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Abstract

Protein synthesis inhibitors are commonly used for measuring protein degrada-

tion rates, but may cause cytotoxicity via direct or indirect mechanisms. This

study aimed to identify concentrations providing optimal inhibition in the

absence of overt cytotoxicity. Actinomycin D, cycloheximide, emetine, and pur-

omycin were assessed individually, and in two-, three-, and four-drug combina-

tions for protein synthesis inhibition (IC50) and cytotoxicity (CC50) over 72 h.

Experiments were conducted in HepG2 cells and primary rat hepatocytes

(PRH). IC50 for actinomycin D, cycloheximide, emetine, and puromycin were

39 � 7.4, 6600 � 2500, 2200 � 1400, and 1600 � 1200 nmol/L; with corre-

sponding CC50 values of 6.2 � 7.3, 570 � 510, 81 � 9, and 1300 � 64 nmol/L,

respectively, in HepG2 cells. The IC50 were 1.7 � 1.8, 290 � 90, 620 � 920, and

2000 � 2000 nmol/L, with corresponding CC50 values of 0.98 � 1.8,

680 � 1300, 180 � 700, and 1600 � 1000 (SD) nmol/L, respectively, in PRH.

CC50 were also lower than the IC50 for all drug combinations in HepG2 cells.

These data indicate that using pharmacological interference is inappropriate for

measuring protein degradation over a protracted period, because inhibitory

effects cannot be extricated from cytotoxicity.

Abbreviations

CC10, cytoxicity concentration at 10% of maximum (90% cell viability); CC50,

cytoxicity concentration at 50% of maximum (50% cell viability); DDIs, drug–drug
interactions; FICs, fractional inhibitory concentrations; GST, glutathione S-transfer-

ase; HBSS, Hank’s balanced salt solution; HepG2, hepatocellular carcinoma cell line;

kdeg, degradation rate constant; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-

trazolium bromide; PBPK, physiologically based pharmacokinetic; PRH, primary

rat hepatocyte.

Introduction

Protein abundance in a cellular system is a balance

between the rate of synthesis and degradation. The ability

of the cell to remove and replenish proteins in a dynamic

state of constant turnover is paramount to maintaining

essential cellular functions. While rates of protein synthe-

sis are readily measurable by time-course experiments

utilising radioisotopes and protein quantification, the rate

of degradation (kdeg) is often more difficult to determine

especially in vivo (Millward et al. 1981; Pratt et al. 2002).

This is due to the complex interplay between different pro-

tein degradation mechanisms and paucity in understanding

the causal signalling mechanisms initiating specific protein

degradation. Protein degradation is commonly quantified as

half-life, the time taken for protein to decrease by half (Zhou

2004; Belle et al. 2006; Zhang et al. 2007). This variable is

interchangeable with kdeg by the following equations
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assuming first-order decay kinetics (Belle et al. 2006), where

N is the protein intensity, k is the decay rate constant (and –
k represents kdeg), and t1/2 is the half-life:

N ¼ N0e
�kt (1)

ln Nð Þ � ln N0ð Þ ¼ �kt ) t1
2
¼ ln 2ð Þ

k
(2)

�k ¼ ln N½ � � ln N0½ �ð Þ � t (3)

Physiologically based pharmacokinetic (PBPK) mod-

elling can be used to predict the magnitude and dynamics

of drug–drug interactions (DDIs), allowing the investiga-

tion of optimal timings for washout periods or switching

of drug regimens in clinical practice. Such approaches

require robust drug and system parameters (Jamei et al.

2009; Rostami-Hodjegan 2012). Clearly, kdeg is a critical

system parameter for the simulation of time-dependent

DDIs, such as those mediated by mechanism-based inhi-

bition or induction (Venkatakrishnan and Obach 2007;

Almond et al. 2009).

Several sources have highlighted the lack of accurate

kdeg data for metabolising enzymes and transporter pro-

teins as important sources of error in DDI prediction

(Obach et al. 2007; Wang 2010). Despite its well-estab-

lished impact, there is large disparity in the literature for

the kdeg of specific proteins and different values are used

for the same enzyme across different studies, resulting in

inconsistent predictions (Ghanbari et al. 2006; Yang

et al. 2008; Wang 2010; Yeo et al. 2011). Proteins have

widely varied half-lives, ranging from minutes to several

days, and protein turnover is tightly regulated through

multiple molecular mechanisms. Apart from the impor-

tance in PBPK, further characterisation of kdeg for speci-

fic proteins is required for better understanding of cell

signalling processes involved in both normal and dys-

functional diseased cell states, thus studies of protein

turnover are used in many different areas of cellular and

molecular biology.

Traditional methods of protein degradation measure-

ment and derivation of kdeg, fall into two experimental

designs: (1) quantifying the amount of a specific protein

before and after a cell perturbation then measuring the

difference in protein abundance and time between the

initial and new steady-state; or (2) quantifying changes in

protein abundance by kinetic, time-course experiments

(Alvarez-Castelao et al. 2012). The kinetic approach is

based on an initial cell treatment with protein synthesis

inhibitors followed by the quantification of changes in

protein content over time by immunoblotting (Dai et al.

2013). Traditional methods of measuring protein degra-

dation generally utilise low level incorporation of radiola-

belled amino acids in the form of pulse-chase analysis,

often involving the use of protein synthesis inhibitors to

eliminate reincorporation (Zhou 2004; Doherty et al.

2009). The more recent approaches focus on simultane-

ously measuring the rates of a large number of proteins.

For example, stable isotope labelling by amino acids

(SILAC) in cell culture followed by mass-spectrometry

(MS) as a common proteomics-based method for mea-

suring protein turnover rates (Mann 2006; Doherty et al.

2009; Fierro-Monti et al. 2013; Takahashi et al. 2017) and

isobaric tag for relative and absolute quantification

(iTRAQ) are also used (Jayapal et al. 2010). The focus of

this study was on the more traditional methods of mea-

suring protein degradation utilising protein synthesis

inhibitors for pharmacological interference.

The aim of this study was to find a suitable protein

synthesis inhibitor or drug combination that provided

maximum protein synthesis inhibition with minimum

cytotoxicity for subsequent use in measuring protein

degradation rates. The four selected inhibitors actino-

mycin D, cycloheximide, emetine, and puromycin were

assessed alone and in combination to determine their

suitability for protein degradation studies. Leucine incor-

poration assays and standard 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) assays were

employed to determine the level of protein synthesis inhi-

bition and cytotoxicity, respectively, across a range of

drug concentrations in immortalised hepatic cell line and

primary hepatocytes. Two-drug combinations were tested

for synergy by the modified fixed-ratio isobologram

method. Combinations of three and four inhibitors were

assessed at subcytotoxic concentrations of each inhibitor.

Materials and Methods

Materials

Dulbecco’s modified eagle medium (DMEM), fetal bovine

serum (FBS), trypsin-EDTA solution, Hank’s balanced salt

solution (HBSS), thiazolyl blue tetrazolium (TBT), and

protein synthesis inhibitors (actinomycin D (A4262),

emetine dihydrochloride hydrate (E2375), and puromycin

dihydrochloride (P7255)) were purchased from Sigma-

Aldrich (Dorset, UK). HepG2 cells were purchased from

American Tissue Culture Collections (ATCC, Virginia).

Cryopreserved primary rat hepatocytes, William’s E

media, plating cocktail, maintenance cocktail, Geltrex�

matrix, and collagen I coated plates were purchased from

Invitrogen Ltd (Paisley, UK). Cycloheximide (ab120093)

was purchased from Abcam (Cambridge, UK). L-Leucine

[4,5-3H] (MT-672E) was obtained from Moravek (Cali-

fornia). The CellTiter-Glo cell viability assay and the

GSH-Glo glutathione assay were purchased from Promega

(Southampton, UK).
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Cell line culture

HepG2 cells were grown in DMEM medium supple-

mented with 10% FBS solution and were discarded

beyond passage 20. The media was changed every 48 h

and cells were cultured until 80–90% confluence in a

37°C 5% CO2 humidified incubator. Cell counts were

carried out by a Nucleocounter (Chemometec, Denmark).

Primary rat hepatocyte culture

Primary rat hepatocytes (PRH) were purchased from

Invitrogen (Paisley, UK), isolated from male Sprague–
Dawley rats at 9 weeks old (Lot. RS745). Cryopreserved

PRH were thawed in a 37°C water bath for approximately

2 min until contents were around 90% thawed. Once

thawed, the hepatocytes were added to 50 mL of pre-

warmed plating media (William’s E media without phenol

red supplemented with 5% FBS, 1 lmol/L dexametha-

sone, 1% solution of penicillin/streptomycin, 4 lg/mL

bovine insulin, 2 mmol/L GlutaMAXTM, and 15 mmol/L

HEPES (CHRM� supplement A), and centrifuged for

3 min at 55g at 18°C and the supernatant fraction dis-

carded. The hepatocytes were then resuspended in plating

media at 1 9 106 cells per ml density.

The cell viability of primary human hepatocytes was

calculated using the Chemometec NucleoCounter� NC-

100TM according to the manufacturer’s protocol. Cells

were seeded in collagen coated plates and were incubated

for 5 h at 37°C with 5% CO2 and 95% humidity. After

5 h incubation, plating media was discarded and replaced

with 0.022 mg/mL of Geltrex� Matrix in maintenance

media (William’s E media supplemented with 0.1 lmol/

Ldexamethasone, 0.5% penicillin/streptomycin 6.25 lg/mL

human recombinant insulin, 6.25 lg/mL human transfer-

rin, 6.25 ng/mL selenous acid, 1.25 mg/mL BSA, 5.35 lg/
mL linoleic acid, 2 nmol/L GlutaMAXTM, and 15 mM

HEPES). After incubation overnight, media containing Gel-

trex� was removed and replaced with varying drug con-

centrations and controls in maintenance media.

Measuring protein synthesis inhibition by
[3H]-leucine incorporation

HepG2 cells were seeded at 2 9 105 cells per well in

DMEM supplemented with 10% FBS and the plates were

incubated overnight at 37°C to allow cells to adhere. PRH

cells were seeded in collagen coated 24-well plates at a

density of 2 9 105 cells per well. Old media was removed

and replaced with 0–100 lmol/L of protein synthesis

inhibitors dissolved in DMEM with 10% FBS for HepG2

cells or maintenance media for PRH and incubated for

72 h in a 37°C humidified incubator. In the last 2 h of

incubation, cells were pulsed with 2 lCi of [3H]-leucine

without removing the inhibitor. After 2 h, the media con-

taining [3H]-leucine was removed by aspiration and the

cells were washed with HBSS before removal from well by

trypsinisation. HepG2 cells were then harvested onto a fil-

termat using a TomTec cell harvester. The filtermat was

sealed in a sample bag with melt-on scint and the level of

protein synthesis was determined by the level of [3H]-leu-

cine incorporation measured using a MicroBeta detector

(Perkin-Elmer, Cambridge, UK). PRH cells were trans-

ferred to scintillation vials and radioactivity was deter-

mined using QuantaSmartTM software on a Tri-Carb

scintillation counter (Perkin-Elmer).

Measuring cell viability by standard MTT
Assays

Standard MTT assays were performed on HepG2 and

PRH cells to measure cell viability. 2 9 104 cells per well

of HepG2 were seeded into 96-well plates in DMEM with

10% FBS and left overnight in a 37°C humidified incuba-

tor to allow cells to adhere to the plate. PRH were seeded

in collagen coated 96-well plates at a density of 2 9 104

cells per well. Old media was removed and replaced with

0–300 lmol/L of protein synthesis inhibitors and incu-

bated for 72 h. A vehicle control and control with no

drug was included. A quantity of 20 lL of 5 mg/mL TBT

in HBSS was added to each well and incubated for 2 h. A

quantity of 100 lL lysis buffer (50% v/v dimethyl-

formahyde and 20% v/v sodium dodecyl sulphate) was

added to each well and the plate was incubated overnight

at 37°C. The absorbance was quantified at 570 nm by a

Tecan GENios micoplate reader (Germany).

Single protein synthesis inhibitor analysis

The protein synthesis inhibitors actinomycin D, cyclohex-

imide, emetine, and puromycin were analysed individually

in HepG2 and PRH cells. Actinomycin D was incubated

0–10 lmol/L and 0–0.039 lmol/L and puromycin at 0–
20 lmol/L and 0–5 lmol/L for leucine incorporation

assays and MTT cytotoxicity assays, respectively. Cyclo-

heximide was incubated at 0–300 lmol/L and emetine at

0–30 lmol/L for both leucine incorporation and MTT

assays.

Two-drug combination fixed-ratio
isobologram analysis

The effects of two-drug combinations on HepG2 cells

were assessed by the modified fixed-ratio isobologram

protocol, which detects synergy, additivity, or antagonism

between a pair of drugs (Fivelman et al. 2004). Stock
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solutions of the drugs were prepared at 10 mmol/L in

sterile distilled water. Concentration–response assays

were carried out to obtain the IC50 and CC50 of the

individual drugs by leucine incorporation and standard

MTT assays, respectively. For the six two-drug combina-

tions, the drug dilutions were made to allow the IC50 or

CC50 to fall at about the fourth threefold serial dilution.

The dilutions of each of the two drugs in each combina-

tion were prepared in seven fixed ratios 6:0, 5:1, 4:2, 3:3,

2:4, 1:5, and 0:6. These mixtures were then serially

diluted threefold in quadruplicates to generate a range of

eight concentrations for each condition. Protein synthesis

inhibition and cell viability assays were conducted as

described above to generate a concentration–response
curve to calculate the IC50 and CC50 for drugs A and B

in each mixture. The fractional inhibitory concentrations

(FICs) were calculated using Equation 4,5, and 6 (Gorka

et al. 2013):

FICA ¼ IC50 or CC50 of drug A in combination

IC50 or CC50 of drug A alone
(4)

FICB ¼ IC50 or CC50 of drug B in combination

IC50 or CC50 of drug B alone
(5)

FICindex ¼ FICA þ FICB (6)

Isobologram curves were generated by plotting FICA

versus FICB. FICindex = 1 was taken as indicative of an

additive effect between drugs A and B, FICindex<1 indica-

tive of synergy and FICindex>1 indicative of antagonism.

Three- and four-drug combination analysis

Three-drug combinations: actinomycin D, cycloheximide,

and emetine; actinomycin D, puromycin, and emetine;

actinomycin D, puromycin, and cycloheximide; and puro-

mycin, cycloheximide and emetine, and four-drug combi-

nation: actinomycin D, puromycin, cycloheximide, and

emetine were assessed at subcytotoxic concentrations of

each drug (determined from the single drug incubation

experiments) in HepG2 cells. The three- and four-drug

combinations were made up at the CC10 concentrations

and measured for level of protein synthesis inhibition by

[3H]-leucine incorporation and assessed for cytotoxicity

by several different toxicity assays.

Standard MTT assay

Standard MTT assays were performed on the three-

and four-drug combinations using methods described

above in HepG2 cells. Further toxicity assays (CellTiter-

Glo�, GSH-GloTM glutathione, and trypan blue exclu-

sion) were performed on these combinations to confirm

the robustness of MTT assays as a measure of cell via-

bility.

CellTiter-Glo� luminescent cell viability assay

A CellTiter-Glo� luminescent cell viability assay was per-

formed on the above drug combinations following 72 h

incubation in HepG2 as described in the manufacturer’s

protocol. Cells were seeded at 2 9 104 cells per well in

DMEM with 10% FBS. The assay measures the amount

of ATP present that indicates the presence of metaboli-

cally active viable cells.

GSH-GloTM glutathione assay

GSH-GloTM glutathione assays were performed on the

above drug combinations following 72 h incubation in

HepG2 cells according to the manufacturer’s protocol.

Cells were seeded at 1 9 104 cells per well in DMEM

with 10% FBS. The assay measures the conversion of a

luciferin derivative into luciferin in the presence of glu-

tathione and glutathione S-transferase (GST) as an indica-

tion of oxidative stress.

Trypan blue exclusion

HepG2 cells were seeded at 5 9 104 cells per well in

DMEM +10% FBS and incubated with the three- and

four-drug combinations for 72 h. Following incubation,

the cells were washed with HBSS solution and trypsinised

for 5 min before being transferred in suspension to

Eppendorf tubes. A quantity of 10 lL of cell suspension

was added to 10 lL of trypan blue solution and placed

on a CountessTM slide. Cell viability was calculated using a

CountessTM automated cell counter (LifeTechnologies,

UK).

Data analysis

The IC50 (concentration causing 50% protein synthesis

inhibition), CC50 (concentration causing 50% cell viabil-

ity), and CC10 (concentration causing 90% cell viability)

were calculated by nonlinear regression of drug concen-

tration versus leucine incorporation and MTT concen-

tration–response graphs, respectively, using Graphpad

Prism 3 software. The IC50 and CC50 values derived

from the single inhibitor analyses were used for subse-

quent fixed-ratio isobologram two-drug combination

analyses.
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Results

Single protein synthesis inhibitor

The mean � SD CC50 for the four protein synthesis inhi-

bitors actinomycin D, cycloheximide, emetine, and puro-

mycin were found at 6.2 � 7.3, 570 � 510, 81 � 9, and

1300 � 64 nmol/L, respectively, in HepG2 cells and

0.98 � 1.8, 680 � 1300, 180 � 700, and 1600 �
1000 nmol/L, respectively, in PRH. The IC50 were

39 � 7.4, 6600 � 2500, 2200 � 1400, and 1600 �
1200 lmol/L, respectively, in HepG2 and 1.7 � 1.8,

290 � 90, 620 � 920, and 2000 � 2000 nmol/L, respec-

tively, in primary rat hepatocytes. The IC50 and CC50

concentrations were calculated from concentration–re-
sponse graphs as shown in Figure 1. The CC50 concentra-

tions were lower compared to corresponding IC50 values

for all four inhibitor drugs except cycloheximide in PRH;

this indicates that the inhibitors were more effective in

generating cell death than protein synthesis inhibition

and thus unsuitable for further protein degradation stud-

ies.

Figure 2 shows linear regression between the IC50 and

CC50 values derived from HepG2 and cryopreserved PRH

cells. Figures 2A–C show linear relationships between the

IC50 and CC50 between HepG2 and PRH cells for actino-

mycin D, emetine, and puromycin. Cycloheximide fit in

the linear relationship for cytotoxicity but not for protein

synthesis inhibition.

Two-drug protein synthesis inhibitor
combinations

The fixed-ratio isobologram method was employed to

assess additivity, synergy, or antagonism in both protein

synthesis inhibition and cytotoxicity between drug pairs.

Six combinations of drug pairs for the four inhibitors

were analysed. The combinations cycloheximide and eme-

tine, cycloheximide and puromycin, and emetine and

puromycin showed antagonism for protein synthesis inhi-

bition at all ratios (as shown in Fig. 3A–C) and were

therefore deemed to be unsuitable for protein degradation

studies. As such, isobolograms to assess cytotoxicity were

not carried out for these combinations. Actinomycin D

and emetine showed additivity (no interaction) between

the drugs for protein synthesis inhibition and synergy for

cytotoxicity, indicating that actinomycin D and emetine

did not increase protein synthesis inhibition in combina-

tion but did display higher cytoxicity. As such, this com-

bination was also deemed unsuitable for measuring

protein degradation rates. Actinomycin D and cyclohex-

imide, and actinomycin D and puromycin did show syn-

ergy for protein synthesis inhibition at some ratios. This

combination also displayed strong synergy for cytotoxicity

at most ratios. Interestingly, at ratios of 5:1 and 4:2 for

actinomycin D: cycloheximide and actinomycin D: puro-

mycin, these combinations were synergistic for protein

synthesis inhibition and antagonistic for cytotoxicity as

seen in Figure 3D and F, respectively. However, despite

the synergy for protein synthesis inhibition and antago-

nism for cytotoxicity at these ratios, the CC50 values for

these drug pairs alone and in combination were still lower

than the IC50 values and thus cytotoxicity was observed at

lower concentrations than those required to inhibit pro-

tein synthesis. The CC50 concentrations for actinomycin

D in combination with cycloheximide at 5:1 and 4:2

ratios were 12 and 14 nmol/L and the corresponding

IC50 concentrations were 28 and 35 nmol/L, respectively.

The CC50 values for cycloheximide in combination with

actinomycin D at 5:1 and 4:2 ratios were 26 and

12 nmol/L and the corresponding IC50 concentrations

were 2500 and 1300 nmol/L respectively. For the combi-

nation actinomycin D and puromycin, the CC50 concen-

trations for actinomycin D at 5:1 and 4:2 ratios were 9.8

and 8.1 nmol/L and the corresponding IC50 concentra-

tions were 16 and 21 nmol/L respectively. As for puromy-

cin, the CC50 values at 5:1 and 4:2 ratios were 60 and

20 nmol/L and the corresponding IC50 concentrations

were 690 and 360 nmol/L respectively.

Three- and four-drug combination analysis

The four inhibitors individually and the two-drug combi-

nations displayed high cell death. Three- and four-drug

combinations at subtoxic concentrations (CC10 of each

when incubated alone) were, therefore, assessed to investi-

gate whether protein synthesis inhibition could be

achieved at concentrations lower or equal to those caus-

ing cytotoxicity. The CC10 (90% cell viability concentra-

tion) were calculated for each drug to be 0.17, 24, 7.0,

and 110 nmol/L for actinomycin D, cycloheximide, eme-

tine, and puromycin, respectively, in HepG2 cells. As

mentioned previously, the inhibitors alone displayed a

lower concentration for CC50 than IC50 indicating that

they were more effective in generating cell death than

inhibiting protein synthesis. The four-drug combination

showed a high 76% protein synthesis incorporation (thus

low inhibition) and high cytotoxicity across all cytotoxic-

ity assays as seen in Figures 4 and 5. Three-drug combi-

nations: actinomycin D, cycloheximide, and emetine;

actinomycin D, cycloheximide, and puromycin; and acti-

nomycin D, puromycin and emetine also demonstrated

low protein synthesis inhibition with high cytotoxicity,

also seen in Figures 4 and 5. Although puromycin, cyclo-

heximide, and emetine gave low cell death across the

assays, it was also ineffective at inhibiting protein
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synthesis inhibition, as shown in Figure 4, where level of

leucine incorporation is higher than control. Overall,

three- and four-drug combinations of these protein syn-

thesis inhibitors were deemed to be unsuitable for further

protein degradation studies even at low concentrations.

Discussion

The use of protein synthesis inhibitors is the most com-

mon method for measuring protein degradation rates and

has been documented by many sources over four decades

(Goldberg and Dice 1974; Curfman et al. 1980; Princiotta

et al. 2003; Zhou 2004; Belle et al. 2006; Delgado-Vega

et al. 2012; Chistyakov et al. 2014). The more recent

approaches focus on simultaneously measuring the rates

of a large number of proteins. For example, (SILAC) in

cell culture followed by (MS) as a common proteomics-

based method for measuring protein turnover rates

(Mann 2006; Doherty et al. 2009; Fierro-Monti et al.

2013; Takahashi et al. 2017) and (iTRAQ) are also used

(Jayapal et al. 2010). However, the wide application of

these proteonomic approaches are limited by cost and

complexity. The focus of this study was on the more sim-

ple traditional methods of measuring protein degradation

utilising protein synthesis inhibitors for pharmacological

interference. The aim of this study was to define inhibitor

concentrations (single or combinations) that provide

maximum protein synthesis inhibition with minimum

cytotoxicity that could then be used in subsequent experi-

ments to accurately estimate endogenous degradation

rates.

For this study, four protein synthesis inhibitors actino-

mycin D, cycloheximide, emetine, and puromycin were

selected based on their different mechanisms of action

and previous use in biomedical research. Actinomycin D

(Sobell 1985) intercalates DNA forming a stable complex

with deoxyguanosine residues, thus blocking movement

of RNA polymerase and subsequently transcription.

Cycloheximide binds the 60S ribosomal subunit blocking

the translocational step in amino acid elongation, thus

inhibiting protein synthesis (Schneider-Poetsch et al.

2010). Emetine inhibits protein synthesis by binding onto

the 40S subunit of ribosomes and inhibiting translocation

of proteins (Akinboye and Bakare 2011). Puromycin acts

as an analogue of the 30-terminal end of aminoacyl-tRNA,

which results in premature amino acid chain termination

Figure 2. Linear regression analysis of IC50 and CC50 between

HepG2 and PRH cell types. (A) shows linear regression between CC50

values of the four protein synthesis inhibitor drugs for the different

cell types. (B) shows linear regression between IC50 values with

cycloheximide omitted but shown in inset graph, of the two cell

types. (C) shows IC50:CC50 ratio of HepG2 and PRH cell

types omitting cycloheximide. Cycloheximide is included in the inset

graph.

Figure 1. IC50 and CC50 of the four individual protein synthesis inhibitors in HepG2 and primary rat hepatocytes (PRH). (A–D) Cell viability was

measured by standard MTT assay and expressed as viability as a percentage of untreated control. (E–H) Protein synthesis inhibition across different

concentrations of inhibitors was measured by [3H]-Leucine incorporation assay and shown as percentage of inhibition of control. Dotted line

shows PRH and solid line for HepG2 cells. Dose–response curves were produced by Prism software and IC50 and CC50 values were calculated

from linear regression models. Data are shown as mean � SD from n = 3 independent experiments.
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during translation of proteins (Azzam and Algranati

1973).

This study supports reported concerns over the inhi-

bitors being too disruptive to normal cellular function

to use to measure natural rates of protein turnover

(Yewdell et al. 2011; Geva-Zatorsky et al. 2012). In all

cases, the CC50 concentration for the drugs in combina-

tion was lower than the corresponding IC50, suggesting

that even in combination protein synthesis inhibition

could not be studied in the absence of an effect on

other cellular functions. These data suggest that inhibit-

ing mechanisms of protein synthesis by pharmacological

interference (even with lower concentration combina-

tions) is not a physiologically appropriate method of

measuring kdeg because all protein systems, including

those involved in protein degradation pathways, are

likely to be affected. In support of this, Dai et al.

reported that cycloheximide could affect protein degra-

dation by activating the AKT (protein kinase B) leading

to downstream effects on the normal functioning of the

ubiquitin proteasome degradation (UPD) pathway (Dai

et al. 2013). In addition to the drugs disrupting protein

degradation machinery, there have been reports of pro-

tein synthesis inhibitors actively inducing a range of

protein mRNA production that also impact accuracies

for calculating protein degradation rates downstream

(Hattori and Gross 1995; Schuetz et al. 1995; Stordeur

et al. 1995). It should be noted that the incubation

Figure 3. Isobolograms generated based on CC50 and IC50 values showing the interaction between protein synthesis inhibitor pairs. Six

combinations of inhibitor pairs are shown in (A–F) The dotted line corresponds to the predicted curve if drug pairs showed an additive effect. The

black line corresponds to drug pair interactions for protein synthesis inhibition. The grey line shows drug pair interactions for cytotoxicity. FICA

and FICB correspond to the fractional inhibitory concentrations of the first and second drugs in each drug pair listed. Cytotoxicity analysis was not

performed for cycloheximide–emetine, cycloheximide–puromycin, and emetine–puromycin drug pairs (A–C) as these showed strong antagonism

for protein synthesis inhibition. N = 4 independent experiments were carried out in HepG2 cells.
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time with the protein synthesis inhibitor drugs was for

72 h in the current study and as such, measurement of

degradation for proteins with medium or long (over

72 h) half-lives are likely to be particularly problematic.

Further optimisations with shorter incubation periods

may be possible for proteins with shorter t1/2 but

robust optimisation will be required.

Protein synthesis inhibitors are commonly used for

measuring protein degradation yet in previous studies,

there has been little consideration for their cytotoxic

effects and virtually none have optimised a specific con-

centration to use. Several studies have used cycloheximide

at millimolar concentrations, which was much higher

than the nontoxic concentration range found here (Pan

Figure 4. The level of [3H]Leucine incorporation for three- and four-inhibitor combinations at subcytotoxic concentrations (CC10). Leucine

incorporation assays were carried out in HepG2 cells and the percentage of incorporation compared to control was calculated. Combination APCE

corresponds to actinomycin D, puromycin, cycloheximide, and emetine; ACE to actinomycin D, cycloheximide, and emetine; APE to actinomycin

D, puromycin, and emetine; APC to actinomycin D, puromycin, and cycloheximide; and PCE to puromycin, cycloheximide, and emetine. Data are

shown as mean � S.D from n = 3 independent experiments.

Figure 5. Measuring cytotoxicity for the three- and four-inhibitor combinations at subcytotoxic concentrations. Three- and four-inhibitor

combinations were prepared at CC10 concentrations. A range of cytotoxicity assays including standard MTT, GSH, ATP, and trypan blue exclusion

assays were conducted on HepG2 cells. APCE corresponds to actinomycin D, puromycin, cycloheximide, and emetine; ACE to actinomycin D,

cycloheximide, and emetine; APE to actinomycin D, puromycin, and emetine; APC to actinomycin D, puromycin, and cycloheximide; and PCE to

puromycin, cycloheximide; and emetine. Data are shown as mean � SD from n = 3 independent experiments.
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and Haines 1999; Princiotta et al. 2003; Jeong et al. 2005;

Xie et al. 2010; Majumder et al. 2012). MTT assays were

used as the main method of measuring CC50 and the level

of cytotoxicity across the four protein synthesis inhibitor

drugs and their combinations. Since MTT assays specifi-

cally assess the formazan production pathway as a mea-

sure of cellular mitochondrial damage, other forms of

cytotoxicity assays including GSH, ATP, and trypan blue

exclusion, which assess other mechanisms of cytotoxicity,

were carried out to validate the findings. Good agreement

across assays and drug combinations was observed with

the exception of puromycin, cycloheximide, and emetine

in which higher cellular toxicity was detected in MTT

than other assays. Despite GSH assays showing higher cell

viability across the different drug combinations, it should

be noted that GSH assays alone could not be used to pre-

dict the CC50 in this study because the results were in dis-

agreement with the other cytotoxicity assays employed. A

potential limitation is that protein binding was not

assessed in this study. However, it should be recognised

that protein binding would be expected to impact both

cytotoxicity and protein synthesis inhibition by impacting

free-drug concentration. Thus, the ratio would not be

expected to be different.

Earlier studies with actinomycin D and puromycin

reported toxicity in HeLa cells at concentrations within

the range investigated here. Studies by Sawicki and

Godman (1971) showed that at 0.08 lmol/L actino-

mycin D was sufficient to cause cell toxicity in HeLa

cells, which is in agreement with the present findings.

Dudani et al. (1988) proposed that puromycin caused

cytotoxicity at 0.9 lmol/L in human cell lines, including

HeLa cells, which also agreed with the presented results.

Dudani et al. also reported a 79.6% protein synthesis

inhibition at 0.9 mmol/L in HeLa cells which further

supports our findings that puromycin is cytotoxic at

concentrations lower than those required for protein

synthesis inhibition. Conversely, Yin Low et al. (2009)

conducted cytotoxicity assays on emetine in Huh-7 cells

and reported over 90% cell viability at 10 lmol/L

which is much higher concentrations than those used

here. Although the reason for this disparity is not

apparent, cytotoxicity of these inhibitors may vary

between different cell types. The single drug analyses

were carried out in HepG2 and primary rat hepatocytes

with reasonable agreement in protein synthesis inhibi-

tion and cytotoxicity for actinomycin D, emetine, and

puromycin as shown in the linear relationship displayed

in Figure 2. This study was carried out in readily avail-

able HepG2 cells and primary rat hepatocytes with the

aim of transferring the optimised conditions onto pri-

mary human hepatocytes to validate a more physiologi-

cally accurate kdeg prediction (Wilkening et al. 2003).

However, due to the presented findings, an alternative

approach to kdeg determination is now being explored.

Despite the wide-ranging importance of protein degra-

dation, there has been no single recognised method for its

measurement. However, these data indicate that the use

of protein synthesis inhibitors should be avoided. The

more recent methods of measuring rates of degradation

focus on high-throughput approaches aiming to quantify

many different proteins in parallel; these involve meta-

bolic labelling of proteins of interest followed by MS anal-

ysis (Doherty and Beynon 2006). Newly developed

quantitative proteonomic methods provide an important

alternative to chemical inhibition, however, reproducibil-

ity across different experiments and the impact of protein

labelling on endogenous protein degradation warrants full

investigation.
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