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Abstract

Chronic rhinosinusitis (CRS) is a heterogeneous chronic
inflammatory disease of the nose and paranasal sinuses that
presents without or with nasal polyps (CRSwNP). Notable features
of CRSwNP are the frequent presence of type 2 allergic inflammation
and high prevalence of Staphylococcus aureus (SA) colonization.
As inflammation persists, sinus tissue undergoes epithelial damage
and repair along with polyp growth, despite active medical
management. Because one feature of damaged tissue is
enhancement of growth factor signaling, we evaluated the presence
of epidermal growth factor receptor (EGFR) ligands and matrix
metalloproteinases (MMPs) in CRS. The objectives of this study
were to analyze the expression of EGFR ligands andMMPs inpatients
with CRS and to investigate the possible role of SA on epithelial
activation. Sinonasal tissues were collected during surgery from
control subjects and patients with CRS. Tissues were processed
as described previously for analysis ofmRNA(RT-PCR) andproteins
(ELISA) for the majority of EGFR ligands within the tissue extracts.
CRS tissue was used for evaluation of the distribution of epiregulin

(EREG), an EGFR ligand, and MMP-1 by immunohistochemistry.
In parallel studies, expression of these genes and proteins was
analyzed in cultured primary airway epithelial cells. Elevated
expression of EREG and MMP-1 mRNA and protein was observed
in uncinate and polyp tissue from patients with CRSwNP.
Immunohistochemistry study of clinical samples revealed that airway
epithelial cells expressed both of these proteins. Cultured primary
human airway epithelial cells expressed MMP-1, and MMP-1 was
further induced by stimulationwith EREGor heat-killed SA (HKSA).
The induction of MMP-1 by HKSA was blocked by an antibody
against EREG, suggesting that endogenous EREG induces MMP-1
after stimulation with HKSA. EREG and MMP-1 were found to be
elevated in nasal polyp and uncinate tissues in patients with
CRSwNP. Elevated expression of EREG and MMP-1 may be related
to polyp formation in CRS, and colonization of SA might further
enhance this process.
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Chronic rhinosinusitis (CRS) is
characterized by persistent symptomatic
inflammation of the nasal and sinus mucosa,
and is one of the most common chronic
diseases in adults in the United States (1–3).
Although the etiology and pathogenesis of
CRS remain controversial, both bacterial
and fungal infections have been theorized
to play a role, in association with defective
innate immune responses of the epithelial
barrier (2, 4). CRS is typically classified into
CRS with nasal polyps (NPs; CRSwNP) and
CRS without NPs (CRSsNP) (3). Sinonasal
tissue from most patients with CRSwNP
displays a type 2 cytokine profile with
pronounced infiltration of eosinophils
(5–7). Disease management of patients with
CRSwNP is often unsatisfactory, and
symptoms can persist despite medical
treatment and surgical intervention (1).

The epidermal growth factor (EGF)
ligand family consists of several ligands,
including EGF, heparin-binding EGF-like
growth factor (HB-EGF), transforming
growth factor (TGF)-a, amphiregulin
(AREG), epiregulin (EREG), and
neuregulin. EGF ligands and their receptor,
the EGF receptor (EGFR), regulate cellular
proliferation, differentiation, and migration
to coordinate repair of damaged epithelial
cells (8). Elevated levels of EGFR ligands

have been shown in a variety of airway
disorders, such as bronchial asthma and
chronic obstructive pulmonary disease
(9–11). EGFR itself has been reported to be
up-regulated in airway epithelial cells in
asthma, chronic obstructive pulmonary
disease, and CRS (12, 13). Upon EGFR
activation, airway epithelial cells produce a
variety of cytokines, chemokines, and
tissue-repairing/-remodeling–related
genes, such as MUC5AC and matrix
metalloproteinases (MMPs) (14, 15).

Increased expression of MMPs has
been reported to be closely related to the
remodeling and polyp-forming processes
that occur in allergic airway tissue. Previous
studies showed elevation ofMMP-1, -2, -7, -8,
and -9 in sinonasal tissues from patients
with CRS (16, 17). MMPs are induced
in vitro in airway epithelial cells by a wide
variety of stimuli, including HB-EGF,
TGF-b, IL-17A, leukotriene D4, and
respiratory syncytial virus (18–20). Among
EGFR ligands, TGF-a and EGF were
reported to be elevated in subjects with CRS
when compared with control subjects (12,
21), but most of the ligands in the family
have not been evaluated in CRS.

The prevalence of Staphylococcus aureus
(SA) colonization was found to be elevated
in upper airways of patients with CRSwNP
when compared with normal subjects, and is
often cited as evidence of a link between
bacterial colonization and CRS pathogenesis
(22). SA enterotoxins can activate polyclonal
T cell responses, and structural constituents
of SA activate Toll-like receptor 2 expressed
on airway epithelial cells, and can induce
chemokines and cytokines from airway
epithelial cells (23, 24). Recently, we have
shown that heat-killed SA (HKSA) induced
both EGFR ligands and MMPs from airway
epithelial cells (25). These findings suggest
that SA may promote repair responses,
and perhaps polyp formation, in CRS by
inducing EGFR ligands and MMPs, from
airway epithelial cells.

Because expression of EGFR ligands in
CRS tissue has not been extensively studied,
the aim of this study was to assess the
expression of EGFR ligands in CRS and
explore the possible mechanisms that lead to
appearance of potential polyp-promoting
factors, such as MMP-1, from airway
epithelial cells. Furthermore, we investigated
the possible role of SA, a well recognized
CRS-related pathogen, using in vitro studies
with airway epithelial cells to evaluate the
hypothesis that SA might induce factors

involved in epithelial repair and, possibly,
polyp growth.

Materials and Methods

Patient Recruitment and Clinical
Sample Collection
Patients with CRS were recruited from the
Allergy–Immunology and Otolaryngology
Clinics of the Northwestern Medical Group
(Chicago, IL) and the Northwestern Sinus
Center at Northwestern Medical Group. All
subjects gave informed consent, and the
study protocol was approved by the
Institutional Review Board of Northwestern
University Feinberg School of Medicine.
All subjects met the criteria for CRS as
defined by the American Academy of
Otolaryngology–Head and Neck Surgery
Chronic Rhinosinusitis Task Force (3, 26).
Sinonasal and NP tissues were obtained
from routine functional endoscopic sinus
surgery in patients with CRS and control
patients undergoing skull-base surgery.
Details of the subjects’ characteristics are
included in Table 1. Further details are
provided in the online supplement.

Cell Culture and Treatments
Primary normal human bronchial epithelial
(NHBE) cells, from at least three different
donors, were purchased from Lonza
(Walkersville, MD). Human primary nasal
epithelial cells (NECs) were collected
from uncinate tissue (UT) by curettage
with a Rhinoprobe (Arlington Scientific,
Springville, UT) under a Northwestern
University Feinberg School of Medicine
Institution Review Board–approved human
subject research protocol. NHBE cells and
NECs were seeded in collagen-coated
12-well plates, and were maintained in
serum-free bronchial epithelial cell growth
medium (Lonza). Before stimulation,
NHBE cells and NECs were cultured in
BEGM without hydrocortisone for at least
24 hours. Submerged NHBE cells were
stimulated with 100 ng/ml of EREG (R&D
Systems, Minneapolis, MN) or 53 108

particles/ml of HKSA (Invitrogen,
Carlsbad, CA) for 24 hours and then the
total RNA was isolated. Because live SA
did not yield consistent results when
stimulating epithelial cells, we employed the
more defined stimulus, HKSA. NECs were
also stimulated with HKSA for 24 hours
and then the total RNA was isolated. For
inhibition studies, NHBE cells were treated

Clinical Relevance

We demonstrate elevated expression of
the tissue repair and remodeling
factors, epiregulin (EREG) and matrix
metalloproteinase (MMP)-1, in
sinonasal tissues from subjects with
chronic rhinosinusitis (CRS) with nasal
polyps (CRSwNP). In vitro studies
showed the induction of MMP-1 by
heat-killed Staphylococcus aureus (SA)
in epithelial cells, and blocking
antibody studies implicated EREG in
MMP-1 induction. SA colonization is
prominent in CRS, and SA thus might
amplify the expression of EREG and
MMP-1 from the epithelial cells in
patients, promoting remodeling of
sinonasal tissues. Targeting EREG
and/or epidermal growth factor
receptor ligand–induced MMPs may
have some utility in preventing polyp
formation in patients with CRSwNP.
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with 100 nM of the specific EGFR inhibitor,
AG1478 (Sigma-Aldrich, St. Louis, MO), or
DMSO control added 1 hour before the
stimulation. Anti-EREG or isotype control
antibody (5 µg/ml) was applied 1 hour
before the stimulation (25).

Real-Time RT-PCR
Total RNA was isolated from epithelial cells
using NucleoSpin RNA II Isolation Kit
(Macherey-Nagel, Bethlehem, PA) and
cDNA was synthesized from RNA using
SuperScriptII reverse transcriptase
(Invitrogen). Real-time RT-PCR (RT-PCR)
was performed with the TaqMan method
using an Applied Biosystems 7,500 sequence
detection system (Life Technologies, Grand
Island, NY), as described previously (27,
28). The mRNA expression levels were
normalized to the housekeeping gene,
b-glucuronidase, or b-actin. Further details
are provided in the online supplement.

ELISA
Concentrations of EREG (Cloud-Clone
Corp., Houston, TX) and MMP-1 (R&D
Systems) in tissue homogenates and in
supernatants of cultured cells were
determined with a commercially ELISA kit,
as detailed in the online supplement. The
concentrations of EREG and MMP-1 in
the tissue homogenates were normalized to
the concentration of total protein.

Immunohistochemistry
Immunohistochemistry (IHC) was
performed as described previously (29).
Briefly, blocked sections were incubated with
either polyclonal anti-human EREG antibody

(R&D Systems) or polyclonal anti-human
MMP-1 antibody (Abcam, Cambridge, MA)
at 48C overnight. After washing, sections
were incubated with ABC reagent
(avidin–biotin–horseradish peroxidase
complex; Vector Laboratories, Burlingame,
CA) followed by diaminobenzidine reagent
(Invitrogen). Sections were observed after
they were counterstained with hematoxylin.
Details of the methods for IHC and
semiquantitative analysis of EREG are
provided in the online supplement.

Statistical Analysis
All data are presented as the mean (6SEM),
unless otherwise specified. Differences
between the groups were analyzed with the
Kruskal-Wallis ANOVA with Dunnett’s post
hoc testing and Mann-Whitney U test.
Correlations were assessed using the
Spearman rank correlation. The data from
culture experiments were analyzed using
both parametric Student’s t test and
nonparametric Kruskal-Wallis ANOVA
with Dunnett’s post hoc test statistical
analyses, with similar results; data from
nonparametric testing are shown. In all
cases, P less than 0.05 was considered to be
statistically significant. All statistical analyses
were performed using GraphPad Prism 5.0
(GraphPad Software, La Jolla, CA) software.

Results

Patient Characteristics and
Expression of EGFR Ligands in
Patients with CRS
Sinonasal and polyp tissues were collected
from subjects with CRSsNP (n = 44) or

CRSwNP (n = 65) and control
subjects (n = 43) to determine the
expression of EGFR ligands and
MMP-1 (Table 1).

We assessed the gene expression
of TGF-a, AREG, EGF, HB-EGF, and
EREG by RT-PCR in UT from subjects
with CRSsNP or CRSwNP and control
subjects, as well as in NP tissue from
patients with CRSwNP (Figures 1A–1E).
b-glucuronidase was used as a reference
gene to normalize mRNA expression.
Although there were trends for elevated
TGF-a and AREG, levels for TGF-a,
AREG, EGF, or HB-EGF were not
found to be elevated (Figures 1A–1D).
However, mRNA for EREG was found
to be significantly elevated in UT from
patients with CRSwNP and even more
so in NP tissues (Figure 1E). To
confirm this observation at the protein
level, we generated detergent extracts
from homogenates of UT and NP
tissues and measured the concentration
of EREG protein by ELISA. In
agreement with the mRNA data, EREG
protein was strongly elevated in UT and
NP tissue from the patients with
CRSwNP (Figure 1F). In addition, there
were positive correlations between EREG
and MMP-1 protein, as expected (data
not shown).

The Expression of MMP-1 and EREG
in Sinonasal Tissues
We next analyzed microarray data that were
generated previously to compare MMPs
(MMP-1, -2, -3, -7, -9, and -11) and EGF
family gene expression (TGF-a, AREG,

Table 1. Subject Characteristics

Characteristics
Control
(n = 43)

CRSsNP
(n = 44)

CRSwNP
(n = 65)

Polyp from Subject with
CRSwNP Polyp

Male/female 23/20 21/23 44/21
Age, median (range), yr 45.5 (16–69) 35.5 (18–67) 44.5 (19–75)
Atopy (yes/no/unknown) 3/38/2 14/21/9 32/22/11
Asthma (yes/no/unknown) 1/41/1 5/39/0 29/36/0
Methodology used
Tissue RNA, n (M/F) 18 (9/9) 18 (6/12) 28 (20/8) 28 (18/10)
Age, median (range), yr 48 (16–62) 35.5 (20–67) 43 (27–57) 43.5 (23–72)
Tissue protein extract, n (M/F) 9 (8/1) 10 (5/5) 20 (12/8) 20 (8/12)
Age, median (range), yr 39 (22–61) 37.5 (22–66) 46.5 (20–71) 46 (20–71)
Immunohistochemistry, n (M/F) 13 (5/8) 7 (3/4) 10 (6/4) 19 (10/9)
Age, median (range), yr 52 (16–67) 36 (21–53) 51 (32–75) 45 (32–75)
Nasal epithelial cell RNA, n (M/F) 15 (7/8) 21 (13/8) 21 (13/8) 18 (12/6)
Age, median (range), yr 45 (23–69) 33 (18–57) 51 (19–71) 48.5 (22–70)

Definition of abbreviations: CRSsNP, chronic rhinosinusitis without nasal polyps; CRSwNP, chronic rhinosinusitis with nasal polyps.
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EGF, HB-EGF, and EREG) in UT from
patients with CRSsNP and control subjects,
as well as in UT and NP tissues from
patients with CRSwNP (30). Among the
targeted genes, MMP-1 and EREG were
found increased in NP tissues from patients
with CRSwNP in comparison to levels seen
in UT from control subjects, confirming the
findings with RT-PCR. We consequently
chose MMP-1 among the metalloproteases
for our further studies. MMP-1 mRNA
was found to be elevated in UT from
patients with CRSwNP and in NP tissues
(Figure 1G). This observed elevation was
confirmed at the protein level by measuring
MMP-1 protein in detergent extracts from
homogenates of UT and NP tissues by
ELISA (Figure 1H).

Epithelial Cells Expressed both MMP-1
and EREG in Sinonasal Tissue
To further characterize the expression of
EREG and MMP-1 in sinonasal tissues and
in NP tissues, we performed IHC analysis
of surgical specimens from UT of control
subjects and subjects with CRS to
determine the presence and distribution of
both EREG and MMP-1 proteins
(Figure 2). EREG staining was prominent
in UT and NP tissues from subjects with
CRSwNP, whereas light to no staining was
observed in UT from patients with
CRSsNP and control subjects (Figures
2A–2D). The expression was mainly in the
epithelial layer rather than infiltrating
inflammatory cells (Figures 2A–2D).
Semiquantitative analysis of EREG

staining was performed, and elevated
staining was seen in both UT from subjects
with CRSwNP and in NP tissue
(Figure 2F). In contrast, MMP-1 protein
was detected in UT from both control
subjects and subjects with CRS, as well
as in NP tissues, and an increase in
CRS tissue was not readily discerned.
MMP-1 staining was broadly observed
in structural cells, such as epithelial
and glandular cells, and in inflammatory
cells (Figures 2G–2J).

EREG and MMP-1 Expression in NEC
Scrapings
With the observation from the IHC study
that both EREG and MMP-1 staining was
strong in epithelial cells, we evaluated the
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Figure 1. Total RNA was extracted from uncinate tissue (UT) and nasal polyp (NP) tissue. Expression of (A) transforming growth factor (TGF)-a, (B) amphiregulin
(AREG), (C) epidermal growth factor (EGF), (D) heparin-binding EGF-like growth factor (HB-EGF), (E) epiregulin (EREG), and (G) matrix metalloproteinase (MMP)-1 mRNA
were analyzed by RT-PCR. The expression of mRNA was normalized to the housekeeping gene b-glucuronidase. Expression of (F) EREG and (H) MMP-1 protein in
tissue homogenates of UT and NP tissue was measured using ELISA. The concentrations of measured proteins were normalized to the concentration of total protein.
Data represent mean (6SEM); *P,0.05. CRSsNP, chronic rhinosinusitis without nasal polyps; CRSwNP, chronic rhinosinusitis with nasal polyps; NS, not significant.
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expression of EREG and MMP-1 mRNA in
fresh NEC scrapings collected from patients
with CRS and control subjects (Table 1).
Consistent with the RNA and protein
results in extracted tissue, EREG and
MMP-1 mRNA were expressed at higher
levels in epithelial scraping cells derived
from CRSwNP, UT, and NP (Figure 3). In
addition, the expression of EREG mRNA
correlated significantly with the expression
of MMP-1 mRNA in epithelial scraping
cells (r = 0.6643, P, 0.0001; Figure 3D). In
contrast, there were no changes in levels of
mRNA for EGFR, an important EREG
receptor, suggesting that NEC activation
may have been due to elevated levels
of ligand rather than as a result of
overexpression of the EGFR (Figure 3C).
These findings suggest the possibility that
EREG and MMP-1 are elevated in CRS
epithelium, and may play a prominent role
in epithelial cell activation.

HKSA- and EREG-Induced MMP-1
from NHBE Cells
The preceding results suggest that
epithelium is an important source of EREG
and MMP-1 in nasal tissues, so we focused
in vitro studies on activation of epithelial
expression of these factors. We have
previously reported that TGF-a, an EGFR
ligand, induces expression of MMP-1
mRNA and protein from NHBE cells (25).
We attempted to extend this previous
observation by stimulating epithelial cells
with EREG to test the hypothesis that
EREG will also induce expression of MMP-
1. EREG significantly induced both MMP-1
mRNA and protein from airway epithelial
cells (5.5-fold, n = 5, P, 0.01; Figures 4A
and 4B). This response was blocked by both
an anti-EREG antibody and AG1478, a
specific EGFR inhibitor. This finding
suggests a hypothesis that the increased
expression of MMP-1 in vivo in airway

epithelial cells may, in part, be induced by
EREG.

Although the factors that may induce
EREG expression in sinonasal tissues are
not established, we have previously
reported that airway epithelial cells
produce MMP-1 and EGF upon
stimulation with HKSA, and previous time
course experiments showed that HKSA-
induced MMP-1 expression was maximal
at a 24-hour time point (25). Because the
nose and sinuses of many patients with
CRSwNP are colonized with SA (22), we
tested whether HKSA can induce EREG in
epithelial cells and whether the induction
of MMP-1 might be secondary to EREG
expression. HKSA stimulation induced
both EREG mRNA (5.4-fold, n = 5, P,
0.01) and MMP-1 mRNA (22.9-fold, n = 5,
P, 0.01) in NHBE cells (Figures 4C–4F).
When the EGFR inhibitor, AG-1478, or
anti-EREG neutralizing antibody were
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Figure 1. (Continued).
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added before HKSA stimulation,
induction of MMP-1 mRNA and protein
was inhibited, implying that HKSA
induction of MMP-1 was dependent on
the release of EREG and subsequent
EGFR signaling (Figures 4C and 4D).
Because the specific anti-EREG antibody
inhibited the response nearly as well as
the EGFR-inhibiting drug, we speculate
that EREG is the primary member of the
EGF ligand family responsible for the
induction of MMP-1. Although NHBE
cells and NECs are both airway epithelial
cells, we confirmed in primary NECs the
HKSA-induced expression of EREG
mRNA (8.9-fold, n = 8, P, 0.01) and

protein (10.0-fold, n = 8, P, 0.01)
(Figures 5A and 5B).

Discussion

In the present study, we screened most of
the family of EGFR ligands in tissue of
patients with CRS and discovered elevated
expression of EREG among these EGFR
ligands. We also report that MMP-1
protein, an EGFR-induced gene, was
elevated within CRSwNP UT and polyp
tissue when compared with control UT.
Although this is the first report of EREG in
CRS, earlier studies have reported the

presence and elevation of MMP-1 (31, 32).
Furthermore, both EREG and MMP-1
mRNA were elevated in fresh NEC
collected from patients with CRSwNP.
Consistent with these findings, separate
IHC studies revealed that both EREG and
MMP-1 were mainly expressed in the
epithelial cell layer, and a strong
correlation was observed between the
levels of expression of EREG and levels of
MMP-1 in vivo. This correlation suggests
that EREG may be responsible for the
induction of MMP-1 in vivo in patients, a
suggestion further supported by additional
in vitro studies using an epithelial culture
system in which we demonstrate that
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EREG stimulation led to significant
induction of MMP-1 expression by airway
epithelial cells.

Increased colonization by SA in the
nasal cavity has been reported in subjects
with CRSwNP, and a pathological role has
been suggested for SA in CRS (22, 33–37).
We therefore took a direct approach to
identify the direct impact of SA on the
epithelial cells with which they likely
interact in vivo (25, 35). Indeed, HKSA
induced both EREG and MMP-1 from NEC
and NHBE cells, suggesting that SA may
enhance the EGFR signaling indirectly by
inducing EREG protein. To test whether
the induction of MMP-1 by HKSA may be
secondary to the induction of EREG, we
used a specific inhibitor of EGFR signaling,
AG1478, as well as a specific antibody
against EREG. In both cases, induction of
MMP-1 was inhibited, suggesting that
HKSA induces MMP-1 indirectly via
activation of the EGFR by EREG. Although
a natural hypothesis from our findings
would be that SA is responsible for
induction of EREG and subsequent
induction of MMP-1 and polyp formation,
further studies will be required to
definitively implicate SA in the induction of
EREG and MMP-1 in vivo.

Although previous reports by others
have shown that the EGFR ligands, EGF and
TGF-a, are elevated in CRS tissue (12, 21),
our study is the first to screen the family of
EGFR ligands. In our screen of EGFR
ligands within tissue extracts from patients
with CRS, we found that the most
profoundly elevated family member in
CRSwNP UT and NP tissues was EREG
(Figure 1). Surprisingly, our results did not

confirm previous reports of elevated
expression of EGF or TGF-a in CRS tissue,
although there was a trend toward higher
levels of TGF-a (12, 21) (Figure 1). This
discrepancy may come from the utilization
of different control tissues. We have
previously reported the importance of the
location from which control tissue is
derived (29, 30). In our current and
previous studies, we chose UT as our
control tissue, because it is both available
and immediately adjacent to the site in
ethmoid sinus from which typical polyps
arise (38). It is possible that EGFR ligands
may also be differentially expressed at
various regions within the nasal cavity.
Although we did not find elevated
expression of EGFR ligands other than
EREG in CRS tissue, we did detect basal
expression of these ligands in the tissue. It
is therefore possible that more than one
family member contributes to the activation
of EGFR in vivo, even though EREG is the
only one the expression of which is highly
increased in CRSwNP. Our studies with
HKSA do suggest that EREG is the major
driver of the response in the in vitro model.
Regardless of the ligands driving the
response, we speculate that EREG and
other EGFR ligands promote a signaling
process involved in both epithelial
activation and repair in the context of
CRSwNP.

Although growing evidence supports
the importance of EGFR ligands in tissue
repair and, potentially, in polyp formation,
the specific functions of the individual
EGFR ligands remain unclear (13). It has
been shown that stimulation with HDM,
Aspergillus fumigatus, SA, IL-17A, and even

with mechanical compression can induce
various EGFR ligands from cultured airway
epithelial cells and also further induce
expression of inflammatory chemokines in
either an autocrine or paracrine manner
(14, 25, 39, 40). These previous findings are
complicated to interpret uniformly, but we
are at least able to conclude, based upon
our current findings, that EGFR
ligand–dependent signaling is enhanced in
CRS epithelial tissue.

At present, the mechanism by which
NP tissue forms is not completely
understood. We have recently reported that
tissue plasminogen activator, which
degrades fibrin mesh, is decreased in CRS,
and factor XIII-A, a coagulation factor that
cross-links and forms fibrin mesh, is
elevated in polyp tissue (38, 41). Together,
these changes are likely responsible for
deposition of fibrin mesh in polyp tissue.
The cleaved form of factor XIIIA is a
transglutaminase, which can interact with
avb3-integrin (CD51/CD61 complex),
expressed by airway epithelial cells, and can
mediate signaling (42). MMP-1 protein has
been shown to be induced in dermal
fibroblasts via avb3-integrin activation
(43), suggesting that it may be worthwhile
to evaluate whether factor XIIIA may
induce MMP-1 protein from airway
epithelial cells. Taking together our current
data and that of previous reports, it is
possible that coagulation factors, EGFR
ligands, and MMPs are interacting factors
involved in formation of the NPs. Further
experiments are needed to address the
nature of the interactions of these potential
polyp-forming pathways. It may also be the
case that EREG and MMP-1 are important
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in the epithelial–mesenchymal transition
(EMT) that has been demonstrated by
many different groups in CRS, more so
than the polyp formation itself (32, 44).

MMP-1, -2, -7, -8, and -9 have all
been found by other investigators to be
elevated in CRS tissue when compared
with control subjects (16, 17). Among the
several types of MMP, MMP-1 was the only
one found to be elevated in NP, leading us
to focus on MMP-1 in CRS tissues and
airway epithelial cells. MMP-1 is a protease,
and can degrade fibrillar collagen during
the normal processes of wound healing,
epithelial cell turnover, and EMT (45). In
the airways, epithelial cells form the
primary barrier against environmental
stimuli, and epithelium in asthma and
CRS is defective, with incomplete formation
of tight junctions that normally prevent
penetration by inhaled allergen or
pathogens (46, 47). The overexpression
of MMP-1 that we report here could be
one of many factors responsible for
the disruption of the epithelial barrier
in CRS.

Our present findings, that EREG and
MMP-1 are expressed in epithelium and
elevated in affected tissue in patients with
CRS, are consistent with a hypothesis that
EREG may induce MMP-1 from epithelial
cells in CRS, a hypothesis further supported
by findings that EREG induced MMP-1
mRNA and protein in vitro in NHBE cells.
We have previously reported EGFR-
dependent induction of MMPs in
epithelium through activation of the
transcription factor, extracellular
signal–regulated kinase (ERK) 1/2 (25). If

this hypothesis is correct, one would expect
to observe EGFR-related transcription
factors to be activated in CRS tissue.
Accordingly, Linke and colleagues (48)
reported that the ERK1/2 pathway was
activated in tissue from patients with
CRSwNP. Based on the present findings,
EREG is the most likely stimulus of this
activation in vivo. EGFR activation can
promote wound healing and tissue
regeneration by induction of secondary
EGFR ligands as well as proteolytic MMPs;
however, EGFR activation can also induce
EMT and decrease the integrity of the
epithelial barrier, and thereby could be
involved in CRSwNP pathogenesis in more
than one way.

The primary goal of this study was
to investigate possible mediators of
epithelial activation and polyp formation
that occur in CRS, with the hope of
identifying pathways that are amenable to
therapeutic intervention. Current medical
therapy in CRS has been centered upon
antiinflammatory steroids and antibiotics.
The present study suggests that a possible
therapeutic target worthy of consideration is
mediated by the EGFR signaling pathway
and further activating mitogen-activated
protein kinases, such as ERK1/2 and c-jun
N-terminal kinases. We have recently
reported the up-regulation of oncostatin
M within NP tissues, and point out that
it is known that oncostatin M enhances
the activation of signal transducer and
activator of transcription 1, 3, and 5 and
various mitogen-activated protein kinases,
suggesting further enhancement of
EGFR-activated kinases (49, 50).

Although we might expect that EGFR
tyrosine kinase inhibitors or anti-EGFR
antibodies would diminish epithelial
activation in CRS, use of these
compounds is limited due to toxicity (51,
52). Our data also suggest that a broadly
active MMP inhibitor, such as marimastat,
could be useful in CRS. This compound
decreased airway hyperresponsiveness in
subjects with asthma (53). Recently, van
Zele and colleagues (31) showed that
doxycycline, an antibiotic that is also a
potent inhibitor of MMP expression,
reduced polyp size in patients with
CRSwNP.

In summary, we report that MMP-1
and EREG were elevated in affected tissues
from patients with CRSwNP as well as in
nasal epithelial cells collected from patients
with disease. Companion in vitro studies
showed that HKSA induced EREG, which
in turn induced MMP-1 via EGFR
signaling, providing a possible mechanism
by which SA may enhance the EMT and
perhaps polyp formation. The present
findings suggest that local blockade of
EGFR signaling at the mucosal surface,
either by inhibiting EREG or EGFR, could
diminish the induction of MMP-1 and
other proteases that contribute to barrier
dysfunction. In addition, recognition that
SA may promote epithelial activation
through this EREG/MMP-1–dependent
process suggests that prevention of SA
activation of epithelium may also be of
benefit. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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