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Abstract

Person-centered methods are useful for studying individual differences in terms of (dis)similarities 

between response profiles on multivariate outcomes. Multivariate distance matrix regression 

(MDMR) tests the significance of associations of response profile (dis)similarities and a set of 

predictors using permutation tests. This paper extends MDMR by deriving and empirically 

validating the asymptotic null distribution of its test statistic, and by proposing an effect size for 

individual outcome variables, which is shown to recover true associations. These extensions 

alleviate the computational burden of permutation tests currently used in MDMR and render more 

informative results, thus making MDMR accessible to new research domains.
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1. Introduction

Research in the social sciences often requires the collection and analysis of multivariate 

(MV) dependent variables. There are two classes of methods for analyzing such data that 

differ in how they describe structure in the MV outcome: variable-centered methods and 

person-centered methods. The current paper extends a new person-centered regression 

method by providing analytic p values as well as a measure of effect size.

Variable-centered methods describe structure in a MV outcome by analyzing the similarities 

among its variables, which are commonly aggregated in a covariance matrix. Because they 

are based on covariances, these methods treat subjects as interchangeable and rely on the 
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assumption that all relationships between variables are linear. If these two main assumptions 

are appropriate, variable-centered methods are well suited to situations in which the goal is 

to derive substantive meaning from the relationship among the variables. These assumptions, 

however, are not always reflective of reality. Subjects can belong to different clusters in a 

population, in which case they are not all interchangeable, and relationships between 

variables can be non-linear (Cassady & Finch, 2015; Etezadi-Amoli & McDonald, 1983; 

Kubarych et al., 2010; Lubke & Muthén, 2005; McDonald, 1962;Yalcin & Amemiya, 2001).

Person-centered methods describe structure in a MV outcome by analyzing similarities 

among all pairs of subjects in the data (Bergman & Magnusson, 1997). These similarities are 

typically quantified using a measure of distance between each pair of response profiles (i.e., 

vectors of scores along each outcome variable), which are commonly aggregated in a 

distance matrix. Person-centered methods are useful tools for research focused on inter-

individual differences among response profiles (Muthén & Muthén, 2000). Furthermore, 

they are viable alternatives to variable-centered methods when MV data are expected to 

violate the assumptions of linearity or interchangeability (Bauer & Shanahan, 2007; 

Bernstein et al., 2010; Breslau, Reboussin, Anthony, & Storr, 2005; Osborne & Weiner, 

2015). Person-centered methods are more flexible in their treatment of variables because the 

distance between response profiles can be calculated in many different ways, some of which 

do not rely on these assumptions (Johnson, 1967; Kruskal, 1964b; McArdle & Anderson, 

2001). For example, the COSA algorithm (Friedman & Meulman, 2004) can be used to 

compute an iteratively optimized distance matrix that requires no a priori specification of 

variable structure and even accounts for the possibility that variables may differentially 

characterize subsets of the population.

Both covariance matrices and distance matrices can be subjected to further analyses. Often 

times, the goal of these analyses is to represent the MV outcome in a lower-dimensional 

space with minimal information loss in order to further investigate a parsimonious 

representation of the MV outcome. Principal component analysis (PCA) is a common 

variable-centered approach to this problem, and multidimensional scaling (MDS) is a 

conceptually similar person-centered method.

PCA maps a MV outcome’s p × p covariance matrix onto p orthogonal axes, or “principal 

components.” Each component is a linear combination of the p original variables, and each 

successive component explains as much variance as possible in the original data, conditional 

on the previous components. The original covariance matrix can be perfectly reproduced 

using all p components, but their maximum-variance property typically allows the 

covariance matrix to be approximated with a small subset of components with minimal loss 

of information with respect to the variance of the original variables. As such, subjects’ 

scores along a small subset of components can typically serve as a reasonable representation 

of the MV outcome in subsequent analyses. PCA can also be conducted on a correlation 

matrix, but results will differ to the extent that the scales of the original variables in the MV 

outcome differ from one another.

MDS (Kruskal, 1964a; Torgerson, 1952), sometimes called principal coordinates analysis 

(Gower, 1966), is computationally similar to conducting PCA on subjects rather than 
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variables. MDS is used to map a n × n distance matrix computed on the MV outcome onto n 
orthogonal axes in Euclidean space. These axes do not represent linear combinations of 

variables, but rather each subject’s coordinates in n-dimensional Euclidean space based on 

distances between their response profiles. These coordinates depend not only on the 

response profiles themselves, but also on the manner in which distances between response 

profiles are quantified. Analogous to PCA, the original distance matrix can be perfectly 

reproduced using all n axes, but most axes usually contribute little to this reproduction, so a 

small subset can typically approximate the original distance matrix in low-dimensional 

Euclidean space.

If a researcher is interested in investigating the association between a MV outcome and a set 

of independent variables, the first few principal components or MDS axes can be regressed 

onto a set of predictors in lieu of conducting separate regressions for each variable 

comprising the MV outcome. In some special cases, approaching this problem from a 

person-centered framework with MDS regression yields the same results as a variable-

centered approach using PCA regression (Meulman, 1992). MDS regression has been shown 

to be a useful person-centered association test more generally as well (Kiers, Vicari, & 

Vichi, 2005). However, its results depend on the number of axes used, and there is no strong 

theory to guide this choice (Kiers et al., 2005). As is the case with PCA, there are 

diminishing returns associated with each additional dimension, but Meulman (1992) noted 

that m MDS axes always differentiate subjects as well as, or better than, m − 1. As a result, 

information about the MV outcome is typically lost via the dimension reduction at the core 

of MDS regression.

Multivariate Distance Matrix Regression (MDMR) is an alternative person-centered 

regression method that avoids this problem by directly testing the association of a full 

distance matrix and a set of predictors without the intermediate data reduction step 

conducted by MDS regression (Anderson, 2001, McArdle & Anderson, 2001). It is 

conceptually similar to simultaneously regressing all n MDS dimensions in a single test. 

Prior to the regression, the distance matrix used in MDMR needs to be transformed such that 

its trace equals the sum of squared distances between each pair of response profiles that 

defines the distance matrix. This transformation, proposed by Gower (1966), is at the heart 

of MDS as well, but the two methods utilize the resulting transformed matrix in different 

ways. Whereas MDS is used to map it onto n orthogonal axes in Euclidean space, MDMR is 

used to directly partition its trace into a portion due to regression onto a set of predictors and 

a portion due to error. MDMR is therefore analogous to standard regression with the 

difference that the MDMR test statistic is used to partition the sum of squared distances 

between response profiles rather than the sums of squares of the variables comprising those 

profiles.

Because MDMR uses all information in the distance matrix, it avoids the disadvantages 

associated with selecting a subset of MDS axes, and MDMR has been shown to have 

additional desirable properties as well. MDMR can be used with sample sizes that are 

smaller than the number of outcome variables, and it has been shown to yield high power 

and well-controlled Type-I error (Zapala & Schork, 2012). Furthermore, the ability to 

quantify (dis)similarities between response profiles using any distance metric can be 
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leveraged to relax distributional assumptions required when using other regression methods. 

This property has led to higher power compared to alternative variable-centered methods in 

case of population heterogeneity (Lubke & McArtor, 2014).

This paper presents two improvements to MDMR that should further motivate its use as a 

MV regression tool. First, we derive and present the asymptotic null distribution of 

MDMR’s test statistic. Currently, MDMR significance tests are permutation-based, and the 

computation time of these tests grows as a function of n2, making them impractical for large 

samples. Furthermore, reliably estimating small permutation p values (≪0.05) requires an 

increasingly large number of permutations (Efron & Tibshirani, 1994), making these tests 

impractical when precise small p values are required. Second, we propose a measure of 

effect size for individual variables comprising the MV outcome used to construct the 

distance matrix. If a significant predictor is identified, it will usually be of substantive 

interest to identify which variables in the MV outcome are primarily driving the association, 

but MDMR cannot currently be used to do so.

The next section explains MDMR in more detail, which is followed by the derivation of the 

asymptotic null distribution of the test statistic. Next, a univariate effect size is proposed 

based on a randomization procedure. This statistic quantifies the effect size on a particular 

variable in a MV outcome by assessing the decrease in MDMR’s existing measure of overall 

effect size after dissociating that variable from the predictor(s) and recomputing the overall 

effect. The proposed improvements to MDMR are then evaluated in two simulation studies. 

The first simulation compares the new theoretical p values to permutation p values, and the 

second investigates the behavior of the proposed effect size measure and also assesses the 

power of MDMR relative to multivariate multiple regression. Finally, the utility of MDMR 

in the context of behavioral research is illustrated with the presentation of an empirical 

analysis in which MDMR is used to identify predictors that are significantly associated with 

individual differences in personality profiles.

2. Multivariate Distance Matrix Regression

Let the n × q matrix Y denote centered multivariate outcome data that a researcher aims to 

regress onto X, a n ×(p +1) matrix of p predictor variables and a column of 1’s, 

corresponding to the intercept term. The standard linear model and MDMR both test the 

association of Y and X by partitioning a representation of the sum of squares of the outcome 

into a portion due to regression onto X and a portion due to error.

In the standard linear model, the sum of squares of each outcome variable yl (l = 1, …, q) is 

found on the lth diagonal element of Y′Y, the inner-product of Y. The trace of this inner 

product is therefore equal to the total sum of squares of Y. The linear model proceeds by 

partitioning tr [Y′Y] into two independent quadratic forms corresponding to the sum of 

squares due to regression and residual. These quadratic forms are based on the symmetric, 

idempotent “projection matrix,” H = X(X′X)−1X′. The sum of squares due to regression is 

tr [Y′HY] and the sum of squares due to residual is tr [Y′ (I − H)Y], where I is an n ×n 
identity matrix, and (I − H) is also symmetric and idempotent. This partitioning leads to the 

familiar ratio,
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(1)

If Y is a univariate normally distributed variable whose relationship with X is linear, then the 

trace of the quadratic forms in the numerator and the denominator each follows χ2 

distributions with degrees of freedom corresponding to the rank of the matrices used to 

construct them (i.e., H and I − H). The quotient of two χ2 variables divided by their 

respective degrees of freedom follows an F distribution, so F* ~ F(p, n − p − 1) is the 

omnibus test statistic of multiple regression if Y is univariate. If, on the other hand, Y is 

multivariate, then neither trace follows a χ2 distribution. As a result, the test statistic F* in 

Eq. 1 is not F-distributed if q > 1.

MDMR differs from the standard linear model in its representation of the sum of squares of 

the outcome. The standard linear model can be viewed as a variable-centered approach to 

regression that is used to partition the sum of squared Euclidean distances between each 

subject’s vector of scores on Y and the mean vector of Y. MDMR facilitates a person-

centered approach that instead partitions the sum of squared distances between all pairs of 

individuals. Specifically, let D denote a symmetric n × n distance matrix with elements dij 

that each represent a quantification of the dissimilarity between the response profiles of 

subjects i and j. MDMR is used to decompose

(2)

into a portion attributable to X and a portion due to residual. In the special case that D is 

computed using Euclidean distances, that is, the distance between subjects i and j is defined 

as , then SSD/n is equal to the sums of squares used in standard linear 

regression. This is not the case, however, for any other distance metrics (Anderson, 2001).

The test statistic of the linear model is used to partition the sum of squares of the outcome 

using the trace operator, but SSD cannot be analogously partitioned using the trace operator 

on D because tr [D] = 0 by definition. Gower (1966) showed, however, that D can be 

transformed into a symmetric n × n matrix G such that the ith diagonal element of G is 

proportional to the sum of squared distances between subject i and all other subjects, 

resulting in tr [G] = SSD/n. This transformation allows the construction of a test statistic 

analogous to Eq. 1 based on person-centered distances rather than variable-centered 

distances. Gower’s G is computed as

(3)
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where J is a square n-dimensional matrix of 1’s, and .

The partitioning conducted with the standard linear model test statistic relies on the fact that 

Y is a matrix of locations (scores) in Euclidean space that can be mapped into orthogonal 

subspaces indexed by H and I − H. This decomposition cannot be conducted on G directly 

because its elements do not represent scores in Euclidean space, but rather transformed 

measures of squared pair-wise distances. However, Gower, (1966) also showed that for any 

measure of dissimilarity used to construct the distance matrix (Euclidean or otherwise), G 
can be factored as G = ZZ′, where Z is a n × n matrix whose rows correspond to each 

subjects’ location mapped into n-dimensional Euclidean space based on the pair-wise 

distances in D. That is, Z is the matrix of all n axes resulting from conducting MDS on D. 

Because Z denotes coordinates in Euclidean space, it can be partitioned using H and I − H 
analogously to Y in the linear model. To find Z, conduct a spectral decomposition on G = 

UΛU′, in which Λ is the diagonal n × n matrix whose elements λk (k = 1, …, n) are the 

eigenvalues of G, and U is the n × n matrix whose columns uk are the orthogonal 

eigenvectors of G corresponding to λk. The matrix of MDS axes is computed as Z = UΛ1/2.

Similar to the linear model, in which the trace of the inner product of Y equals the total sum 

of squares, the matrix of MDS axes computed from D has the property tr [Z′Z] = tr [ZZ′] = 

tr [G] = SSD/n. Therefore, replacing Y with Z in Eq. 1 results in a test statistic based on 

SSD rather than the sum of squares of Y. This statistic is given by

(4)

Importantly, when non-Euclidean distances are used to quantify the dissimilarity between 

observations, it is often the case that the resulting G is not positive-semidefinite (PSD), so 

the diagonal of Λ may contain some negative numbers. When G is not PSD, the columns of 

Z that correspond to negative eigenvalues will therefore be composed of imaginary numbers. 

These imaginary axes are not easily interpretable in the context of MDS regression, so they 

are typically discarded. The information loss resulting from the omission of these imaginary 

axes, however, artificially inflates SSD (McArdle & Anderson, 2001). It is therefore 

important to utilize all n MDS axes, both real and imaginary, in the formulation of F̃. In 

order to do so while also avoiding the inconvenience of working with imaginary numbers, 

the MDMR test statistic can be expressed in a form that utilizes the information in all n 
MDS axes (both real and imaginary) without the direct use of the potentially complex matrix 

Z. Using the fact that H and I − H are idempotent as well as the fact that the matrix trace 

operator is invariant to cyclic permutations (i.e., tr [ABC] = tr [CAB] = tr [BCA] for any 

compatible matrices A, B and C), Eq. 4 is written in terms of the real matrix G = ZZ′ rather 

than the potentially complex matrix Z as
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(5)

Equation 5 is the omnibus MDMR test statistic as proposed by Anderson (2001) and 

McArdle and Anderson, (2001). In the special case that D is constructed with Euclidean 

distances, the outer product of Z (i.e., ZZ′ = G) is equal to the outer product of the data 

used to construct the distance matrix. That is, G = YY′. As a result, Eqs. 1, 4 and 5 are 

equivalent if D is Euclidean, so the MDMR test statistic is F-distributed if D is Euclidean 

and Y is univariate. However, if these conditions do not hold, F̃ is not F-distributed, and 

permutation tests have typically been used to estimate MDMR p values. Note that, the 

degrees of freedom p and n − p − 1 are constants that do not influence permutation-based p 
values, so they are typically omitted from the MDMR test statistic (Anderson, 

2001;McArdle & Anderson, 2001). For the sake of consistency with existing literature, they 

will be subsequently omitted here as well because they are not necessary for the derivation 

of the null distribution of F̃ presented in the following section.

In the case of multiple predictors, MDMR can be used to test hypotheses about subsets of 

predictors. Analogous to the standard linear model, this is done in a model comparison 

framework by creating a design matrix for the reduced model, X0, that does not contain the 

predictors of interest. Denoting H0 as the projection matrix of X0 and omitting the degrees 

of freedom, the MDMR test statistic for the conditional effects of a subset of predictors is 

given by

(6)

Like the omnibus test, the MDMR test statistic for a subset of predictors is equivalent to the 

standard linear model when q = 1 and D is Euclidean, but Eq. 6 does not follow a standard 

distribution otherwise. Additional permutation tests are typically used to compute p values 

for subsets of predictors.

There are many ways to conduct MDMR permutation tests. The most efficient involves 

using Eq. 5 B times based on B random permutations of the rows of X. Using matrix 

algebra, Eq. 5 is evaluated in a less interpretable, but more computationally efficient manner 

by expressing F̃ in terms of the inner product of two n2 × 1 vectors (vec [H] and vec [G]). 

The computational burden of MDMR permutation tests is therefore a function of Bn2. 

Furthermore, the precision of permutation-based p values is a function of B, such that 

increasingly stringent significance criteria require increasingly large B. These considerations 

result in MDMR permutation tests that require an infeasible amount of computation time 

when sample sizes are large and/or when highly precise p values are required.
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3. The Null Distribution of the MDMR Test Statistic

This section utilizes ideas at the core of MDS to show that the MDMR test statistic is 

asymptotically distributed as the quotient of two independent linear combinations of 

independent chi-square variables.

3.1. Derivation of the Distribution

Recall the spectral decomposition of G = UΛU′ discussed above. Using this equality and 

omitting the degrees of freedom, Eq. 5 is rewritten as

(7)

Because H and I − H are symmetric, F̃ can be expressed as

(8)

Next, denote Û = HU and R = (I − H)U. The columns of these two matrices contain the 

fitted values and residuals resulting from regressing each eigenvector of G onto X. Because 

U is orthogonal, these two matrices can be expressed in terms of the eigenvectors, denoted 

uk (k = 1, …, n), as, Û = [Hu1, …, Hun] and R = [(I − H)u1, …, (I − H)un]. This 

representation makes explicit the fact that the kth columns of Û and R are the vectors of 

fitted values and residuals from regressing uk onto X using standard linear regression. 

Denote these column vectors as ûk and rk. Eq. 8 is now be expressed as

(9)

or equivalently,

(10)

Through Eq. 10, it is clear that MDMR is not only conceptually related to MDS regression, 

but its test statistic can be exactly reproduced by conducting all n MDS regressions for a 

given D and X. Recall that MDS maps G onto n orthogonal dimensions in Euclidean space 

by eigendecomposing G so that the vector of scores in the kth dimension of Euclidean space 
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is . The kth summands in the numerator and denominator of Eq. 10 are therefore 

equal to the sum of squares due to regression ( ) and to residual ( ) resulting 

from the regression of the kth MDS axis onto X. Not only does this equivalence allow the 

derivation of the null distribution of F̃, but it also facilitates a deeper understanding of 

MDMR as a simultaneous association test of all n MDS axes with X.

Given the assumption that Y comes from a homogeneous population, the central limit 

theorem implies that the uk’s are asymptotically normally distributed because they are linear 

combinations of the elements of G, which are iid if the rows of Y are iid. In this case, 

and  are independent and follow χ2 distributions with p and (n − p − 1) degrees of 

freedom, respectively. In addition to the independence of the numerator terms from the 

denominator terms, the summands in each term are themselves mutually independent 

because the eigenvectors of G are orthogonal.

The MDMR test statistic F̃ is therefore asymptotically distributed as a weighted sum of n 
independent χ2(p) variables divided by a weighted sum of n independent χ2(n − p − 1) 

variables, where both sets of weights are the eigenvalues of G. This distributional form holds 

for any dimensionality of the Y that is used to construct D. Critically, due to the fact that 

MDMR is based on coordinates in Euclidean space derived from D regardless of the 

measure of (dis)similarity used to construct it, this distributional form also holds for any 

measure of dissimilarity used to construct D (Euclidean or otherwise). These coordinates 

depend on the selected measure of dissimilarity, but the weights (λk) of the composite χ2 

variables do as well, thus accounting for these differences and resulting in a correct null 

distribution regardless of the measure of dissimilarity used to compute D.

The same derivation can be applied to the test statistic corresponding to a subset of 

predictors (F̃
s, Eq. 6) to conclude that it has the same distributional form. For this statistic, 

the only difference is that the degrees of freedom of the composite χ2 distributions are p0 

and n − p − 1, where p0 denotes the number of parameters being tested.

Recall that unless D is computed using Euclidean distances, some of the eigenvalues of G 
will be smaller than zero. In this case, some of the weights (λk) of the linear combinations 

that characterize the null distribution of F̃ will be negative. A χ2-distributed variable is 

bound by zero and infinity, so a linear combination of χ2 variables in which some weights 

are negative will be bound by negative and positive infinity. When G is not PSD, the null 

distribution of the MDMR test statistic is therefore unbounded, unlike the standard F-

distribution that has a lower bound of zero. Note, however, that despite the potentially 

negatively infinite lower bound of F̃, hypothesis tests based on F̃ are always one-sided, with 

larger values implying smaller p values. The manner in which these p values can be 

computed based on the asymptotic null distribution of F̃ is discussed below.

3.2. Computing Theoretical p values

In general, the probability density function of a quotient of linear combinations of 

independent χ2 variables does not have a closed form, but its cumulative density function 

(CDF) can be approximated with a high degree of accuracy using an algorithm proposed by 
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Davies (1980). This algorithm numerically inverts the known characteristic function of a 

linear combination of independent χ2 variables in to order approximate its CDF, and thus p 
values, within a user-specified margin of error. Davies’ algorithm is implemented in the 

CompQuadForm package (Duchesne & Micheaux, 2010) in R (R Core Team, 2015). This 

implementation is fast, running in a matter of seconds for a wide range of sample sizes and 

levels of precision.

Given a set of weights (λk) and degrees of freedom for each composite χ2 variable, the 

Davies’ algorithm can be used to attain p values for the specified linear combination, but it 

does not immediately provide a method to calculate p values for quotients of such linear 

combinations, which are necessary to assess the MDMR test statistic. However, the CDF of 

a quotient of linear combinations of χ2 variables can be expressed in terms of a single linear 

combination of χ2 variables. Specifically, the CDF of F̃ evaluated at f̃ can be written as

(11)

This final expression has the form of the CDF of a single linear combination of χ2 variables 

evaluated at zero with weights {λ1, …, λn, (− f̃λ1), …, (− f̃λn)} and corresponding degrees 

of freedom {p, …, p, (n − p − 1), …, (n − p − 1)}. The Davies algorithm can therefore be 

used to quickly compute theoretical MDMR p values without conducting a permutation test.

An R package titled MDMR is currently available on CRAN that provides functions to 

conduct MDMR with the analytic p values presented above. This package also provides 

functions that can be used to compute the univariate effect size on each outcome variable, 

described below.

4. Univariate Effect Size

The current MDMR framework does not provide a means to identify which variables 

comprising Y are primarily responsible for the association between D and X. The only 

available measure of effect size quantifies the effect on the distance matrix as a whole 

without providing any information about effects on individual variables. The pseudo-R2 

statistic used in MDMR is conceptually similar to R2 in the standard linear model, which 

quantifies the proportion of the total sum of squares of the outcome that can be explained by 

the predictor. The pseudo-R2 statistic instead measures the proportion of SSD that can be 

explained by the predictors, and it is computed by dividing the numerator of the MDMR test 

statistic by the total sum of squared pair-wise distances rather than the portion of SSD 
attributable to error,
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(12)

Importantly, recall that the numerator of r̃2 can be expressed as . In the case 

that G is not PSD, this term can be negative, resulting in r̃2 being a negative number because 

the trace of G is always positive. This only tends to occur in practice, however, when the 

effect of X on D is trivially small, so negative values of r̃2 are interpreted in the same way as 

values of zero.

Although r̃2 does not directly provide information about the effect size on each variable 

comprising Y, it is a key component in the statistic developed below that can be used to 

estimate these effects. We propose an effect size measure δ for each individual variable yk (k 
= 1, …, q) comprising Y that is defined as the decrease in r̃2 resulting from the dissociation 

of yk and X. The effect size δ is computed for yk with the following procedure. First, create 

Y(k) by randomly permuting the kth column of Y. Then using the same distance metric used 

to construct D, compute a distance matrix based on Y(k), denoted D(k), and transform it into 

G(k) using Eq. 3. Next, compute , the measure of overall 

effect size on the version of the data with the kth outcome variable randomly permuted. The 

effect size on yk is then defined as

(13)

The rationale to consider δ as an effect size measure is as follows. If the predictors have a 

large effect size on yk, we would expect that dissociating it from X would notably shrink the 

overall effect size measure on D, and therefore larger values of δ suggest a larger effect on 

yk. On the other hand, if the effect on yk is small, we would expect that dissociating it from 

X would not have a large impact on the overall effect size measure, so smaller values of δ 
indicate a smaller effect size on yk.

It is important to note that δ is a relative measure of effect size whose scale depends on the 

dimensionality and covariance matrix of Y as well as the distance metric used to form D. As 

the number of variables in Y increases and as their covariance increases, dissociating a 

single outcome variable from X will have a less drastic effect on r̃2, so δ cannot be used to 

compare effect sizes across studies. Rather, it is intended to discriminate effect sizes 

between variables used to construct a particular distance matrix. It can be used to determine 

if all variables are relatively equally affected by the predictors, or if a subset is driving the 

association between X and D more than others.

In this procedure, yk is permuted (i.e., its elements are randomly shuffled) rather than 

removed from the data because removing it would change the total sums of squared 

distances between individuals, and therefore the denominator of r̃2. Permuting yk rather than 
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removing it changes the proportion of the squared distances that can be explained by X (tr 

[HGH]) while keeping the total sum of squares (tr [G]) constant, and thus facilitates 

meaningful comparison of r̃2 and . As a consequence of permuting yk rather than 

removing it, negative values of δ are possible when the effect size on yk is small because in 

this case, a single random permutation may actually serve to increase its association with X 
by random chance. To avoid this possibility, we recommend computing δ with multiple 

random permutations of yk and averaging the results. This practice is particularly valuable 

with small sample sizes because small n can result in an appreciable risk of spurious 

associations after a single random permutation. Furthermore, the computational burden of 

computing δ multiple times will typically be trivial with a small sample. We have found that 

averaging δ estimates from 10 random permutations is typically sufficient to protect against 

the possibility of spurious relationships.

Finally, just as MDMR can be used for both omnibus tests and tests of subsets of predictors, 

δ can be computed based on the entire set of predictors or using a only subset of predictors 

while conditioning on the rest. Basing δ on the entire set of predictors results in an omnibus 

effect size that is conceptually similar to R2 in the linear model, and basing it on a single 

predictor measures the effect size of a single predictor on yk, conditional on all other 

predictors. This second measure is conceptually similar to a squared standardized regression 

coefficient. To compute δ based on a subset of predictors, replace the projection matrix in 

Eq. 10 with (H −H0) as was done in Eq. 6, where H0 is the projection matrix of the reduced 

model.

5. Simulation Study I: Validity of Analytic p values

Research investigating the statistical properties of MDMR demonstrated that permutation 

tests result in well-controlled Type-I rates (Zapala & Schork 2012). To test the validity of 

our proposed analytic p values, a simulation study will be conducted that compares them to 

the established permutation-based p values. Subsection 3.1 notes that the null distribution of 

the MDMR test statistic relies on the central limit theorem, implying that it is an asymptotic 

distribution. As a result, it is expected that the validity of the proposed analytic p values will 

depend on features of the data including, but not necessarily limited to, sample size. The 

primary goal of this simulation study is to investigate which conditions must hold in order 

for the analytic null distribution to result in correct p values.

Subsection 5.1 presents an array of conditions that will be used to generate data, and MDMR 

will be conducted on each generated dataset using both analytic p values and permutation 

tests. The consistency of the resulting p values will be modeled as a function of the data-

generating conditions to achieve the goal of this study. It is important to note that 

permutation-based p values include random error that preclude the expectation of exactly 

equal results under any circumstances. A criterion must therefore be established that 

determines whether or not the two approaches yield consistent p values for a given dataset. 

This criterion is discussed in Subsect. 5.2 before presenting the results of the study in 

Subsect. 5.3.
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5.1. Data-Generating Conditions

Data are generated under the null hypothesis of no association by generating X and Y 
independently, each from a multivariate normal distribution in which variables have unit 

variance. The correlation among all predictors in the population will be set to either ρX = 0.0 

or 0.3 and the correlation among outcomes will be either ρY = 0.0 or 0.5. It is noted in 

Subect. 3.1 that the proposed null distribution should hold regardless of the distribution of 

each variable comprising Y. In order to assess this claim empirically, categorical outcome 

data are also generated by dichotomizing normally distributed variables at their population 

mean. This study also considers the impact of sample size, the number of predictors, the 

number of outcome variables, and distance metric used to quantify the dissimilarity among 

response profiles. To this end, the sample size (n = 50, 100, 150, 200, 250, 500, 1000), 

number of predictors (p = 1, 3, 5, 10), number of outcome variables (q = 1, 3, 5, 10, 20, 50), 

and distance metric used to construct D vary across simulation conditions. We use Euclidean 

as well as Manhattan distances. Manhattan distances are a robust alternative to Euclidean 

distances that are defined as the sum of absolute (rather than squared) distances between the 

variables comprising the response profiles.

The computational burden of permutation tests limits the number of datasets that can be 

compared in each condition. The consistency of the analytic approach with permutation tests 

is most important when p values are small (<0.05) because in this case, even small 

differences between the methods could lead to inconsistent statistical inference. In order to 

focus our finite computational resources on such cases without limiting our evaluation to a 

specific range of values for the test statistic (i.e., F̃ resulting in p < 0.05), this study was 

conducted twice, with each version focusing on one of these two goals. In the first version, 

we focus on comparing the two approaches using datasets that result in small p values. To do 

so, datasets are randomly generated in each condition until 100 have been produced that 

result in analytic p values less than or equal to 0.05. Permutation tests are then conducted on 

these 100 datasets, and the consistency of the two methods is determined by the method 

described below. In the second version, 100 datasets are generated under the null hypothesis 

in each condition in order to compare the consistency of analytic and permutation-based p 
values across the full spectrum of possible p values.

5.2. A Criterion for p Value Equivalence

Permutation tests rely on an empirical null distribution specific to the dataset being 

analyzed. When conducting MDMR, this distribution is defined by recomputing the test 

statistic using the observed distance matrix and every possible permutation of the rows of X. 

There are n! unique permutations of this kind. More formally, let F̃
m denote the MDMR test 

statistic computed from the mth (m = 1, …, n!) permutation of the rows of X, and let F̃
p 

denote a vector of length n! with entries F̃
m. That is, F̃

p is the permutation-based null 

distribution of the MDMR test statistic. Using  to denote the indicator function, permutation 

p values are defined as
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(14)

Because it is infeasible to conduct all n! possible permutations unless n is extremely small, 

F̃
p is usually estimated using B (≪n!) random permutations of the rows of X. This results in 

an estimated permutation distribution F̃
B, comprising the B test statistics resulting from B 

random permutations of the rows of X. If F̃
b (b = 1, …, B) are the elements of F̃

B, then the 

estimated permutation p value is computed as

(15)

In this study, B = 5000 random permutations will be conducted to estimate pp.

The necessity of using p̂p to estimate pp adds an element of uncertainty to the computation 

of permutation-based p values that is not shared with standard analytical p values. Rather 

than a fixed value computed given data and a test statistic, p̂p is a random variable that varies 

based on the randomly selected subset of possible permutations used to compute it. Due to 

the fact that the B permutations are randomly sampled from the n! possible permutations, 

Efron and Tibshirani (1994) note that Bp̂p ~ bin(pp, B). To account for this random variation 

in p̂p, the binomial distribution of Bp̂p can be used to form an exact confidence interval for 

pp according to the method described by Clopper (1934).

We define the coverage of an observed theoretical p value as whether or not it falls within its 

corresponding 99% confidence interval for pp. This statistic is the focus of the study. To 

establish conditions that must be met in order for the theoretical p values to be consistent 

with results from permutation tests, coverage can be modeled as a Bernoulli-distributed 

variable with a coverage rate (i.e., probability of coverage) that depends on the data-

generating conditions. Phrased differently, the goal of this study is to identify the conditions 

that must hold to result in a high coverage rate, which implies equivalent permutation and 

analytic p values and therefore the satisfaction of the asymptotic requirements of the analytic 

null distribution.

5.2.1. Note on Confidence Interval Width—Because the variance of a binomial 

variable depends on the number of trials and probability of success, the width of the 

99%confidence interval around each estimated p̂p depends on both B and the value of p̂p. 

Using B = 5000, the smallest possible 99% Clopper-Pearson interval has a width of 0.0011 

(at p̂p = 0 and p̂p = 1), and the largest interval has width 0.0366 (at p̂p = 0.5). Increasing B 
would serve to narrow these intervals and result in more precise point estimates for pp, but 

importantly, the coverage rates of the analytic p values are asymptotically invariant with 

respect to B. With larger B, the increased precision of p̂p results in less noise in the estimated 

permutation-based p values, making them more similar, on average, to the true underlying 

pp. The confidence interval for pp narrows proportionally to this reduction in estimation 
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error, resulting in analytic p value coverage that is asymptotically constant with respect to B. 

This phenomenon is illustrated empirically in Fig. 1, which shows the analytic p-value 

coverage over 500 randomly generated datasets when B = 5000, 50000, and 500000. 

Although the permutation and analytic p values are more highly correlated as B increases, 

all three conditions result in virtually equal coverage.

5.3. Simulation I Results

5.3.1. AsymptoticValidity—The pattern of results was the same for both versions of the 

simulation study. When considering data generated such that p < 0.05 and when considering 

data generated under the null hypothesis, the logistic regression model predicting coverage 

from the simulation conditions (n, p, q, ρX, ρY, distance metric, and distribution of Y) 

indicated a highly complex relationship between these predictors and coverage rates. All 

main effects except for the effect of ρX were highly statistically significant, as were many 

higher-order terms ranging from two- to six-way interactions. In both versions of the study, 

the predictive quality of the resulting model was strong, correctly classifying coverage for 

91%of the observed analytic p values in both cases. The model’s complexity, however, 

makes it impractical for providing guidelines to researchers regarding when they should 

expect the asymptotic null to hold.

A much simpler model can be constructed by recognizing that the effects of q, ρY, the 

distributional form of Y, and the distance metric used to compute Y can be characterized 

using statistics computed from the G matrix. Specifically, differences in these data-

generating conditions are related to differences in the eigenvalues of G. We found that a 

single variable based on n, p, and these eigenvalues can be used to model coverage rates in a 

simple logistic regression model that is interpretable and yields a similar classification 

accuracy to the more complex model described above (92% when modeling data generated 

such that p < 0.05, 89% when modeling data generated under H0). To build this model, we 

define the “adjusted sample size” as

(16)

where λ1 is the largest eigenvalue of G. This statistic equals the denominator degrees of 

freedom of the linear model multiplied by the proportion of SSD explained by the first MDS 

axis. Stated differently, this statistic penalizes n − p − 1 based on the number of independent 

dimensions that are required to describe the bulk of SSD. As is the case when considering 

the eigenvalues of a covariance matrix, λ1 will tend to be small relative to  if Y 
comprises many largely unrelated variables. This results in increasing penalization as the 

amount of independent information in the columns of Y increases, which is consistent with 

the common statistical idea that more observations are needed to fit more complex models.

Results from the simple logistic regression models regressing coverage onto ñ indicate that 

as ñ increases, so does the coverage rate of analytic p values in the corresponding data-
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generating conditions. When data were generated with uniformly small analytic p values, an 

adjusted sample size of 33 results in a model-implied coverage rate of 80 %. According to 

this model, ñ ≥ 74 is required to attain a coverage rate of 99 %, which would be expected if 

the null distribution is exactly correct based on the use of 99% confidence intervals for the 

permutation p values. When modeling coverage from datasets generated freely under the 

null hypothesis, an adjusted sample size of 22 results in model-implied coverage of 80%, 

and ñ ≥ 95 is required to attain model-implied coverage of 99 %.

Figure 2 illustrates the model-implied coverage rates as a function of ñ based on both 

versions of the simulation study. The differences between these two models highlight an 

important result. When focusing exclusively on datasets that result in small p values, 

coverage rates are more sensitive to ñ than when considering data generated freely under the 

null hypothesis. That is, the consequences of failing to obtain a sufficiently large adjusted 

sample size seem to be exaggerated when p < 0.05. It is here, in the tail of the distribution, 

that p value accuracy is most important because when a p value is near a pre-specified 

significance criterion, even relatively small biases can lead to incorrect statistical inference.

We therefore recommend using the set of results based on small p values as a guideline for 

choosing between analytic and permutation-based p values in practice. Obtaining an 

adjusted sample size of at least 74 should be sufficient to satisfy the asymptotic requirements 

of the null distribution and therefore result in unbiased analytic p values. For smaller values 

of ñ, the asymptotic requirements of the model are unlikely to hold exactly. In these 

situations, it is up to the reader to weigh the computational benefits of adopting analytic p 
values against the likely bias that will result from their use. The type of bias that can be 

expected when using analytic p values with insufficient ñ is discussed below.

5.3.2. Bias—A researcher may want to conduct MDMR in a scenario in which ñ is small, 

but the sample size is large enough to preclude the use of permutation tests due to 

computational infeasibility. In cases like these, analytic p values can still be used without 

inflated Type-I error rates because they are systematically conservative when the adjusted 

sample size is insufficient to result in analytic p values that are consistent with the results of 

permutation tests. Using results from the simulations focusing on small p values, Fig. 3 

illustrates the bias of the analytic p values as a function of ñ. When ñ is small, analytic p 
values tend to be larger than their permutation-based counterparts. As ñ increases such that 

the coverage approaches 99 %, the differences between analytic and permutation-based p 
values converge to zero, with variability attributable to the random error of permutation 

tests.

6. Simulation Study II: Effect Size and Power

6.1. Study Design

A second Monte Carlo simulation study assesses the behavior of δ as well as the power of 

MDMR using both Euclidean and COSA distances (Friedman & meulman, 2004) relative to 

multivariate multiple regression (MMR), a common variable-centric approach to 

multivariate association tests. Two data-generating models are considered. In the first, data 

are drawn from a homogeneous population that is ideal for MMR. The second uses a 
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heterogeneous population that should be better suited to MDMR, especially with COSA 

distances as the outcome because this distance metric accounts for the possibility that 

different variables can characterize different subsets of the population.

The first set of conditions uses MMR as the data-generating model in order to study the 

power of MDMR relative to the correctly specified model as well as the behavior of δ 
relative to the effect size measures of MMR. First, we generate one dichotomous predictor 

that influences a single dichotomous outcome in order to verify that all three methods 

perform similarly in the case of a univariate outcome. Second, data are generated such that 

only one of ten dichotomous outcome variables is affected by the predictor in order to assess 

the effect of including many noise-variables in the MV outcome, as is common in many 

high-dimensional research domains. In the third condition, the predictor influences five of 

ten generated outcome variables, which can occur in reality, for example, if only one 

subscale of a questionnaire is related to a predictor variable. Finally in the fourth condition, 

five dichotomous predictors are generated that influence five of ten generated outcome 

variables differentially in order to investigate the behavior of δ and MDMR in the presence 

of multiple predictors that jointly influence the same outcome variables. In all conditions, 

the sample size is fixed at 200, and the dichotomous outcome variables are created by 

categorizing simulated multivariate normal data with a mean split. The residual covariance 

of these underlying normal variables is fixed at 0.3 so that the observed outcome variables 

are related to one another independent of the predictor variables, as is typically the case in 

real data. Each condition is split into five sub-conditions that use different values for the 

proportion of variance explained in each affected outcome variable (0.000, 0.025, 0.050, 

0.075, 0.100), and data from each of these sub-conditions are randomly generated and 

analyzed 100 times.

Across all of these conditions, we expect the power of MMR to represent an upper bound for 

the power of MDMR because it is the correctly specified model. MDMR using Euclidean 

distances should have similar performance, and the power of COSA-MDMR will likely be 

lower than the other two methods because COSA distances are designed for data in which 

different variables characterize different subsets of the population. Regarding δ, in the first 

three conditions, we compare Euclidean- and COSA-MDMR estimates of δ for each 

variable to the estimated R2 from MMR. In the fourth condition, because we have multiple 

predictors, we will compare δ computed for each predictor separately to squared estimates 

of the standardized regression coefficients from the linear model (β̂2) in order to study the 

behavior of the δ measure based on individual predictors. Across all four conditions, we 

expect that δ will be linearly related to its MMR counterpart using both distance measures, 

but we expect that the correspondence will be stronger using Euclidean distances because 

Euclidean-MDMR is more similar to MMR than is COSA-MDMR.

The second set of conditions mirrors the first, but introduces a heterogeneous regression 

effect. There are two equal-sized subgroups in the population whose affected variables are 

mutually exclusive in each condition. Person-centered methods (or hybrid methods 

combining person- and variable-centered methods) are generally better-suited to handle 

heterogeneous populations (Lubke & Muthén, 2005; Muthén and Muthén 2000). It is 

therefore important to assess the behavior of δ and power of MDMR in these circumstances. 
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In light of this type of heterogeneity, MMR is misspecified and should not necessarily 

outperform MDMR. In particular, COSA-MDMR is well suited to this scenario because the 

COSA algorithm is designed to compute distances between subjects that come from a 

heterogeneous population, and it accounts for the fact that different variables can 

characterize different subsets of the sample. The signal from the affected variables in the 

affected subset of the population should be amplified with the COSA algorithm, leading to 

higher power than the other two methods that assume a homogeneous population. With 

respect to effect sizes, MMR and Euclidean-MDMR should still perform similarly, but 

estimates of δ resulting from COSA-MDMR should do a better job differentiating affected 

variables from unaffected variables than MMR, so the relationship will no longer necessarily 

be linear.

6.2. Results

Recall that when q = 1 and D is computed with Euclidean distances, the MDMR test statistic 

is equivalent to the linear model test statistic. Furthermore, when COSA distances are 

computed on a single outcome variable, they are equivalent to Euclidean distances. As a 

result, the condition in which one predictor variable influences a single outcome variable led 

to identical test statistics and measures of effect size whether analyzed with linear 

regression, Euclidean-MDMR, or COSA-MDMR, as expected. Results are therefore 

presented only for the conditions that differentiated the three methods. We begin by 

reporting results concerning the statistical power of the three techniques. Then we discuss 

the relationship between the MDMR randomization-based effect size measure δ and 

measures of effect size from the linear model, and finally we report the ability of δ to 

correctly identify associations between predictors and outcomes.

The sub-conditions in which the predictors and outcomes were generated independently 

demonstrated that all three methods yield well-controlled Type-I error across all data-

generating conditions considered. As expected, the power of MMR was slightly greater than 

or equal to the power of MDMR when data came from a homogeneous population (i.e., 

when MMR was the true data-generating model). This was also the case given a 

heterogeneous population in which only one variable was affected in each sub-group by a 

single predictor variable. When the number of affected variables in a heterogeneous 

population, however, was increased to five, both Euclidean- and COSA-MDMR resulted in 

notably higher power than MMR, which requires the assumption of fixed regression 

coefficients for the entire population. Across all conditions, the power of MDMR was 

similar using both Euclidean and COSA distances. See Fig. 4 for illustrations of the power 

of all three techniques in each data-generating condition.

Across all conditions, δ was linearly related to the corresponding effect size measure from 

the linear model. That is to say, in the conditions that used only one predictor, the overall 

measure of δ was linearly related to R2, and in the conditions that used multiple predictors, 

the measure of δ computed for each predictor-outcome pair was linearly related to β̂2 from 

the linear model. The Euclidean-based δ, denoted δE, had a stronger relationship with the 

effect sizes of the linear model than did δ based on COSA distances (δC), and δC grew faster 

relative to the effect size measures of the linear model than did δE. When R2 or β̂2 was near 
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zero, δE varied between roughly 0.00 and −0.01, and δC varied between roughly 0.01 and 

−0.01, with the negative estimates reflecting spurious increases in r̃2 resulting from 

randomly permuting variables that had no true effect. As discussed in Sect. 4, negative 

estimates of δ can be interpreted in the same way as a zero-estimate, and they are not 

uncommon when using a single permutation to compute δ, which was done here for the sake 

of computation time. As expected, all measures of effect size tended to be larger when 

computed on data arising from a homogeneous population. See Fig. 5 for illustrations of the 

results comparing δ to corresponding measures of effect size from the linear model.

Beyond comparing δ to measures of effect size in the linear model, it is important to assess 

the ability of δ to detect which variables are indeed related to the predictors and which are 

not. That is, it is important to estimate the probability to correctly detect predictor-outcome 

associations using δ as well as the probability that δ will incorrectly conclude that unrelated 

predictors and outcomes are related. Doing so is not straight-forward, however, because δ is 

not a decision criterion, but rather a continuous measure of effect size. In order to estimate 

true- and false-positive rates for detecting associated predictors and outcomes, a threshold 

must be applied to δ such that estimates of δ above the threshold result in the conclusion that 

a predictor and outcome are related, and estimates below the threshold result in the 

conclusion that they are not. The true- and false-positive rates will depend on the chosen 

threshold, with larger thresholds resulting in lower true-positive rates and smaller thresholds 

resulting in higher false-positive rates. Rather than conducting this procedure for a single 

threshold, we employ receiver operating characteristic (ROC) curves that estimate δ’s true-

positive and false-positive rates across all possible thresholds.

Figure 6 displays the results of these analyses in four plots that correspond to different data-

generating effect sizes for the subset of affected variables. In each plot, the ROC curves for 

δE and δC are displayed that were computed on both homogeneous and heterogeneous 

populations. The true-positive rate (TPR) increases much more quickly relative to the false-

positive rate (FPR) when considering data arising from a homogeneous population, and 

higher data-generating R2 results in higher TPR relative to FPR. The COSA-based δC 

performs worse than δE for most thresholds. However, as the data-generating R2 begins to 

grow, the ROC curves for both δE and δC begin to approach the top-left corner of the plot, 

indicating simultaneously high TPR and low FPR, and therefore strong performance in 

correctly detecting associations between predictors and outcomes. It is likely that the 

performance of both δE and δC would be even stronger given a larger sample size and/or if 

more random permutations of each outcome variable were used to compute δ.

Finally, we note that MMR requires the assumption of a normally distributed outcome 

variable. To compare the methods when this assumption is satisfied, we also conducted these 

analyses on normally distributed outcomes in all data-generating conditions. The results of 

this followup mirrored the results described above with respect to the power of Euclidean-

MDMR and MMR, as well as the behavior of δE. The only substantial change in results 

associated with the switch to normally distributed outcome data concerned not MDMR, but 

rather the COSA algorithm. In its attempt to account for the possibility that different 

variables can characterize different subsets of the population, it tended to amplify the signal 

of unaffected outcome variables rather than affected variables when the outcomes were 
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normally distributed. As a result, the power of COSA-MDMR relative to Euclidean-MDMR 

and MMR was lower for normally distributed outcomes than for dichotomous outcomes, and 

δC performed poorly on normally distributed outcomes.

7. Empirical Example: Predicting Personality Profiles

To illustrate the usefulness of MDMR in the context of quantitative behavioral research, we 

present an empirical example that employs MDMR to identify predictors associated with 

individual differences in personality profiles. This example illustrates how to conduct 

MDMR in practice, and it shows that using MDMR can result in the detection of 

multivariate associations that are not marked as significant by MMR.

7.1. Data Description

A cross-sectional sample of 985 participants in the Notre Dame Study of Health & Well-

Being (Bergeman & Deboeck, 2014) provided personality data using the NEO five-factor 

inventory (Costa & McCrae, 1992). Using these data, scores on 26 personality facets were 

computed (see the vertical axis of Fig. 7 for a list of the facets). The goal of the analysis was 

to explain individual differences among these personality profiles using age (18–91 years), 

sex (58% female), education level, and self-reported health measured by the Health Status 

Checklist (Belloc, Breslow, & Hochstim, 1971). The effects of interactions between these 

predictors on personality profiles were also of interest. After removing subjects with any 

missing data (assumed to be missing at random), our operational sample size was 891.

7.2. Analyses Performed

All outcome variables were scaled to unit variance prior to both analyses so that they each 

had equal impact on the test statistics. A standard MMR model was fit to the data including 

the four main effects as well as all possible two-, three-, and four-way interactions between 

the covariates, resulting in 15 total predictor variables. The same design matrix was used in a 

Euclidean-MDMR analysis in order to compare results from the two approaches.

Some outcome variables followed non-normal, long-tailed distributions. The extreme scores 

in these distributions have the potential to be disproportionately influential when modeled by 

methods like MMR and Euclidean-MDMR that are based on squared differences. For 

example, “angry hostility” is an ordered four-category variable with a substantial positive 

skew such that only 2.9% of subjects scored in the highest category. In light of these 

distributions, MDMR was also conducted on a distance matrix constructed using the more 

robust Manhattan distance between each pair of personality profiles.

7.3. Results

7.3.1. Identifying Significant Effects—Prior to conducting MDMR, we assessed 

whether permutation tests or analytic p values should be used by computing ñ = 203.84 for 

Euclidean distances ñ = 257.20 for Manhattan distances. According to the guidelines 

discussed in Subsect. 5.3 that are illustrated in Fig. 2, ñ was large enough in both cases to 

inspire confidence in the validity of the analytic null distribution for this application, so 

MDMR p values were all computed analytically.
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The use of Euclidean-MDMR and MMR both resulted in very small p values for all four 

main effects (all less than 5 × 10−8). Both sets of results indicated that the interaction 

between age and health is also significantly related to the personality facets (p values of 

0.006 and 0.028 for Euclidean-MDMR and MMR), as is the interaction between age and 

education (p = 0.002, 0.005).

The methods resulted in different conclusions, however, regarding the effects of two other 

predictors. Using MMR to model the sums of squares of the outcome variables resulted in 

the identification of a significant interaction between age and sex (p = 0.011) that did not 

meet the standard significance criterion (α = 0.05) using Euclidean-MDMR (p = 0.056). On 

the other hand, modeling these data from a person-centered approach resulted in the 

detection of a higher-order effect that was not deemed relevant when using the variable-

centered approach. Specifically, Euclidean-MDMR suggested that four-way interaction 

between all of the covariates was found to be a significant predictor of individual differences 

among personality profiles (p = 0.020). The variable-centered approach had virtually no 

power to detect this effect (p = 0.499).

The robust approach to MDMR using Manhattan distances yielded the same inferences as 

Euclidean-MDMR, though the p values differed slightly. Most notably, the robust approach 

resulted in less power to detect the age by sex interaction (p = 0.102) and more power to 

detect the four-way interaction (p = 0.010) than both Euclidean-MDMR and MMR.

These results illustrate that there is not necessarily a single best statistical approach to 

answering a complex multivariate research question. Rather, researchers should choose a 

method that reflects their goals and assumptions. Beyond the philosophical distinction 

between variable- and person-centered methods that differentiates MMR and MDMR in 

general, the three methods used in this example reflect different practical assumptions as 

well, which contributes to their differing results. Both MMR and Euclidean-MDMR are 

appropriate for modeling outcomes with thin-tailed distributions due to the explicit 

normality assumption required to conduct MMR and the sensitivity to outliers that 

characterizes Euclidean-MDMR. Manhattan distances are less sensitive to outliers, making 

Manhattan-MDMR potentially more attractive for researchers interested in conducting a 

person-centered association test when the outcome variables are characterized by skewed or 

otherwise heavy-tailed distributions. Importantly, Euclidean and Manhattan distances are 

only two examples from a pool of diverse distance metrics that can be used to quantify 

differences between response profiles in many different ways that have been designed to 

reflect different assumptions about a multivariate outcome. Prior to conducting a person-

centered association test with MDMR, researchers should carefully consider their data and 

their goals in order to select an appropriate quantification for the distance between response 

profiles.

7.3.2. Interpreting MDMR Effects—To further investigate the nature of the covariate 

effects on differences among subjects’ personality profiles, δ statistics (Eq. 13) were 

computed to evaluate the effect size of the omnibus effect on each personality facet. Pairwise 

δ statistics were also computed to measure the conditional effect sizes of each predictor that 

was identified as significantly related to differences among personality profiles. Each δ 
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statistic was computed 50 times with different random permutations each time, and Fig. 7 

reports the median value of each statistic when computed on Euclidean distances. Manhattan 

distances resulted in the same pattern of effect sizes.

The omnibus δ statistics suggested that some personality facets (e.g., “angry hostility,” 

“anxiety,” “trust”) were more highly related to the set of predictors than others (e.g., 

“assertiveness,” “gregariousness”). All estimated omnibus effect sizes, however, were 

greater than zero, indicating that all facets contributed to the significant relationship between 

response profile (dis)similarities and the set of predictors as a whole.

The pairwise δ estimates quantify the different conditional effects of each predictor on each 

outcome variable. The conditional main effect of self-rated health was found to be highly 

related to personality facets like “activity” and “positive emotions” but weakly related to 

facets like “values” and “aesthetics.” Age was found to have a more substantial relationship 

with “trust” and “vulnerability” than many other facets, and the facet most impacted by the 

conditional effect of education was “ideas.” The main effects tended to have larger and 

broader conditional effects than the interactions, which tended to influence a smaller subset 

of personality facets with comparatively weaker effects.

8. Discussion

Person-centered methods are useful tools for studying differences between response profiles 

on a MV dependent variable. The two major advantages relative to variable-centered 

methods are the fact that they do not require the specification of a particular distribution for 

the variables comprising the MV outcome and that they do not require assumptions 

regarding the relationships among the outcome variables (Bauer & Shanahan, 2007; 

Bergman & Magnusson, 1997; Breslau et al., 2005). The current paper has extended 

multivariate distance matrix regression (MDMR), a person-centered regression technique 

that tests the association of response profile differences and a set of independent variables 

(Anderson, 2001; McArdle & Anderson, 2001), by deriving and validating the asymptotic 

null distribution of its test statistic as well as providing a measure of effect size for each 

variable comprising the MV outcome.

The availability of theoretical p values makes MDMR a newly viable tool in fields that 

require large sample sizes and/or precise, small p values. For example, Zapala & Schork 

(2012) expressed interest in using MDMR in gene-finding studies that seek to find genetic 

markers associated with multivariate outcome data, but noted that such tests were not 

computationally feasible using permutation tests because of the stringent multiple testing 

correction associated with testing hundreds of thousands of genetic markers. Furthermore, 

online resources such as Amazon Mechanical Turk have made the collection of large, 

multivariate survey data easier than ever (Buhrmester, Kwang, & Gosling, 2011). The 

derivation of the asymptotic null distribution of the MDMR test statistic facilitates the use of 

MDMR on such datasets, and the empirical example presented in Sect. 7 illustrates the 

potential advantages of doing so.
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MDMR can be used to model data characterized by a sample size that is smaller than the 

number of outcome variables. In these cases, all of the n MDS axes of the resulting distance 

matrix are likely to be relevant in describing individual differences among the q outcome 

variables because n < q. This would typically result in a small adjusted sample size (Eq. 16) 

and therefore a failure to meet the asymptotic requirements to confidently utilize the null 

distribution. When a dataset is insufficient to result in a valid asymptotic null distribution, 

permutation tests are recommended if they are computationally feasible. If, however, 

permutation tests are computationally infeasible despite a sample size small enough that the 

asymptotic null distribution is inappropriate, then analytic p values can still be utilized 

without an inflated Type I error rate. Our simulations indicated that they are likely to be 

conservatively biased in this case, but having the option to conduct an underpowered test is 

preferable to being unable to conduct the test at all.

The derivation of the asymptotic distribution of the MDMR test statistic also has 

implications for theoretical developments to multivariate multiple regression (MMR) and 

MANOVA. When using these methods, significance tests rely on approximate F-statistics 

which in turn yield approximate p values. There are several approaches to computing such 

approximations (e.g., Wilks’ Lambda, Pillai’s Trace, Hotelling-Lawley Trace, Roy’s Largest 

Root) that can yield different results when applied to the same data (Bray & Maxwell, 

1985). Due to the computational similarities between the MDMR test statistic and the 

multivariate generalization of linear model test statistic, we have used an approach similar to 

the one presented in Sect. 3 to derive what we believe to be the true asymptotic null 

distribution of the multivariate generalization of the F-statistic. We are validating this 

distribution empirically in an ongoing study.

Regarding the proposed measure of MDMR effect size, the second simulation study 

demonstrated that the effect size measure δ can indeed be used to characterize associations 

between predictors and individual outcome variables, thereby rendering MDMR a more 

informative statistical tool. Importantly, the simulation results also illustrated the fact that 

the behavior of δ will differ depending on the measure of dissimilarity used to construct D. 

We therefore suggest studying its behavior with a brief simulation study prior to using the δ 
statistic in conjunction with a distance metric not discussed here.

The empirical example, as well as the second simulation study, illustrated that MDMR can 

result in higher power than MMR in some circumstances. On the other hand, the second 

simulation study also demonstrated that several of the outcome variables must be associated 

with the predictors in order for MDMR to perform well. Because distances between 

individuals are computed using all outcome variables, the signal of a few affected variables 

is notably diminished by the inclusion of variables unrelated to the predictors, leading to 

suboptimal power when using MDMR. This is unlikely a problem in practice, however, 

because multivariate regression techniques including MDMR are typically used with the 

expectation that the predictors will influence multiple variables in the outcome data.

We expected that the combination of MDMR with a signal-amplification algorithms such as 

COSA (Friedman & Meulman, 2004) would further increase the odds of detecting effects in 

potentially heterogeneous populations. However, in the simulations presented here, 
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combining MDMR with COSA distances did not result in notably higher power than using 

Euclidean distances when outcome data were dichotomous, and COSA-MDMR 

underperformed its Euclidean counterpart when using normally distributed outcomes. This is 

likely due to the COSA algorithm being underpowered to differentiate subgroups with a 

sample size of only 200. With larger sample sizes, COSA-MDMR has been shown to 

demonstrate high power even with effect sizes smaller than those considered here (Lubke & 

Mcartor, 2014), so it is likely that COSA-MDMR would gain an advantage over Euclidean-

MDMR if these simulations were repeated with a larger sample size.

It is important to note that in fields like ecology and genetics, MDMR is commonly utilized 

with distance metrics that are quite different than the ones considered here. We have not 

studied the properties of the proposed null distribution in conjunction with such distance 

metrics in great detail. The fact that it depends on the properties of each distance matrix that 

it is used to evaluate inspires confidence that it should be asymptotically correct when using 

virtually any distance metric. That said, researchers who use MDMR with distance metrics 

that are highly dissimilar to the ones presented here are advised to assess the behavior of the 

analytic p values before adopting them.

Since it was first proposed, MDMR has become a popular person-centered method for 

multivariate association tests that has seen frequent use in the fields of ecology (Anderson & 

Walsh, 2013; Braeckman, Van Colon, Soetaert, Vincx, & Vanaverbeke, 2011), biology 

(Carmody et al., 2015), genetics (Kelly et al., 2015, Salem, O’Connor, & Schork 2010), and 

neuroscience (Satterthwaite et al., 2015; Shehzad et al., 2014), among others. The empirical 

example presented here illustrates the benefits of with using MDMR in the context of 

psychological research, and the two proposed developments to the MDMR framework 

substantially increase the appeal of MDMR as a powerful, informative, person-centered 

alternative to traditional variable-centered regression.
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Figure 1. 
Coverage rates as a function of B. The points in each subfigure illustrate the analytic p 
values versus the estimated permutation p values for 500 randomly generated datasets. The 

same 500 datasets were used to create each subfigure, with the only difference between 

conditions being the number of permutations that were used to estimate pp. The width of the 

confidence interval (shaded region) adjusts to keep the coverage rate constant across levels 

of B, within sampling error.
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Figure 2. 
Model-implied coverage probability as a function of ñ, where “coverage probability” refers 

to the probability that an analytic p value yields consistent results with a permutation test 

based on a 99%confidence interval for the permutation p value. The darker line corresponds 

to the model fit to data generated such that p < 0.05, and the lighter line corresponds to the 

model fit to data generated freely under H0.
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Figure 3. 
Difference between permutation-based and analytic p values as a function of ñ. In the right 

panel, values smaller than −5 were recoded to −5 because a few outlying observations as 

small as −30 were obfuscating the figure. In both panels, note that as ñ becomes large, all 

differences are centered around zero, reflecting the high coverage when ñ is large.
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Figure 4. 
Power of MMR, Euclidean-MDMR, and COSA-MDMR with dichotomous outcomes. Each 
row corresponds to a data-generating model. The left column displays results coming from a 

homogeneous population in which the same outcome variables were affected in the entire 

population. The right column corresponds to scenarios in which two unobserved subgroups 

in the population differed in which outcome variables were affected by the predictor(s).
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Figure 5. 
Effect size measures of the linear model (horizontal axes) versus MDMR (vertical axes) with 

dichotomous outcomes. Like Fig. 4, each row corresponds to a data-generating model. The 

left column displays results coming from a homogeneous population in which the same 

outcome variables were affected in the entire population. The right column corresponds to 

scenarios in which two unobserved subgroups in the population differed in which outcome 

variables were affected by the predictor(s).
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Figure 6. 
Receiver operating characteristic (ROC) curves that estimate δ’s true-positive and false-

positive rates across all possible decision criteria based on δ. These results correspond to 

conditions in which one of ten dichotomous outcome variables was affected by a single 

predictor. The four plots are separated by data-generating R2 for the variable that was 

affected, and within each plot, the ROC curves are given for both Euclidean- and COSA-

based δ computed on both homogeneous (1C) and heterogeneous (2C) populations. The 

dotted diagonal line across each plot indicates performance from random chance, and the 

closer a ROC curve gets to the top-left corner of the plot (i.e., 100% detection of true effects 

and a zero false-positive rate), the better the performance of the classifier. This performance 

is quantified using the area under the curve (AUC), with larger AUC indicating better 

performance.
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Figure 7. 
Estimates of the omnibus (leftmost column) and conditional (remaining columns) effect size 

δ on each personality facet (rows). Results are shaded according to the size of the estimated 

effect, and blank cells correspond to zero (or below zero) estimates.
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