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Abstract

In genomic studies with both genotypes and gene or protein expression profile available, causal 

effects of gene or protein on clinical outcomes can be inferred through using genetic variants as 

instrumental variables (IVs). The goal of introducing IV is to remove the effects of unobserved 

factors that may confound the relationship between the biomarkers and the outcome. A valid 

inference under the IV framework requires pairwise associations and pathway exclusivity. Among 

these assumptions, the IV expression association needs to be strong for the casual effect estimates 

to be unbiased. However, a small number of single nucleotide polymorphisms (SNPs) often 

provide limited explanation of the variability in the gene or protein expression and can only serve 

as weak IVs. In this study, we propose to replace SNPs with haplotypes as IVs to increase the 

variant-expression association and thus improve the casual effect inference of the expression. In 

the classical two-stage procedure, we developed a haplotype regression model combined with a 

model selection procedure to identify optimal instruments. The performance of the new method 

was evaluated through simulations and compared with the IV approaches using observed multiple 

SNPs. Our results showed the gain of power to detect a causal effect of gene or protein on the 

outcome using haplotypes compared with using only observed SNPs, under either complete or 

missing genotype scenarios. We applied our proposed method to a study of the effect of 

interleukin-1 beta (IL-1β) protein expression on the 90-day survival following sepsis and found 

that overly expressed IL-1β is likely to increase mortality.
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Introduction

During the past decade, many studies have been conducted to identify differentially 

expressed genes or proteins related to complex diseases [Dermitzakis, 2008; Emilsson et al., 

2008; Hanash, 2003]. However, remarkable heterogeneity exists across study results [Chan 

et al., 2008; Ein-Dor et al., 2006; Schanstra and Mischak, 2014; Zhang et al., 2008], even 

after various observed confounders including demographic and clinical variables were 

controlled for. One possible explanation is that the estimated association between gene or 

protein expression and complex diseases may be spurious or distorted due to other 

unobserved or unmeasurable factors [Smith and Ebrahim, 2004]. For example, several 

proteins including homocysteine and C-reactive protein (CRP) have been reported to be 

associated with coronary heart diseases (CHD); however, both high blood pressure and 

smoking can elevate the levels of the above proteins and are also independent risk factors for 

CHD [Davey Smith et al., 2004]. So it was unclear whether high and CRP levels reflected 

CHD risk factors such as smoking or blood pressure or whether homocysteine and CRP 

contributed causally to the development of CHD. In addition, numerous experimental 

design, lab operations, staff training, microarrays processing batch, environmental factors, 

and genetic background can affect gene product expression in some systematic way and may 

also be correlated with disease outcomes due to unpredicted nonrandom procedures [Leek 

and Storey, 2007]. Ignoring the potential confounding effects tends to produce results that 

are both biologically less interpretable and less reproducible across independent studies. 

Originally developed in econometric studies [Hausman, 1978], the instrumental variables 

(IVs) method is recently introduced and successfully applied in genetic epidemiology to 

infer the causal association between biomarkers and disease phenotypes, by controlling 

confounding in differential expression analyses.

The IV method, also called Mendelian randomization, considers a genetic variant as an 

instrument to estimate the causal effect of a continuous gene or protein expression variable 

on a binary or continuous trait. The method assumes that genetic variant is randomly 

assigned at the gamete formation and leads to the diseases through modifying the expression 

of a gene. It further assumes that the genotype distributes independently from other 

unobserved confounders and its effect on the outcome is mediated only through the 

intermediate gene expression [Didelez and Sheehan, 2007; Lawlor et al., 2008a]. A popular 

example is the use of a functional variant rs1801133 within gene MTHFR (encodes 

methylenetetrahydrofolate reductase) in understanding the effect of homocysteine, a protein 

mentioned in the previous example, on CHD. Because rs1801133 is highly predictive of 

homocysteine level but has no correlation with other confounders such as smoking or blood 

pressure, the predicted value of homocysteine using rs1801133 is independent of confounder 

effect and the effect of the predicted homocysteine on CHD can be considered “causal” 

[Davey Smith et al., 2004]. Conversely, genetic variations in the CRP gene alter CRP protein 

levels but these CRP genetic variants are not associated with CHD indicating that CRP does 

not causally contribute to CHD; it is simply an association [Brunner et al., 2008; Hausman, 

1978].

Most IV approaches considered one gene expression and one single nucleotide 

polymorphism (SNP) whose relationship with exposure of interest has been well established. 
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These approaches generally consist of two major stages. In stage 1, the predicted values of 

the expression variable are obtained through an ordinary regression model with the SNP as a 

predictor. In stage 2, the outcome is regressed on the expression prediction from stage 1 

(rather than original expression variable) to infer causal associations between the gene 

expression and disease traits. However, using an IV that is only weakly associated with the 

expression would produce a low and variable correlation between the outcome and predicted 

expression value, which often implies unreliable casual effect estimate [Murray, 2006]. To 

improve the strength of IV, multiple SNPs can be used as IVs [Palmer et al., 2012], though 

there might be a noticeable percentage of subjects with at least one SNP missing. Moreover, 

when the true causal variants are not genotyped, the surrogate markers that only have weaker 

associations with the expression may be worse IVs.

As combinations of closely linked alleles along single chromosome, haplotypes harbor the 

linkage disequilibrium (LD) information between the typed and the casual variants and may 

increase power to detect a variant underlying a phenotypic trait in association models 

compared with single SNP association methods. The haplotype disease association method 

often starts with reconstructing the pair of haplotypes of each individual using population 

haplotype frequencies. Many early haplotype-based methods used only the most likely 

haplotypes as the true haplotypes, leading to biased estimation of haplotype effects [Li et al., 

2007]. Later models can take haplotype inference uncertainty into account and may increase 

the accuracy of the effect estimate and further the power of detecting associations [Li et al., 

2006; Zaykin et al., 2002]. The power gain from the inferred haplotypes was most 

remarkable in the presence of polygenetic effect and epistasis [Schaid, 2004]. In addition, 

haplotype methods can handle missing genotypes directly without an additional imputation 

step and may provide additional power gain compared with simple linear regression at the 

presence of missing genotypes. A few IV studies have used haplotypes as IVs to infer causal 

associations of serum CRP levels with insulin resistance [Brunner et al., 2008] and 

metabolic syndrome [Timpson et al., 2005]. In these studies, most likely haplotype phases 

within a three-SNP region were inferred for each subject. Only the haplotype phases with 

high certainty were included as the predictors for CRP, while ambiguous haplotype phases 

were believed to cause weak IVs and were excluded [Lawlor et al., 2008a].

Motivated by the aforementioned studies, we proposed a framework to use haplotypes as IVs 

to infer the causal effect of gene or protein expression on an outcome and hypothesized that 

using haplotype as IV would provide more accurate inference than using single or even 

multiple SNPs. Instead of using only common haplotypes and most likely phases for each 

individual, we took advantage of all haplotypes and possible phases simultaneously to 

provide stronger instruments. Our method resides within the classic two-stage setup and 

includes a new prediction model in step 1. The new regression model takes all possible 

haplotypes into initial account simultaneously and then reduces the number of haplotype 

classes through a novel model selection procedure. We evaluated the performance of our 

proposed IV approaches in extensive simulations with various IV strengths, confounding 

levels, and mechanisms of missing data. The performance of our approach was compared to 

the approach using multiple SNPs as IVs. Finally, we apply both approaches to a real study 

to estimate the causal effect of plasma interleukin-1 beta (IL-1β) protein expression on 

mortality following septic shock.
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Methods

Notations and Assumptions

We consider a normally distributed outcome variable Y, a gene or protein expression 

variable X, and m adjacent SNP genotype variables within a haplotype block summarized in 

an m-dimensional vector Z, in a study of n subjects. We assume that the true relationship 

among X, Y, Z, and an unobserved confounder variable U is shown as in Figure 1: the 

expression X has a direct effect on the outcome Y and indirect effect through the confounder 

U, and the genotype Z causes Y only through X. Such assumptions imply that (1) the 

genotype Z is associated with the gene or protein expression X; (2) the genotype Z is 

independent of the confounder U between X and Y; (3) conditional on X and U, the 

genotype Z and the outcome Y are independent, i.e., the genotype Z has no direct effect on 

the outcome Y and can affect the latter only indirectly through the expression X [Didelez et 

al., 2010].We further denote that there are t possible haplotypes H1, …, Ht in the population 

with frequencies π = (π1, …, πt) in the haplotype block spanned over the m SNPs. Here, the 

key question of interest is how big the true (causal) effect of X on Y is without the indirect 

influence of U.

Method 1 in Step 1: Choosing Multiple SNPs as IVs

The true effect of X on Y is generally estimated through a two-stage lease squares (2SLS) 

approach. The first step is to predict X using Z, and the second step is to regress Y on 

predicted value x̂. As a single SNP often accounts for a small fraction of variability of a gene 

or protein expression, a single SNP might be a weak IV for inferring the causal effect. If 

multiple SNPs cumulatively explain more variability in the expression, they can jointly serve 

as better instruments to improve the prediction of the expression and its causal effect 

estimate on the outcome in the next step. Using all m SNPs as instruments, we first fit the 

model:

(1)

where β0 is the intercept, β1, …, βm are the effects of m SNPs on the gene or protein 

expression x, and ε is a random error, following N(0, σ2). Typically after the model (1) is 

fitted and parameter estimates β̂0, β̂1, …, β̂m are obtained, the predicted expression value x̂i 
for individual i can be determined by x̂i = β̂0 + z1iβ1̂ + z2iβ̂2 +… + zmiβm̂. Because some 

SNPs may not be associated with the expression or but can be associated with the 

confounders just by chance, including those SNPs in model (1) may introduce spurious 

association or between X and Y. The more such SNPs or the higher the confounder effect, 

the higher chances the spurious association can be. To overcome this problem, we used a 

classic stepwise selection procedure to select most valuable predictors in step 1 [Hocking, 

1976]. The stepwise regression started with the full model including all SNPs as predictors. 

At each iteration, the SNP with poorest incremental prediction and corresponding P-value 

for β > 0.05 was then removed. All removed SNPs were checked one by one to see whether 

their additional contribution was resumed to be large (P < 0.05) with the current set of SNPs 

included in the model. If one SNP meets the criteria, the updated model will reinclude that 
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SNP that was removed previously; if more than one SNP meet the criteria, the one with the 

largest contribution would be reselected first and others be checked for new contribution 

iteratively. The above iterations were repeated until all fitted SNPs had P < 0.05. Such model 

selection procedure can remove the unrelated SNPs in step 1 and avoid inflated type-I errors 

in step 2. Then, the predicted value x̂i was determined by the final model.

Method 2 in Step 1: Haplotypes as IV

Here, we introduce a multivariate model using all haplotypes within a block as IVs to 

improve the inference of casual effect of a particular gene on a disease trait:

(2)

where βj represents the effect of one more copy of the haplotype j on the expression x, 

is any possible haplotype pairs (so-called diplotype) for individual i, and  is the 

posterior probability of the diplotype given the genotypes of subject i. For the convenience, 

we call each value  “weight” corresponding to each Hj. 

Under the Hardy-Weinberg equilibrium (HWE), , for 1 ≤ k ≤ t; 

, for 1 ≤ k ≠ l ≤ t. Haplotype population frequencies (π1, …, πt) 

and  of individual i can be estimated based on all unrelated subjects through 

the EM algorithm [Dempster et al., 1977].

Because each individual is supposed to have two haplotypes (so-called diplotype) at one 

locus, i.e., , the haplotype full design matrix 

with an intercept would be a singular matrix. To avoid the singularity, model (2) does 

include all haplotypes but not the intercept. This model is actually equivalent to the 

following model (3) that includes intercept β0 and treats one haplotype as reference:

(3)

We used model (2) for the convenience of the following model selection. If we use the same 

model selection strategy as in model (1), each β̂ represents the expression mean change for 

one copy of the haplotype compared with the reference group. If a haplotype group with the 

largest P value is removed, it was equivalent to merge this haplotype to the reference 

haplotype group. Such merging may lead to the disappearance of multiple haplotypes groups 

even with large between-group differences if all of them have relatively small effect 

compared with the reference group. In that circumstance, how to choose the reference 

actually affects the result of model selection. Ideally, a method should be robust to such 

choice so we developed an iterative clustering approach. In this approach, clustering at each 
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step is based on haplotypes with most similar effects, similar to the idea of Tabu search 

method that uses a heuristic neighborhood search for optimization [Glover, 1989]. The goal 

is to merge one haplotype group into a closest group in each step until the number of 

haplotype groups included in the model is optimized. To start, we fit the model (2) with all t 
haplotypes and obtain t corresponding effect estimates β1̂, β̂2, …, βt̂.

We sorted all βi in an ascending order, denoted as β̂(1) < β̂(2) < … < β(̂t) and also ranked all 

haplotypes accordingly. Next, we checked the difference in the effects between two adjacent 

haplotype groups and tested for its significance, and adjacent haplotypes with the smallest 

difference were merged into one group. At this step, the total number of haplotype clusters 

in the model would decrease by one and the weight corresponding to the new cluster in the 

new model would be the summation of the weights corresponding to the previous two 

groups. If all haplotypes have the same population frequency, the standard error (s.e.) of any 

pairwise β̂ difference would be the same and the relative order of the P-value for the 

difference will reflect the order of the magnitude of the difference, similar to the pairwise 

group difference in a balanced analysis of variance (ANOVA) design. So the magnitude of β̂ 

difference can be used for merging adjacent clusters. However, with different haplotype 

frequencies, the order of the P-value for any pairwise difference is also affected by the 

frequency of the involved haplotypes. The rarer two haplotype groups are, the smaller the P-

value for the corresponding β̂ difference is. So we did not use P-value as the merging criteria 

to avoid the influence of the group frequencies. The fitting and merging procedure was 

repeated until all differences between two groups with smallest effect difference became 

significant at a level of 0.05. The predicted expression value x̂i for individual i was then 

determined after the final model is fitted and parameter estimates are obtained.

Step 2: Casual Effect Estimate

The predicted value x̂ is obtained for each sample based on the final model, which is one 

part isolated from x and independent of the confounder U. Thus, the confounding effect is 

then controlled by regressing y on the predicted value x̂, i.e., fitting model yi = γx̂i + εi,i = 1, 

2,…., n where γ represents the true (or causal) effect of expression on the outcome through 

the unique genotype expression outcome pathway, not affected by the latent confounder U. 

We will call the method using multiple SNPs as the “SNP-IV” method and our proposed 

method using haplotypes as the “haplotype-IV” method.

Binary Outcomes

For binary outcomes, two-stage residual inclusion (2SRI) should be used. Instead of 

substituting the original x with the predicted value x̂ in the 2SLS approach, 2SRI calculates 

residuals e = x – x̂ from step 1 and includes the residual e as well as the original x in the 

logistic model in step 2, i.e., log[Pr(yi = 1|xi)/(1 − Pr(yi = 1|xi))] = γxi + ηei, i = 1, 2, ...., n, 

where Pr(yi = 1|xi) is the disease probability given xi for subject i. exp(γ̂) is the estimated 

causal odds ratio for a given expression value, but the regression coefficient η of the residual 

term is generally not of interest. Under the null hypothesis, the causal odds ratio of the 

expression value on the outcome is 1, i.e., γ = 0. The hypothesis testing is often done by the 

Wald test to obtain the P-value corresponding to γ, as in ordinary logistic regression models. 
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2SRI is generally recommended to use for better consistency for binary outcomes [Terza et 

al., 2008].

Simulations

Genotypes

The genotypes of 200 subjects were generated based on an 11-locus haplotype block within 

gene PDGFC. PDGFC locates at chr 4:156,761–156,971 kb and encodes a member of the 

platelet-derived growth factor family, which regulates embryonic development and 

angiogenesis, and has been associated with and contribute to the pathophysiology of 

hepatocellular carcinoma and associate sepsis [Campbell et al., 2005; Hu, 2013]. The LD 

structure of this block with Utah residents with ancestry from northern and western Europe 

(known as CEU population) is summarized in Supplementary Figure S1. Nine of the 11 

SNPs are common and there are 11 haplotypes in the population. The averaged D′ and R2 

across all SNP pairs are 0.89 and 0.28, respectively, a moderate LD among loci within 

haplotype blocks. Assuming HWE, each subject’s diplotypes were generated based on the 

CEU population frequencies of the PDGFC haplotypes.

Expression and Continuous Outcome

To allow some variations in the LD between the casual SNP and neighboring markers, we 

chose two of the 11 SNPs in turn to be the causal SNPs, with their (0, 1, 2) coding denoted 

as Z1, Z2. Then, a common unobserved confounder U that affected both gene expression X 

and outcome Y was generated from . Two random variables ε1 and ε2 were 

generated from  independently. The expression X was then generated according to 

an additive model:

(4)

where β1 and β2 are the effects of two causal SNPs on the expression X. The outcome Y was 

then simulated according to Y = γX + U + ε2, where γ is the effect of the expression on the 

outcome.

Parameter Setting

Because the total proportion explained by SNPs reflects the IV strength, we call the setting 

with three values 5%, 10%, and 20% as weak, medium, and strong IV settings. We varied 

the values of β1, β2, so that the proportion of variability of expression explained by each 

SNP is the same, i.e., 2.5%, 5%, and 10% of the total variability of the expression. We 

allowed the ratio of variance in confounder and variance in random noise , which 

specifies the confounding level (so-called endogeneity), to change from ~10% (we call 

“moderate’) to ~20% (we call “high”). Under the null hypothesis that there is no causal 

effect of expression X on outcome Y, we let γ equal 0; under alternative hypothesis that 

there is a causal effect of expression X on outcome Y, we fixed γ at 0.3. We generated 

10,000 datasets for type I error and 500 dataset for power at each setup.
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As missing genotype is common in genotyping platforms, we investigated the performance 

of two IV models under two common missing scenarios: (1) all SNPs have random missing 

of 2% due to experimental conditions such as insufficient DNA quality or small molecular 

effects and (2) casual SNPs were completely untyped.

Last, we applied both SNP-IV and haplotype-IV models to obtain the causal effect of the 

expression X on the outcome Y.

Application to Real Data

Septic shock remains a common cause of death in the intensive care unit, with mortality 

rates as high as 35% [Annane et al., 2003; Kumar et al., 2011]. Multiple inflammatory 

cytokines have been associated with adverse outcomes in septic shock, though the causal 

role of those cytokines is unknown [Hausman, 1978]. IL-1β mediates several 

autoinflammatory conditions and contributes to innate and inflammatory immune responses 

[Brunner et al., 2008]. Recently, our study has indicated that plasma IL-1β levels might be 

inversely associated with survival following septic shock in a large clinic trial population 

[Meyer et al., 2014]. However, the effect of plasma IL-1β levels on septic shock has not been 

well studied due to several confounder factors such as IL-1β detection, genetic background, 

and other proteins. In this study, we extracted SNPs around gene IL1B (encodes IL-1β) 

region, then applied both SNP-IV and haplotype-IV models to examine potential effect of 

plasma IL-1β levels on 90-day mortality following septic shock.

Plasma IL-1β protein levels drawn within 24 hr of vasopressor-dependent septic shock and 

genome-wide genotype (Illumina 1M array) were available for 390 subjects from the 

vasopressin and septic shock trial (VASST), a published clinical trial comparing two 

vasopressor strategies inmortality following septic shock. The details of the original study 

were described in Russell et al. [2008], Lawlor et al. [2008b], and Meyer et al. 

[2014].Genotypes of 82 SNPs were extracted from the region of gene IL1B (chr2:113,303, 

808–113,310, 827) and its 100-kb flanking region, according to Human genome built NCBI 

36/hg18. None of SNPs showed large derivations from HWE (P < 0.001) or missing 

genotyping rate greater than 10%. Genetic background of each sample was determined by 

principle component analyses with integrating with HapMap3 data (http://

hapmap.ncbi.nlm.nih.gov/). Because 90-day mortality following septic shock is a binary 

outcome, the 2SRI method was used in the final step for both IV models adjusted for 

covariates sex, age, and the first two PCs [Price et al., 2006].

Results

Type 1 Errors

Table 1 shows that the type 1 error rates at the nominal level of 0.05 across all 55 casual 

SNP pairs for both SNP-IV and haplotype-IV methods. The type I error rates were well 

reserved under various IV strength and any combination of casual SNPs. Without the model 

selection procedure, the type I errors were reserved only under strong IV, but inflated up to 

7.7% with an average inflation of 1.8% when IV strength was weak and endogeneity was 

high (~20%) (Supplementary Table S1).
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Power

The power for two IV models (SNP-IV and haplotype-IV) under different levels of IV 

strength was presented in Figure 2, ordered by the average R2 between the two causal SNPs 

and other markers within the haplotype block. The bottom, middle, and top were for IV 

strength being weak, medium, and strong, respectively. The average R2 for each SNP pair, 

summarizing the LD strength between casual and other typed markers, was shown by the 

gray line with values matched to the right Y-axis. As the average R2 increased, the power of 

declaring a significant casual effect generally increased in both SNP-IV and haplotype-IV 

models. However, in a few combinations when the minor allele frequency (MAF) at either 

causal locus was small (MAF < 0.05), the power in both models dropped compared with the 

setup with similar average R2 between casual and other SNPs. Such trend remained with 

moderate or even weak IV strength. But the power always increased with increasing R2 

when IV strength increased. Compared with the SNP-IV model (red solid lines), the 

haplotype-IV model had consistent power gain ranging from 1% to 12%, with an average of 

6.1% gain. Note that such power gain could be more substantial when IVs were weak and 

power from the SNP-IV models was small. However, when average R2 was small (<20%) 

and the power from the SNP-IV was low, the additional power gain from the haplotype-IV 

model was minor, especially in the weak IV case. This was because the additional 

information from small correlated markers was limited.

We further evaluated how two IV models perform if some of genotypes were missing or not 

typed. The power from two missing conditions was presented in dashed and dotted lines in 

Figure 3a, adjacent averaged R2 of 55 SNP pairs were still positively correlated with power 

in missing scenario 1 (SNPIV vs. haplotype-IV: 0.83 vs. 0.80) and missing scenario 2 (SNP-

IV vs. haplotype-IV: 0.83 vs. 0.81). For the SNP-IV model, an average power loss of 3.0% 

and 3.6% was observed across 55 SNP pairs among missing scenario 1 and missing 

scenarios 2, respectively. For the haplotype-IV model, power almost remained the same in 

missing scenario 1 as in no missing scenario, for any causal SNP combination, but this was 

true only for several scenarios in the missing condition 2 in which causal SNPs were in high 

LD (adjacent averaged R2 > 0.30).

As confounding effect is critical issue in IV application, we assessed two IV models with 

increasing endogeneity. Consistent with previous results, given the same sample size, the 

haplotype-IV model still demonstrated consistent power gain when endogeneity increase up 

to 20% (Fig. 3b). The haplotype-IV model achieved mean power 47% across all 55 causal 

SNP combinations, higher than the mean power 40% observed from the SNP-IV model. 

When 2% missing rate occurred at each SNP, the power of the haplotype-IV model was 

almost identical to no missing scenario, but the power of the SNP-IV model dropped by an 

average of 2.8%. When two causal SNPs were not typed, the power loss (an average of 

3.2%) of the SNP-IV model was tiny compared with no missing scenario; the power loss of 

the haplotype-IV model is even more sparse and only occurred for several causal SNP 

combinations when those causal SNPs had low LD with other typed SNPs (adjacent 

averaged R2 < 0.30).
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Causal Effect Estimates

Table 2 presents the casual effect estimates of the expression X on the outcome Y using two 

IV models as well as using an ordinary linear regression without applying the IV approach 

under a random pair of casual SNPs. Under the alternative hypothesis, the true effect of the 

expression on the outcome was fixed at 0.30. The effects estimated from an ordinary linear 

regression without any instrument were all much higher than the true effect, and more biased 

in the high endogeneity (γno iv = 0.48, SD = 0.07). In the scenario of moderate endogeneity 

and strong IV strength, causal effects estimated from two IV models were very close to the 

true effect (γSNP = 0.32, SD = 0.10; γhaplotype = 0.32, SD = 0.10). When IV strength became 

weak, the causal effect estimates from both models changed little with large variation (γSNP 

= 0.33, SD = 0.23; γhaplotype = 0.33, SD = 0.21). Although a little bias was observed in an 

extreme scenario of high endogeneity and weak IV strength (γSNP = 0.32, SD = 0.25; 

γhaplotype = 0.36, SD = 0.22), the causal effect estimates from IV models were still less 

biased than estimations from the ordinary regression. Similar results were observed in two 

missing scenarios. The above results suggest IV estimators using either SNPs or haplotypes 

are highly sensitive to endogeneity and less sensitive to IV strength and missing schemes.

Haplotype-IV Analysis in the VASST Population

Plasma IL-1β levels were log-transformed to follow normal distribution. As displayed in 

Supplementary Figure S2, program Haploview [Barrett, 2009] was used to identify four LD 

blocks across 82 SNPs within the specified IL1B region based on Gabriel approach [Gabriel 

et al., 2002]. Then, we applied the ordinary logistic regression and two IV methods to each 

of the blocks. Without applying any instrument, measured IL-1β level was positively 

associated with the mortality following septic shock (odds ratio [OR] = 1.25, P = 0.0001); 

the odds of postshock death increased by 1.25-fold, while IL-1β level increased one unit. 

SNP-IV models in four different blocks yielded three ORs of IL-1β level on mortality larger 

than 1 and one smaller than 1, though all ORs had wide confidence intervals and were far 

from being significant (Table 3).

In contrast, all first three haplotype-IV models resulted in stronger ORs than those estimated 

by the SNP-IV model. In addition, the casual OR of IL-1β on mortality using the final 

haplotype-IV model in block 3 (59th–72th SNP, Supplementary Fig. S2) was significant (OR 

= 3.21, P = 0.0003) and that one unit increase in IL-1β level increased the odds of postshock 

death by 3.21-fold. In block 3, seven haplotypes and one rare group (haplotypes with 

frequencies < 1% were merged) were estimated from the population and added to the initial 

model. The final IVs were formed between two subgroups with significantly different means 

in IL-1β levels (P = 0.004): one subgroup contained four haplotypes 

(CGAACGGGGGGAGA, CGAACGGGGGGGGA, CAGGAGGCGAAAAG, and rare 

group) and contributed increased IL-1β levels, and the other subgroups contained remaining 

four haplotypes (CGGGCGGGGGGAGG, CGGGAGGCGAAAAG, 

CGGACGGGGGGAGA, and GGGGCAAGAGGAGG) and contributed to decreased IL-1β 
levels. The OR estimate from the model in the last block was very close to 1. The above 

results suggested that IL-1β levels controlled by LD block 3 in gene IL1B might positively 

contribute to postshock mortality.

Wang et al. Page 10

Genet Epidemiol. Author manuscript; available in PMC 2017 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion and Conclusions

Genetic markers (e.g., SNP) have been used as instruments in massive observational 

epidemiologic studies; however, selection and identification of valid instruments is still a 

challenging issue. This study proposed a new IV model that applied multilocus haplotypes to 

serve as instruments to estimate the causal effect of an expression on a clinic outcome. Our 

simulation showed that the method using haplotype as instruments will improve power 

compared with that using multiple SNPs directly, specifically in the presence of missing 

genotypes, weak SNP-expression association, or large confounder effect. In a clinical trial 

database, we demonstrated one example that applying the haplotype-IV model identified a 

statistically strong effect of plasma IL-1β levels on mortality of patients with septic shock.

Generally, SNPs with greater than 5% or 10% missing rate are excluded due to bad DNA 

quality or calling errors. Two percent of missing rate in simulation could cause considerable 

power loss in the SNP-IV model but not in the haplotype-IV model (Fig. 3). Another 

common phenomenon in genetic studies is that a large number of variants identified from 

SNP-phenotype and SNP-expression associations are presumed to be marker SNPs that are 

in LD with the causal one, because functional evidence is lacking or if the causal SNP is not 

covered by commercial genotyping array or by reads in next-generation sequencing. Such 

proxy SNPs might result in false-positive signals or biased estimation. When causal SNPs 

were not genotyped, results demonstrated that power of two IV models using adjacent 

markers would drop dramatically if causal SNPs are in low LD (adjacent averaged R2 < 

0.30), which primarily results from the presence of rare SNPs (MAF < 0.05).Thus, we would 

prefer to use the haplotypes-IV model if rare SNP appeared in IV studies.

One of the critical issues in application of IV model is to identify valid instrument, which 

requires that the first assumption of IV model to be satisfied: genotype Z is associated with 

the gene or protein expression X. Most IV studies employ one instrument to estimate the 

causal effect of gene product expression on clinical outcome, and it may not improve the 

inference of causal effect if the single SNP only accounts of a small proportion of variability 

of expression or if some genotypes are missing. In a few IV studies, multiple instruments are 

applied but the estimation may be biased due to inclusion of nonvalid instruments. In this 

study, we use a stepwise regression strategy to select the optimal model with the best 

prediction of expression in stage 1. Our approach appears very useful to eliminate bias due 

to introducing nonvalid instruments. Our simulation shows that type 1 errors were slightly 

inflated in same scenarios without model selection (Supplementary Table S1). Compared 

with estimations using stepwise regressions, our simulation study shows that the simple 

multivariate model without model selection strategy can cause biased estimates 

(Supplementary Table S2). Our explanation is that model selection can eliminate variance in 

expression introduced by irrelevant SNPs and also unnecessary covariance/redundancies 

among correlated SNPs, which can help the prediction. As in any model selection algorithm, 

overfitting might be a concern in step 1. However, its potential influence on the cause effect 

estimate was reduced in the two-step procedure. Because the predicted expression part due 

to the overfitting in step 1 generally will not increase the association signal between the gene 

expression and the outcome and thus will not bias the inference of the causal effect.
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As true genetic variants determining IL-1β levels were unclear, four LD blocks across gene 

IL1B region were all used to infer causal effect of IL-1β levels on postshock mortality. Only 

the haplotype-IV model identified a significant effect of IL-1β levels using haplotypes on 

block 3, which was stronger than the effect estimate (OR = 1.25) without applying any 

instrument. Block 3 was found to be located in the gene body of IL1B, while other blocks 

were in the flanking regions, so the variants in block 3 are more likely to have functional 

roles in regulating IL-1β levels. Other LD blocks are away from the IL1B gene body and 

their effect (if any) may be too weak to identify [Albert and Kruglyak, 2015; Wang et al., 

2011]. The causal estimates using two other blocks were not significant but in the same 

direction as the effect estimate using block 3, suggesting the higher IL-1β value may 

increase the mortality if all IV assumptions are met. Using any model selection approach 

with a uniform variable selection, cut-off may be controversial as the true SNPs with small 

effect may be removed from the model. Thus, we also presented causal effect estimations of 

IL-1β levels on postshock mortality without model selection (Supplementary Table S3), the 

directions are consistent for the haplotype-IV method but not for the SNP-IV method. The 

true correlation between genetic variants and gene or protein expression is often unknown, 

and the correlation between genetic variants and confounders may be known. When the 

correlation between the confounders and genetic variants is ignorable, the IV approach with 

a model selection procedure may obtain similar results compared with no model selection. 

Additionally, we noticed that the OR estimate of IL-1β on postshock mortality from the IV 

models was higher than the unadjusted OR estimate without using IV. In the simulations, the 

effect estimates from the IV models were smaller than the unadjusted estimates because the 

confounder was positively associated with both the expression and the outcome. Additional 

simulations were conducted with opposite directions of the confounder effects on the 

expression and the outcome, and the result was consistent with what was observed in the real 

study (Supplementary Table S4). In either case, the causal effect estimates were closer to the 

true value than the unadjusted effect estimates.

There are many stepwise regression approaches to select a subset of most informative SNPs 

or haplotype. For example, stepwise regression in a SNP-IV model is based on largest P-

value criteria and tends to remove SNPs with nonsignificant effect on gene expression. For 

the haplotype-IV model, the traditional approach will first specify one haplotype (usually 

common one) as reference for avoiding singularity, and the nonsignificant haplotype will be 

removed and merged with references in later iterative steps. In our study, we used an 

alternative approach to merge haplotypes based on the smallest difference criteria, which is 

intuitive and straightforward to apply. It does not require specifying one haplotype as 

reference; each time it sorts haplotypes based on their effect and merges two haplotypes with 

smallest difference into one subgroup. Subgroups in the fitted model are distinct and 

contribute differently to gene expression.

We also evaluated the performance of two IV models when the clinical outcome is binary 

with similar setups as for the continuous outcome, in which we apply the 2SRI method with 

models (1) and (2). The results of simulation are consistent with those for the continuous 

outcome. Because inclusion of an interaction term can remarkably increase the total number 

of the predictors in the model, we did not examine epistasis on performance of two IV 

models, while in theory, the haplotype-based approach in the presence of epistasis is 
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expected to have more power gain over the SNP-based approach. More effort is warranted to 

improve the haplotype-IV model with allowing inclusion of rare SNPs and epistasis.

As our clinical dataset example is a focused regional and low-dimensional case, our methods 

have been centered on relatively small numbers of SNPs and haplotypes. When the use of a 

more complicated region is justified as IVs, the numbers of SNPs and haplotypes can be big 

compared with the sample size. Then, high-dimensional variable selection strategies such as 

fused lasso [Tibshirani and Wang, 2008] and 2SR method [Lin et al., 2014] may be 

considered and the theoretical properties of such methods warrantee further studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagram of IV model. Y, clinic outcome; X, exposure of interest such as gene or protein 

expression; z, instrumental variable; U, unobserved confounding.
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Figure 2. 
Power for different causal SNP combinations. From top to bottom, IV strength varies from 

strong to weak. X-axis indicates 55 causal SNP combinations ordered along descending 

average adjacent R2. Left Y-axis indicates the power. Green color represents the haplotype-

IV model, and red color represents the SNP-IV model. Gray line shows the average adjacent 

R2 of each combination.
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Figure 3. 
Power for increased endogeneity and two missing scenarios. (a) Moderate endogeneity is set 

at ~10%. (b) High endogeneity is set at ~10%.Missing scenario 1:2% of genotype is missing 

randomly for each SNP. Missing scenario 2: it means only two causal SNPs (true 

instruments) are not genotyped. X-axis indicates 55 causal SNP combinations ordered along 

descending average adjacent R2. Left Y-axis represents the power for each SNP pair. Green 

color represents the haplotype-IV model, and red color represents the SNP-IV model. Gray 

line shows the average adjacent R2 of each combination.
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