirical t-year survival 

probability, which gives the true optimal rule  in η. Here, we use grid search method to 

find ( ). Since , we only need to do grid search for η1. We have 

 and S(3; ηopt) = 0.567 for scenario 1, 

 and S(6; ηopt) = 0.624 for scenario 2, and 

 and S(3; ηopt) = 0.702 for scenario 3. Here 

 and S(t; ηopt) is the t-year survival probability following the 

optimal dynamic treatment regime defined by ηopt.

We compare the unsmoothed and smoothed estimators. For both estimators, the propensity 

score models π0 and π1 are assumed known as for randomized clinical trials. Simulation 

results for 1000 replications are summarized in Table 3. From the results, we observe: (i) 

both unsmoothed and smoothed estimation methods give nearly unbiased estimators of ηopt, 

and the t-year survival probability following the estimated optimal treatment regime 

(denoted by S(η̂opt) in the table) is very close to the t-year survival probability following the 

true optimal treatment regime ηopt; (ii) the mean of estimated standard error (SE) of Ŝ(η̂opt) 

based on the established theory is close to the standard deviation of the estimates given in 

the parenthesis; (iii) The unsmoothed estimator for the t-year survival probability following 

the estimated optimal treatment regime (denoted by Ŝ(η̂opt)) has relatively large bias and the 

associated coverage probability (CP) is below the nominal level; and (iv) the smoothed 

estimator for the t-year survival probability following the estimated optimal treatment 

regime has largely reduced bias and thus lead to proper coverage probability.

Jiang et al. Page 13

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Application to ACTG 175

We illustrate the proposed methods for a single decision with the data from the ACTG Study 

175 (Hammer et al., 1996). Subjects were randomized to four treatment groups with equal 

probability: zidovudine (ZDV) monotherapy, ZDV plus didanosine (ddI), ZDV plus 

zalcitabine (zal), and ddI monotherapy. A primary composite endpoint of interest is the time 

to having a larger than 50% decline in the CD4 count, or progressing to AIDS, or death, 

whichever comes first. From treatment-specific Kaplan-Meier curves, it can be clearly seen 

that treatments ZDV+ddI, ZDV+zal and ddI only are uniformly better than treatment ZDV 

only in terms of survival. In addition, treatments ZDV+ddI and ZDV+zal are overall the two 

best treatments giving the highest survival probabilities especially after day 400. For 

simplicity, we only consider two treatment options in our analysis, A = 1 for ZDV +ddI and 

A = 0 for ZDV+zal, which involves 1046 subjects. For each subject, there are 12 baseline 

clinical covariates; preliminary analysis results showed that Karnofsky score (Karnof), 

baseline CD4 count (CD40), and age (Age) are three important risk predictors and may have 

interaction effects with treatments. We include these three covariates in constructing 

treatment regimes. Our goal is to find the optimal treatment regime from the class of linear 

regimes defined by  = {gη = I(η0 + η1x1 + η2x2 + η3x3 ≥ 0) : η = (η0, η1, η2, η3)T, ||η|| = 

1} to maximize t-year survival probability, x1 is Karnof, x2 is CD40, and x3 is Age. Because 

the data come from a randomized study, we use a constant model for the propensity score 

and estimate this constant from data. For augmented estimation, we posit the proportional 

hazard model as given in (5). We estimate optimal treatment regimes at day t = 400, 600, 

800 and 1000.

The estimated optimal treatment regimes and the associated t-year survival probabilities are 

presented in Table 6. We only present the results for S-IPSWKME and S-AIPSWKME, as 

they have better numerical performance than their nonsmoothed counterparts based on our 

simulation studies. The numbers in the columns of Intercept, Karnof, CD40 and Age are the 

parameter estimates η̃opt defining the optimal treatment regimes, and S̃(t; η̃opt) is the 

estimated t-year survival probability following the estimated optimal treatment regime. From 

the Table, the estimated optimal treatment regime for an earlier time may be different from 

that for a later time. For example, comparing the obtained optimal treatment regimes for t = 

600 and t = 800, the S-IPSWKME assigns a set of 353 patients to treatment 0 and another 

set of 583 patients to treatment 1 for both time points. However, it assigns a set of 52 

patients to treatment 0 for t = 600 but to treatment 1 for t = 800. On the other hand, it assigns 

another set of 58 patients to treatment 1 for t = 600 but to treatment 0 for t = 800. For the S-

AIPSWKME, the findings are similar. S-IPSWKME and S-AIPSWKME yield very different 

parameter estimates η̃opt. However, the corresponding optimal treatment regimes are similar. 

Using the results for day 600 as an example, among the 1046 subjects, there are only 57 

subjects whose assigned treatments are different by the estimated optimal treatment regimes 

based on S-IPSWKME and S-AIPSWKME. In addition, the estimated t-year survival 

probabilities following the estimated optimal treatment regimes are nearly the same based on 

S-IPSWKME and S-AIPSWKME.

Next, we compare the estimated optimal regimes with the simple regimes that assign all 

subjects to the same treatment. Specifically, we construct 95% Wald-type confidence 
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intervals for the difference between the estimated t-year survival probabilities under the 

estimated optimal treatment regimes and the simple regimes based on the derived asymptotic 

normal distribution. The results are also given in Table 6. The confidence intervals either 

stay above zero or zero is very close to the left end point of the intervals when it is 

contained. This implies that the increase in value realized by following the estimated optimal 

treatment regimes comparing with the simple regimes is significant or at least marginally 

significant. The Kaplan-Meier curves for patients following the estimated optimal treatment 

regimes (not shown here) are all uniformly better than those for each single treatment.

We have also estimated the optimal treatment regimes using the proposed methods based all 

twelve covariates when smoothing is and is not employed. We do not report on this here for 

brevity; however, we note that the results for smoothed estimators when using three versus 

twelve covariates are comparable, demonstrating the adaptivity of the smoothed estimators 

to incorporating relatively many covariates. The unsmoothed estimators can lead to slightly 

different optimal treatment rules but with similar estimated survival probabilities. In 

addition, the estimated survival probabilities show relatively larger differences between the 

cases with three and twelve covariates, which is likely due to the instability in maximizing 

the unsmoothed value functions.

7. Discussion

We have proposed Kaplan-Meier type estimators for the survival function of patients 

following a given (dynamic) treatment regime and introduce kernel smoothing to improve 

their performance. An optimal (dynamic) treatment regime within a class of prespecified 

treatment regimes may then be estimated by maximizing the estimator of the associated t-
year survival probability. We consider the case when there are two treatment options at each 

decision time point. However, the proposed methods can be generalized to incorporate 

multiple treatment options at each decision by defining a treatment regime using multiple 

indexes instead of a single indicator function. In addition, current methods find the optimal 

(dynamic) treatment regime to maximize t-year survival probability, which can also be 

generalized to maximize other clinical outcomes of interest. Specifically, using the 

IPSWKME, ŜI (·; η), as an illustration, we can find the optimal treatment regime to 

maximize f{ŜI (·; η)}, where f is a specified function of interest; e.g., 

 corresponds to restricted mean survival time under a given 

treatment regime. Likewise f{ŜI (·; η)} = sup{u : ŜI (u; η) ≥ 0.5} corresponds to the median 

survival time under a given treatment regime.

In this paper, we study the asymptotic distributions of the estimated value function under the 

derived optimal treatment regimes. The asymptotic properties of η̂ in the treatment regime 

function are very challenging to obtain. The convergence rate of η̂ is slower than the 

classical n1/2-rate due to the indicator function I(ηT X̃ ≥ 0), and the resulting limiting 

distribution is not standard. Matsouaka et al. (2014) studied a special case where the 

estimated value function depends on a single threshold value and showed that the estimator 

of the threshold that maximizes the estimated value function has the n1/3-rate. We conjecture 

that our estimator η̂ should also have n1/3-rate. This is an interesting problem that warrants 

future research.

Jiang et al. Page 15

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors are grateful to two referees and an Associate Editor for their thoughtful and suggestive comments, 
which have helped to greatly improve on an earlier manuscript. The work was partially supported by National 
Institutes of Health grants R01 CA140632 and P01 CA142538.

References

Bai X, Tsiatis AA, Lu W, Song R. Optimal treatment regimes for survival endpoints using a locally-
efficient doubly-robust estimator from a classification perspective. Technical Report. 2014

Cheng SC, Wei LJ, Ying Z. Analysis of transformation models with censored data. Biometrika. 1995; 
82(4):835–845.

Cox DR. Regression models and life-tables. Journal of the Royal Statistical Society Series B 
(Methodological). 1972; 34(2):187–220.

Goldberg Y, Kosorok MR. Q-learning with censored data. Annals of Statistics. 2012; 40:529–560. 
[PubMed: 22754029] 

Hammer SM, Katzenstein DA, Hughes MD, Gundacker H, Schooley RT, Haubrich RH, Henry WK, 
Lederman MM, Phair JP, Niu M, Hirsch MS, Merigan TC. A trial comparing nucleoside 
monotherapy with combination therapy in hiv-infected adults with cd4 cell counts from 200 to 500 
per cubic millimeter. New England Journal of Medicine. 1996; 335(15):1081–1090. [PubMed: 
8813038] 

Heller G. Smoothed rank regression with censored data. Journal of the American Statistical 
Association. 2007; 102(478):552–559.

Matsouaka RA, Li J, Cai T. Evaluating marker-guided treatment selection strategies. Biometrics. 2014; 
70:489–499. [PubMed: 24779731] 

Mebane WR Jr, Sekhon JS. Genetic optimization using derivatives: The rgenoud package for R. 
Journal of Statistical Software. 2011; 42(11):1–26.

Murphy SA. Optimal dynamic treatment regimes. Journal of the Royal Statistical Society: Series B 
(Statistical Methodology). 2003; 65(2):331–355.

Murphy SA. An experimental design for the development of adaptive treatment strategies. Statistics in 
medicine. 2005; 24(10):1455–1481. [PubMed: 15586395] 

Robins, JM. Optimal structural nested models for optimal sequential decisions. Proceedings of the 
second seattle Symposium in Biostatistics; Springer; 2004. p. 189-326.

Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal 
of educational Psychology. 1974; 66(5):688–701.

Shorack, GR., Wellner, JA. Empirical processes with applications to statistics. Vol. 59. SIAM; 2009. 

Watkins C, Dayan P. Q-learning. Machine Learning. 1992; 8(3–4):279–292.

Watkins, CJ. PhD thesis. University of Cambridge; England: 1989. Learning from delayed rewards. 

Zhang B, Tsiatis AA, Davidian M, Zhang M, Laber EB. Estimating optimal treatment regimes from a 
classification perspective. Stat. 2012a; 1(1):103–114. [PubMed: 23645940] 

Zhang B, Tsiatis AA, Laber EB, Davidian M. A robust method for estimating optimal treatment 
regimes. Biometrics. 2012b; 68(4):1010–1018. [PubMed: 22550953] 

Zhang B, Tsiatis AA, Laber EB, Davidian M. Robust estimation of optimal dynamic treatment regimes 
for sequential treatment decisions. Biometrika. 2013; 100:681–694.

Zhao L, Tian L, Cai T, Claggett B, Wei LJ. Effectively selecting a target population for a future 
comparative study. Journal of the American Statistical Association. 2013; 108:527539.

Zhao Y, Kosorok MR, Zeng D. Reinforcement learning design for cancer clinical trials. Statistics in 
Medicine. 2009; 28(26):3294–3315. [PubMed: 19750510] 

Jiang et al. Page 16

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zhao Y, Zeng D, Laber E, Song R, Yuan M, Kosorok M. Doubly robust learning for estimating 
individualized treatment with censored data. Biometrika. 2015; 102:151–168. [PubMed: 
25937641] 

Zhao Y, Zeng D, Rush AJ, Kosorok MR. Estimating individualized treatment rules using outcome 
weighted learning. Journal of the American Statistical Association. 2012; 107(499):1106–1118. 
[PubMed: 23630406] 

A. Proof of Theorems

To establish the asymptotic results given in Theorems 1–2, we need to assume some 

regularity conditions. Recall that a working logistic model (3) is assumed for the propensity 

scores with parameters θ for the IPSWKME and a working proportional hazards model (5) 

is further assumed for the survival time T for the AIPSWKME with parameters β and Λ0. 

Let  and . Define

where  and π* = π(X; θ*)A+{1−π(X; θ*)}(1−A). In 

addition, define

where ek = 

exp {β*T(XT, k, kXT)T}, k = 0, 1. We assume the following conditions.

A1 The covariates X are bounded.

A2 The propensity score π(X) is bounded away from 0 and 1 for all possible values 

of X.

A3
The equation  has a unique solution θ*.

A4 The equation
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has a unique solution β*, where τ > t is a prespecified time point satisfying P(Tĩ 

≥ τ ) > 0. Let  and it satisfies 

.

A5
 and 

, j = 1, 2.

A6 nh → ∞ and nh4 → 0 as n → ∞.

Under assumed regularity conditions A1 – A4, we have the following asymptotic 

representations:

where ϕ1i’s and ϕ2i’s are independently and identically distributed mean-zero vectors, and 

ϕ3i(u) and ϕ4i(u) are independent mean-zero processes. Moreover, consistent estimators ϕ̂1i, 

ϕ̂2i, ϕ̂3i(u) and ϕ̂4i(u) of ϕ1i, ϕ2i, ϕ3i(u) and ϕ4i(u) can be easily obtained.

In the following, we give a sketch for the proof of Theorem 1. The detailed proofs for 

Theorems 1–2 are provided in the Supplementary Appendix.

A.1. Proof of Theorem 1

For any given regime gη, we first derive the asymptotic properties for the corresponding 

inverse propensity score weighted (IPSW) Nelson-Aalen estimator. Specifically,

(A.1)

It is easy to show that ŜI (u; η) and exp{−Λ̂
I (u; η)} are asymptotically equivalent for any 

given η. Therefore, the asymptotic properties of ŜI (u; η) easily follows those of Λ̂
I (u; η).

When the propensity score model is correctly specified, we have θ* = θ and . Then 

 uniformly for s ∈ [0, τ] as n → ∞. 

Similarly, we have  uniformly 

for s ∈ [0, τ] as n → ∞. Therefore,
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which establish the consistency given in (i) of Theorem 1.

Next, we derive the asymptotic distribution of ΛI (u; η). By applying the first-order Taylor 

expansion of Λ̂I (u; η) with respect to parameter θ and some empirical process 

approximation techniques, we have

where  is a mean-zero martingale 

process and D1(u) = limn→∞ ∂ΛÎ (u; η, θ)/∂θ. By delta method, we have 

, which converges weakly to a 

mean-zero Gaussian process by applying the empirical process theory. This proves (ii) of 

Theorem 1.

Since  is the maximizer of ŜI (t; η) and ηopt is the maximizer of S*(t; η), following the 

similar arguments in Zhang et al. (2012b), we have

It follows that , where 

. This proves (iii) of Theorem 1.

Finally, we show that  and  are asymptotically equivalent. For any given 

η, we have

(A.2)

(A.3)
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Following the similar arguments in Heller (2007), we can show that sup||η||=1 |(A.2)| = op(1) 

and sup||η||=1 |(A.3)| = op(1). Therefore, we have  uniformly in 

η, which implies  uniformly in η. It follows that 

, which proves (iv) of Theorem 1.

Jiang et al. Page 20

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Treatment specific Kaplan-Meier curves by age.

Jiang et al. Page 21

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Plots for the original and smoothed estimates, where the original estimates are in black and 

the smoothed estimates are in red. In addition, the IPW and AIPW estimates are given in the 

left and right panels, respectively.
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