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Abstract

Advances in our ability to identify lymphatic endothelial cells and
differentiate them from blood endothelial cells have led to
important progress in the study of lymphatic biology. Over the past
decade, preclinical and clinical studies have shown that there are
changes to the lymphatic vasculature in nearly all lung diseases.
Efforts to understand the contribution of lymphatics and their
growth factors to disease initiation, progression, and resolution
have led to seminalfindings establishing critical roles for lymphatics
in lung biology spanning from the first breath after birth to

asthma, tuberculosis, and lung transplantation. However, in other
diseases, it remains unclear if lymphatics are part of the overall
lung remodeling process or real contributors to disease
pathogenesis. The goal of this Translational Review is to highlight
some of the advances in our understanding of the role(s) of
lymphatics in lung disease and shed light on the critical needs and
unanswered questions that might lead to novel translational
applications.
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The pulmonary lymphatic system is
comprised of an extensive network of
vascular structures as well as tissue
containing cells that are essential for
immunity and the body’s defense against
pathogenic material. Pulmonary lymphatic
vessels are composed of a single lymphatic
endothelial cell (LEC) wall with a
discontinuous basement membrane, and
serve as a transportation conduit for
antigens and antigen-presenting cells from
peripheral tissue to lymph nodes, as well as
for the clearance of interstitial fluid (1). In
healthy lungs, lymphatics run parallel to
the major airways and respiratory
bronchioles, and they also exist in close
proximity to the intralobular arterioles and
small veins. The number and size of
lymphatics decrease significantly in the
interalveolar walls, with 3.6–19% of alveoli
associated with a lymphatic structure (2).
In addition to the lymphatics in the lung,
there is a network of subpleural

lymphatics, which drains lymph from the
surface of the lung (Figure 1).

The relatively recent identification of a
few important LEC markers has expanded
our understanding of lymphatic biology in
health and disease; Prospero-related
homeodomain transcription factor (Prox) 1
is a transcription factor that is a master
regulator of lymphatic lineage and is required
for the differentiation of venous endothelial
cells into LECs and the formation of
lymphatics during embryonic development.
Lymphatic vessel hyaluronan receptor
(LYVE)-1 is a CD44 homolog that serves as a
membrane-bound hyaluronic acid–binding
site that is located on the surface of the
lymphatic endothelium. Vascular
endothelial growth factor (VEGF) receptor
(VEGFR)-3 is a surface tyrosine kinase
receptor for the lymphangiogeneic growth
factors, VEGF-C and VEGF-D. Finally,
podoplanin (T1a) and especially its epitope,
D2-40 (3). Collectively, these markers have

played essential roles in expanding current
knowledge regarding lymphatic
development and the role lymphatics play in
various disease processes, including several
affecting the pulmonary system. The
suitability of these markers in identifying
lung lymphatics is summarized in Table 1.
Mechanisms of lymphangiogenesis have
been extensively reviewed elsewhere (4). The
focus of this Translational Review is to
highlight some of the advances in
our understanding of lymphatics and
lymphangiogenesis in lung diseases, and to
identify some of the critical unanswered
questions.

Lymphatics Are Critical for
the First Breath and for Lung
Development

During embryonic development, lymphatics
originate from venous endothelial cells under
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the influence of transcription factors and
regulatory proteins, including VEGF-C,
Prox1, and collagen- and calcium-binding
epidermal growth factor domain-1 with
additional well established reliance on
signaling through the tyrosine kinase
receptor, VEGFR-3 (5). Pulmonary
lymphatics appear to play a critical role in
lung development in preparation for birth
and in newborn viability. Collagen- and
calcium-binding epidermal growth factor
domain 12/2 and VEGFR-3kd/kd (kinase
dead) mice lacking the ability to form
lymphatics do not survive beyond birth with
the immediate development of respiratory
failure, despite having what appears to be
otherwise normally developed pulmonary
parenchyma. In one study (6), respiratory
failure did not correlate with the size of the
chylous effusion, and it remains unclear if
lymphatic abnormalities affected the
development of other organs. However, the
lack of lung lymphatics resulted in
diminished clearance of interstitial fluid,
preventing expansion of the lung tissue in

the immediate postnatal period. These
findings clearly link lymphatic development
with proper postnatal pulmonary
mechanical function, and may offer new
insights into respiratory failure in premature
infants (6). It is important to note in this
context that there is perhaps a threshold
effect, because VEGF-D2/2 mice exhibit
decreased lung lymphatics, but normal lung
development (7). More recently, studies have
shown that VEGF-D may also play critical
roles in lung vascular development. For
instance, VEGF-D2/2 mice are protected
from the effects of hyperoxia (8), and the
mutation in human VEGF-D (V118M) leads
to aberrant protein dimerization, resulting in
increased angiogenesis and worsening
oxygen diffusion (9).

Further evidence of the devastating
consequences of abnormalities in pulmonary
lymphatic development is seen in the case of
pulmonary lymphangiectasia. This condition
is characterized by dilated saccular
lymphatics with the clinical sequelae of
respiratory distress, cyanosis, and, at times,

both chylous and nonchylous pleural
effusions (10). Relatively little is known
regarding the pathogenesis and mechanisms
leading to pulmonary lymphangiectasia.
Recent evidence generated from a double-
transgenic mouse with a doxycycline
activating (Tet-On) Clara cell secretory
protein promoter, resulting in enhanced
VEGF-C expression, showed that pathologic
changes with increased VEGF-C expression
included the formation of dilated sheets of
lymphatics associated with respiratory
failure, pleural effusions, and chylothorax, a
clinicopathological picture similar to that in
humans with pulmonary lymphangiectasias
(10). The response to VEGF-C induction
varied in severity with the most pronounced
findings and highest mortality in newborn
mice exposed to doxycycline starting at
Embryonic Day 15.5. Once pulmonary
lymphangiectasia was present, there was not
a meaningful response to the withdrawal of
VEGF-C overexpression or the inhibition
of VEGFR-2 and VEGFR-3 (10). The role of
VEGF-C in human pulmonary
lymphangiectasia remains unclear.

In addition, generalized lymphatic
anomaly and Gorham-Stout disease are both
characterized by systemic lymphatic
malformations that can affect the lung and
present with chylothorax (11). In one study,
these anomalies have been associated with
increased lung lymphatic area compared
with healthy controls (0.6 versus 3.5%).
Furthermore, the percentage of lymphatic
vessels with robustly proliferating LECs was
significantly higher than control subjects,
and markedly more elevated in the pediatric
compared with the adult population (11).

Fate of the Lymphatic
Vasculature in Lung Disease

Asthma
Asthma is an inflammatory disease
characterized by reversible, and at times
irreversible, airflow obstruction and
pulmonary symptoms of variable severity.
Chronic inflammation in patients with
asthma leads to mucosal edema, subepithelial
fibrosis, and alterations in the extracellular
matrix (12). Animal models of asthma, as
well as human studies, have demonstrated
increased angiogenesis and up-regulation of
known proangiogenic factors, such as VEGF
(13). However, there have been very few
investigations into lymphatic involvement in
asthma.
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Figure 1. Schematic of lymphatic distribution in the healthy human lung. Lymphatics in the lung
accompany the major airways and respiratory bronchioles, and they are also present near the
intralobular arterioles and small veins. In addition, there is a network of subpleural lymphatics, which
are distributed beneath pulmonary pleura. Under physiological conditions, lymphatic vessels generally
do not extend to the distal alveolar spaces.
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Experimental models of chronic airway
inflammation using Mycoplasma pulmonis
have demonstrated robust evidence of both
angiogenesis and lymphangiogenesis under
the influence of elevated growth factors,
including VEGF-C and VEGF-D (14).
Blockade of VEGFR3 resulted in reduced
lymphangiogenesis, but not angiogenesis
(14). An additional consequence of VEGFR3
blockade was increased mucosal edema with
reduced regional lymph node enlargement,
implicating diminished lymphatics in airflow
obstruction. Interestingly, elimination of the
offending pathogen (M. pulmonis) with
antimicrobials resulted in a regression of
angiogenic changes, but persistence of newly
formed lymphatics (14).

TNF-a levels increase within 3 days
after M. pulmonis infection, which precedes
both new blood and lymphatic vessel
formation (15). Blockade of TNF-a activity
through the use of either an anti–TNF-a
antibody or using TNFR2/2 mice resulted
in dampened angiogenesis and
lymphangiogenesis after M. pulmonis
exposure (15). Dexamethasone therapy also
diminished the expression of both TNF-a
and IL-1b, a proinflammatory cytokine,
after M. pulmonis infection, but only if given
at the initiation of the infectious period (16).
When dexamethasone treatment was
delayed for 14 days after the initial infection,
both TNF-a and IL-1b expression
continued to rise, similar to untreated, but
infected, control animals (16). Blood vessel

remodeling was, however, reversed with
delayed dexamethasone therapy, but, despite
limiting further lymphangiogenesis,
lymphatic structural changes persisted that
had occurred during the initial 14 days after
infection (16).

In a mouse model of allergic airway
disease, Th2 cells, which secrete IL-4 and IL-
13 in response to allergen stimulation, were
found to be potent inhibitors of
lymphangiogenesis in vitro and in vivo,
through Janus kinase 1 and signal transducer
and activator of transcription 6–dependent
pathways, leading to down-regulation of
Prox1 and decreased lymphangiogenesis
(17). Similarly, Th1 cells, limit both
angiogenesis and lymphangiogenesis
through secretion of IFN-g (18). The exact
roles that prolymphangiogenic and
antilymphangiogenic factors play in acute or
chronic airway inflammation have yet to be
completely characterized.

Data gained from patients with asthma
support diminished lymphangiogenesis.
Postmortem tissue analysis demonstrated
lymphatics in close proximity to the
mucosal surface of both large and small
airways in addition to smooth muscle
proliferation and fibrotic changes (12).
However, despite elevated levels of VEGF-C
and VEGF-D, lymphatic density was
diminished compared with control subjects
(12), suggesting that, on balance,
antilymphangiogeneic factors are more
preponderant in asthma.

Chronic Obstructive
Pulmonary Disease

Chronic obstructive pulmonary disease
(COPD) is characterized by airflow
obstruction with variable elements of airway
and pulmonary parenchymal remodeling due
to recurrent exposure, most typically to
cigarette smoke (19). Very little is known
about the role lymphatics play in the
pathogenesis of COPD. Previous examination
of human lung tissue identified increased
lymphatic density based upon LYVE-1 and
D2-40 staining in subjects with COPD (20).
Another study evaluating lung tissue that was
obtained from patients with COPD (stages
I–IV), smokers without COPD, and
nonsmoker control subjects identified the
most pronounced increase in lymphatic
formation within the alveolar parenchyma of
patients with stage IV disease (21). Although
not as pronounced, lymphangiogenesis
appeared to also occur in the bronchiolar and
arterial walls of patients with severe disease as
compared with healthy control subjects, but
the changes were proportional to the level of
surrounding tissue remodeling (21).
Furthermore, expressions of chemokine (C-C
motif) ligand 21 and lymphatic and lymphatic
chemokine scavenger receptor D6 were up-
regulated, suggesting enhanced lymphatic
transport of activated immune cells in COPD
(21). Despite this clinical evidence, little is
known about the role of lymphatic vessels in
COPD pathogenesis and how modulation of

Table 1. Lymphatic Markers and Their Utility in Identifying Lymphatics in Lung Tissue

Lymphatic Markers in
Lung Tissue Mouse Human Comment

Prox1 Excellent marker to differentiate
LECs from blood endothelial
cells. Prox1 would stain
neuroendocrine cells (51)

Excellent marker to differentiate
LECs from blood endothelial
cells

Nuclear stain, making detailed
analysis of tissue more difficult

LYVE-1 Largely LECs, but can stain
microvascular endothelial cells
(52) and some CD681

macrophages (31)

Largely LECs, but can stain
microvascular endothelial cells
and some CD681 macrophages
(23)

Important to combine LYVE-1
staining with another marker, such
as Prox1, to identify lung
lymphatics

Podoplanin Strong staining of epithelial cells
(53)

Excellent marker in human lung
tissue, especially D2-40 epitope
(21, 23)

VEGFR-3 LECs, and can stain epithelial cells
and macrophages as well

LECs, and can stain epithelial cells
and macrophages as well (54)

Dual staining with podoplanin or
Prox1 to accurately identify LECs

Chemokine (C-C motif)
ligand 21

LECs, and can stain high
endothelial venules (55)

LECs, and can stain
CD45-negative
myofibroblast-like cells (56)

Not a specific marker for LECs

Chemokine decoy receptor
D6

LECs and hematopoietic cells (57) LECs, and can stain hematopoietic
cells (57)

Not a specific marker for LECs

Definition of abbreviations: LEC, lymphatic endothelial cell; LYVE, lymphatic vessel hyaluronan receptor; Prox, Prospero-related homeodomain
transcription factor; VEGFR, vascular endothelial growth factor receptor.
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lymphangiogenesis might affect progression of
disease.

Interstitial Lung Disease

Idiopathic pulmonary fibrosis (IPF) is a
chronic lung disease characterized by fibrotic
alterations in the lung architecture that
substantially disrupt the lungs’ capacity for
ventilation and gas exchange (22). In IPF
lung tissue sections, increased alveolar
lymphangiogenesis and lymphatic area
correlates with worsening disease severity
(23). Image quantification demonstrated
that increasing lymphatic density was
associated with increased organizing and
fibrotic collagen as well as progressive
physiologic dysfunction, as determined by
decreased forced vital capacity and carbon
monoxide diffusing capacity (24).

In a mouse model of radiation-induced
lung fibrosis, lymphatic vessel density
decreased 1 week after ionizing radiation and
preceded the development of fibrosis at week
16 (25), suggesting potential roles for the
lymphatic system in disease pathogenesis. In
the bleomycin model, at 28 days, lymphatic
density was similar between treated and
untreated mice. However, it is shown in the
bleomycin-induced fibrosis model that
platelet-derived growth factor receptor
(PDGFR)-b–positive mural cells block
lymphatic vessels from draining
macromolecules, especially hyaluronan (26), a
critical molecule in lung injury and repair.
These two models of experimental fibrosis
suggest that impairment of lung lymphatics
could be key to the development of fibrosis.
This apparent discrepancy in lymphatic
changes between observations in human
fibrotic lung disease and animal models is not
completely understood, but could potentially
be explained by the change of lymphatic
function. It is possible that, even though
lymphatic density is increased in human
disease, these newly formed lymphatics are
not functional, either through the presence of
PDGFR1 mural cells (26) or because these
lymphatics are interrupted and not in a
continuum (27). However, in an IPF clinical
trial, imatinib—a PDGFR inhibitor—failed to
improve survival or lung function, raising
questions about the importance of these
observations in the pathogenesis of human
pulmonary fibrosis (28). Nevertheless, further
studies are needed to completely characterize
the contribution of the lymphatic vasculature
to fibrotic lung diseases.

Lung Transplant

Lung transplantation is the only therapy for
irreversible terminal pulmonary disease.
Despite improvement in surgical techniques
and advances in immunomodulatory
therapy, acute allograft rejection, the
single most important risk factor for the
development of chronic lung rejection, still
affects roughly 30% of lung transplant
recipients (29).

The role of lymphangiogenesis in the
setting of solid organ transplantation,
including lung transplantation, remains
unclear. Blocking lymphangiogenesis is
traditionally believed to limit the innate
and adaptive immune response to donor
tissue (1). In transplanted lung tissue,
patients with histological evidence of acute
allograft rejection displayed significantly
increased density of Prox1-positive
lymphatic vessels (30). In addition,
blocking lymphangiogenesis through
the use of VEGF-C/D–neutralizing
VEGFR-3 IgG Fc fusion protein
chimera, anti–VEGFR-3, or VEGFR-3
gene knockout appeared to decrease
both acute and chronic rejection in a
rat model for cardiac transplantation,
resulting in improved graft survival (23).
Importantly, it should be noted that
the lack of surgical lymphatic
anastomosis at the time of graft
implantation greatly impairs fluid
homeostasis and trafficking of
macromolecules and immune cells.

However, there is also evidence
supportive of lymphangiogenesis in
promoting allograft survival. We have
recently provided evidence that density of
pulmonary lymphatic vessels decreased in
the setting of acute allograft rejection in a
mouse model of orthotopic, single-lung
transplantation, and stimulation of
lymphangiogenesis with the delivery of
VEGF-C156S, a selective VEGFR-3
agonist, attenuates allograft rejection (31).
Mechanistically, we determined that
low–molecular weight hyaluronic acid
accumulation, which has previously been
reported to promote inflammation and
chronic allograft rejection (32), is
mitigated by an increase in
lymphangiogenesis (31), suggesting that
therapeutically induced lymphatic
regeneration could be a viable option to
combat rejection response in the lung
grafts.

Tuberculosis

Mycobacterium tuberculosis (MTB)
infection characteristically results in
granumolatous structural changes in affected
tissue, including the lungs (33). CD11b1

macrophages dominate the cellular makeup of
granulomas, resulting in elevated levels of
VEGF-C and, subsequently, perigranulomatous
lymphatic proliferation after both high-dose
intraperitoneal bacillus Calmette-Guerin
injection and aerosolized MTB infection (34).
Granulomas resulting from localized
pulmonary MTB infection, however,
demonstrated a 50% increase in LYVE-11

lymphatic density as compared with affected
liver tissue after systemic bacillus Calmette-
Guerin exposure. In addition, the inhibition of
lymphangiogenesis in both infectious models
resulted in diminished T cell proliferation,
suggesting a critical role for lymphangiogenesis
in the adaptive immune response.

Extrapulmonary lymphatic infection
withMTB is common. Until recently, the role
of lymphatics in MTB infection has largely
been believed to be related to immune cell
and pathogen transport. However,
podoplanin1/LYVE-11 LECs isolated from
lymph nodes or extranodal lymphatics have
been shown to harbor MTB (35). In vitro,
human LECs internalize MTB through the
mannose receptor with subsequent
intracellular bacterial replication. In contrast
to MTB infection in myeloid cells, which
become necrotic after bacterial
internalization, human LECs survived with
heightened bacterial burden. Alteration in
LEC response to infection was initiated by
IFN-g, resulting in induction of autophagy
and nitric oxide production, mitigating
MTB proliferation (35). Lymphatics appear
to play a clear role in the cellular response to
mycobacterial infection in tissue, but the
available evidence also supports LECs as
critical for the persistence of infection.

In human subjects with active or latent
TB, serum VEGF-C concentrations, in
addition to proangiogenic those of VEGF-A
and VEGFR-2, were significantly higher in
patients with more extensive pulmonary
involvement as compared with those with
limited pulmonary involvement, with a
further decline in concentrations in the latent
TB cohort (36). Furthermore, there was also
a direct correlation between the level of
circulating VEGF-A, VEGF-C, VEGFR-2,
and bacterial burden (36).
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Sarcoidosis

Sarcoidosis is a systemic disease
characterized by noncaseating granuloma
formation with a predilection for lung tissue
and associated lymphatic structures.
Pulmonary manifestations include a variety
of parenchymal radiographic changes,
including both nodular and reticular
abnormalities, as well as hilar
lymphadenopathy. Extranodal lymphatics
are also affected by granulomatous
structural changes (37). Serum VEGF and
VEGF-C levels are significantly higher in
patients with pulmonary sarcoidosis, and
granulomas are implicated as a critical
source of elevated VEGF and VEGF-C (38).
Tubular structures that have been described
as irregular have been identified around
sarcoid granulomas, with the suggestion
that they may represent newly formed
lymphatics (37). However, these irregular
tubular structures express VEGFR-2 as
opposed to VEGFR-3, generating much
debate over their classification and function
(38). Regardless, what is known about the
immunologic contribution to sarcoid
pathogenesis, including the interaction
between alveolar macrophages and Th1
cells under antigen provocation (39, 40),
supports the necessity of structures
allowing for the egress of inflammatory
cells from peripheral granulomas to nodal
tissue, particularly in advanced disease.

Lymphangioleiomyomatosis

Lymphangioleiomyomatosis (LAM) is a
rare lung disease characterized by the
proliferation of cells with mutations in
the tuberous sclerosis complex 1 or 2 gene.
There are a number of different
lymphatic abnormalities, such as
lymphangioleiomyomas and chylous
effusions, in LAM (41). Furthermore, LAM
cell clusters, consisting of LAM cells
surrounded by LECs, are thought to
metastasize using the lymphatic system
(41). Aberrant lymphangiogenesis in LAM
is driven by increased VEGF-D levels,
which are present in approximately 70% of
patients with LAM, and are a biomarker for
diagnosis and therapeutic response (42).
Although LAM cells are thought to be the
source of VEGF-D, recent evidence
suggests an important contribution of
circulating mononuclear cells (43).

Mechanisms Driving
Lymphangiogenesis in Lung
Diseases

Postnatal lymphatic development occurs
primarily through sprouting of new
vessels from existing lymphatic vessels
(44). LECs have been visualized as
developing intracellular vacuoles that
appear to coalesce with vacuoles of
adjacent cells to form larger compartments
and hollow vascular structures (45).
The stimuli necessary to drive
lymphangiogenesis are mostly well
characterized in animal models of

persistent airway and lung inflammation,
where cells from the bronchus-associated
lymphoid tissue generate VEGF-C and
VEGF-D, leading to enhanced
lymphangiogenesis (14, 46; reviewed in
Reference 47). In addition, other
chemokines and cytokines have been
shown to contribute to lymphangiogenesis
stimulation, such as TNF-a and IL1-b, or
inhibition, such as IL4 and IL13, as
discussed previously here.

Another mechanism that could
potentially drive lymphangiogenesis is
resident or circulating lymphatic
endothelial progenitor cells. Mounting

Table 2. Summary of Human and Animal Clinical and Experimental Observations
Regarding Lymphatic Vessel Formation and Their Role in Disorders Affecting the Lungs

Clinical and Experimental Findings

Embryonic development
Humans Increased saccular dilation in pulmonary

lymphangiectasia (7)
Animals Increased dilated lymphatics with similar phenotype

to human pulmonary lymphangiectasia due to
embryonic VEGF-C overexpression (7)

Decreased lymphatic vessel density due to deletion
of Prox1, VEGF-C, CCBE-1, or VEGFR-3 (4, 5) with
increased perinatal morbidity

Asthma
Humans Decreased lymphatic vessel density (8)
Animals Decreased lymphatic vessel density with blockade of

VEGFR-3 (10), TNF-a blockade (11),
dexamethasone administration (decreasing TNF-a
and IL-1b) (11), Th2 secretion of IL-4 and IL-13
through the JAK1 and STAT6 pathways (13), Th1
secretion of IFN-g (14)

COPD
Humans Increased lymphatic vessel density (15, 16)

Interstitial lung disease
Humans Increased lymphatic vessel density (19, 20)
Animals Newly formed lymphatic vessels after radiation

exposure regress with subsequent development of
pulmonary fibrosis (21)

Unchanged lymphatic vessel density with bleomycin
exposure, but evidence of impaired lymphatic
vessel function (22)

Lung transplant
Humans Increased lymphatic vessel density in the setting of

acute rejection (22)
Animals VEGF-C induced lymphangiogenesis-attenuated

allograft rejection through improved hyaluronan
clearance (24)

Tuberculosis
Humans Increased serum VEGF-C (29)
Animals Increased lymphatic vessel density in localized

pulmonary tuberculosis infection (27)
LECs harbor Mycobacterium tuberculosis (28)

Definition of abbreviations: CCBE, collagen- and calcium-binding epidermal growth factor domain;
COPD, chronic obstructive pulmonary disease; JAK, Janus kinase; LEC, lymphatic endothelial cell;
Prox, Prospero-related homeodomain transcription factor; STAT, signal transducer and activator of
transcription; Th, T helper cell; VEGF, vascular endothelial growth factor; VEGFR, VEGF receptor.
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evidence suggests the presence of
circulating progenitor LECs, which could
contribute to postnatal lymphangiogenesis
during health and disease (48). Although
many surface markers have been used to
identify these progenitor cells, their direct
contribution to lymphangiogenesis in
experimental models of lung disease has,
to date, not been shown.

Critical Unanswered
Questions

Studies investigating animal models of lung
disease and human disease have shown
dysregulation of the lymphatic vasculature
(Table 2). Although it has been
established that lymphatics and
lymphangiogenesis play important role(s)
in animal models of acute and chronic
airways inflammation and in acute lung
allograft rejection, the role(s) of the
lymphatics, and their potential
contribution to other parenchymal- and
airways-related lung disease, remain
poorly understood. Future preclinical
studies using selective modulators of
lymphangiogenesis (inducers, such as
VEGF-C156S, or inhibitors, such as
VEGFR-3–neutralizing antibodies) will
evaluate the beneficial or harmful effects of
lymphatics in various respiratory diseases.
Studies addressing the following issues are
of critical importance:

d What is the fate of the lymphatic
vasculature in lung diseases? Changes in
the lymphatic vasculature and LECs in
lung diseases are not completely
understood. Beyond descriptive analysis
of lymphatic vessel density changes
during disease processes, the
remodeling of lymphatic vessels and cell-
specific changes in LECs have never
been characterized. Are these cells
similar to “normal” lung LECs? If
LECs are different from normal LECs,
which genes, pathways, or networks are
differentially regulated? Do these
differences translate into important
disease-related therapeutic applications?
Strategies to isolate and study these
cells with novel sequencing platforms are
needed to better understand
lymphangiogenesis in lung disease.

d Findings from animal models of lung
fibrosis suggest dysfunction of the
lymphatic vasculature; however,
conclusive evidence proving that

modulating lymphangiogenesis would
lead to a phenotypic change with
improvement in lung fibrosis is missing.
In this regard, nintedanib, the recently
approved drug to treat pulmonary
fibrosis, is a potent pan–tyrosine kinase
inhibitor. Its targets include many of the
receptors that drive angiogenesis and
lymphangiogenesis—in addition to
epithelial cell homeostasis (49). It is
intriguing to hypothesize that some of
the beneficial effects could be due to its
effects on the endothelium.

d In animal models of chronic airway
inflammation (M. pulmonis), TB, and
lymphangiectasia, induction of
lymphangiogenesis is irreversible, in
marked contrast to the reversible
angiogenesis response. Whether the
irreversibility of newly formed lymphatic
vessels contributes to disease
pathogenesis or the persistence of disease
is a subject that requires intense
investigation.

d Noninvasive means of assessing
lymphatic function in normal and
diseased lungs are nonexistent. Most
current techniques depend on wet-to-dry
weight of the lungs to evaluate fluid
retention, or on the rate of dye clearance
to determine lymphatic drainage.
Further strategies using transit time
ultrasonic flow meters might help us
understand the lymphatic function in a
more direct manner. Furthermore,
advances in intravital microscopy and

introduction of reporter mice with
fluorescent lung lymphatics have
made it possible to directly monitor
lymphatic in the lung parenchyma
(50). Developing less invasive methods
to image lung lymphatics will constitute
a major advance in the field.

d High-throughput screens of existing
drugs and small molecules to identify
targets that modulate lymphangiogenesis
could accelerate translational
applications of preclinical findings.

Conclusions

Over the past decade, much progress has
been made in understanding lymphatic
biology (Figure 2) and changes of the
lymphatic vessels in lung disease and, in
some instances, their contribution to
disease pathogenesis. It is now clear that
lymphatics play critical roles in lung
disease, and that these changes go beyond
just remodeling. Further studies, focused
on understanding how modulation of
lymphangiogenesis could lead to enhanced
outcome in preclinical models, could have
potential translational applications.
Identifying off-the-shelf modulators of
lymphangiogenesis might offer
translational opportunities for novel
therapeutic startegies. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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Figure 2. Schematic of an initial lymphatic. Hyaluronic acid is transported via lymphatic vessel
hyaluronan receptor (LYVE)-1, whereas interstitial fluid, proteins, macromolecules, white blood
cells, and antigens enter initial lymphatics through valve-like openings between lymphatic
endothelial cells.
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