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ABSTRACT Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes
debilitating musculoskeletal pain and inflammation and can persist for months to years
after acute infection. Although studies of humans and experimentally infected animals
suggest that CHIKV infection persists in musculoskeletal tissues, the mechanisms for this
remain poorly understood. To evaluate this further, we isolated CHIKV from the serum of
persistently infected Rag1�/� mice at day 28. When inoculated into naive wild-type (WT)
mice, this persistently circulating CHIKV strain displayed a capacity for earlier dissemina-
tion and greater pathogenicity than the parental virus. Sequence analysis revealed a
nonsynonymous mutation in the E2 glycoprotein (E2 K200R) and a deletion within the
3= untranslated region (3=-UTR). The introduction of these changes into the parental vi-
rus conferred enhanced virulence in mice, although primary tropism for musculoskeletal
tissues was maintained. The E2 K200R mutation was largely responsible for enhanced vi-
ral dissemination and pathogenicity, although these effects were augmented by the 3=-
UTR deletion. Finally, studies with Irf3/Irf7�/� and Ifnar1�/� mice suggest that the E2
K200R mutation enhances viral dissemination from the site of inoculation independently
of interferon regulatory factor 3 (IRF3)-, IRF7-, and IFNAR1-mediated responses. As our
findings reveal viral determinants of CHIKV dissemination and pathogenicity, their fur-
ther study should help to elucidate host-virus interactions that determine acute and
chronic CHIKV infection.

IMPORTANCE CHIKV is a globally spreading, mosquito-transmitted virus that causes
debilitating acute and chronic musculoskeletal disease in humans. The viral genetic
determinants that dictate the severity of acute and chronic diseases are not under-
stood. To improve our understanding of CHIKV pathogenesis, we evaluated a CHIKV
strain isolated from the serum of chronically infected immunocompromised mice.
Sequence analysis of this persistent CHIKV strain identified two mutations, an amino
acid change in the E2 viral attachment protein and a deletion within the 3=-UTR of
the viral genome. We identified roles for these mutations in the enhancement of vi-
ral dissemination from the inoculation site and in disease severity. These data im-
prove our understanding of the viral determinants of CHIKV pathogenesis and adap-
tive changes that occur during viral persistence.
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Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes epidem-
ics of incapacitating musculoskeletal inflammatory disease in humans. Since 2004,

CHIKV has infected millions of people and expanded into Europe, the Middle East, and
the Pacific region (1). In 2013, local transmission of CHIKV occurred in the Western
Hemisphere on islands in the Caribbean (2). Since then, CHIKV has caused more than
1.8 million cases in the Americas in more than 40 countries (3). Acute CHIKV disease is
characterized by high fever with severe joint pain, joint swelling, and muscle pain (4).
Severe outcomes, including death, occur in neonates, the elderly, and those with
underlying medical comorbidities (5, 6). Rheumatologic disease signs and symptoms
can last for months to years in up to 60% of infected individuals (7–14), which causes
a substantial economic burden and loss of quality of life (15, 16). Vaccines and antiviral
agents are not approved for CHIKV infection, and treatment is currently limited to
managing symptoms with analgesics and anti-inflammatory drugs (17).

Although the mechanisms by which CHIKV infection leads to chronic disease remain
poorly characterized, CHIKV antigen and RNA have been detected in synovial and
muscle tissue biopsy specimens collected from patients during the chronic phase of
disease (18, 19). Consistent with these data, long-term persistence of CHIKV infection
and chronic joint disease occur in experimentally infected nonhuman primates (NHPs)
and mice (20–24), suggesting that residual virus or viral products in tissues may
promote chronic inflammation.

Previous studies demonstrated that adaptive immune responses control CHIKV
infectivity during the persistent phase but are unable to clear CHIKV RNA from joint-
associated tissue (24, 25). Moreover, CHIKV evades neutralizing antibody responses
as a necessary step to establish persistence (23). CHIKV likely uses multiple evasion
mechanisms to establish and maintain persistence, as persistent CHIKV infection de-
velops in the setting of sustained innate and adaptive antiviral immune responses. For
example, in addition to being essential for the control of CHIKV infection during the
acute phase (26), the type I interferon (IFN) response is maintained for many weeks in
humans with chronic CHIKV disease and in mice persistently infected with CHIKV (18,
25, 27). Furthermore, CHIKV-specific antibody and T cell responses endure for weeks to
months postinfection (p.i.) (21, 28–30). Thus, we hypothesized that the persistence of
CHIKV infection requires the acquisition of adaptive mutations to escape host selective
pressures.

To explore this hypothesis, we isolated virus from ankle tissue and serum of B cell-
and T cell-deficient Rag1�/� mice on day 28 following infection with the Asian CHIKV
strain AF15561. Unexpectedly, plaque-purified CHIKV from the serum of chronically
infected Rag1�/� mice displayed enhanced acute pathogenicity when inoculated into
naive wild-type (WT) mice. Sequence analysis identified polymorphisms in the viral E2
glycoprotein and the 3= untranslated region (3=-UTR) that, when introduced into the
parental CHIKV strain AF15561, conferred enhanced virulence in WT mice. Reverse
genetic analysis showed that while mutations in both E2 and the 3=-UTR contributed to
enhanced pathogenicity, an enhanced capacity to disseminate more rapidly from the
site of inoculation was linked to a single K200R mutation in E2. Studies in immuno-
compromised mice revealed that the E2 K200R mutation enhanced the ability of CHIKV
to disseminate in a manner that was independent of IFN regulatory factor 3 (IRF3)-,
IRF7-, and IFNAR1-dependent antiviral responses. Overall, our studies provide new
insight into the viral determinants of CHIKV dissemination and virulence.

RESULTS
Isolation of a CHIKV strain with enhanced pathogenicity in WT mice. We hypoth-

esized that during persistent infection, CHIKV acquires adaptive mutations to facilitate
persistence in specific tissues. To investigate this idea, we took advantage of the
observations that Rag1�/� and Rag2�/� mice, in contrast to WT mice, support persis-
tent viremia for weeks to months after CHIKV infection but do not succumb to disease
(24, 25, 31). To assess whether infectious CHIKV circulating in the serum of Rag1�/�

mice had adapted to host pressures during persistence, WT mice were inoculated in the
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left rear footpad with 20 �l of serum collected from five individual viremic Rag1�/�

mice at 28 days postinfection (dpi). In parallel, WT mice were inoculated in the left rear
footpad with 103 PFU of AF15561 stock virus or 20 �l of a clarified right-ankle tissue
homogenate collected from five individual CHIKV-infected Rag1�/� mice at 28 dpi. The
inoculated sera or ankle tissue homogenates each contained between 10 and 20 PFU
of infectious virus, as measured by a direct plaque assay (23). Mice were monitored
daily for virus-induced changes in weight as a measure of disease. Four of five mice
inoculated with serum from persistently infected Rag1�/� mice failed to gain weight
through day 10 p.i. compared with those inoculated with AF15561 (P � 0.001) (Fig. 1A).
In contrast, and consistent with data from previous studies, WT mice infected with
CHIKV AF15561 gained weight throughout the course of infection (Fig. 1A). Mice
inoculated with ankle tissue homogenates from CHIKV-infected Rag1�/� mice showed
weight gain similar to that of AF15561-infected mice (P � 0.05). Furthermore, mice
inoculated with serum from persistently infected Rag1�/� mice exhibited more severe
musculoskeletal disease signs, including hind limb grip loss, altered gait, and difficulty
righting (data not shown). These data suggested that CHIKV AF15561 in the circulation,
but not ankle tissue, of Rag1�/� mice at 4 weeks postinfection had acquired adaptive
mutations that enhanced acute pathogenesis in naive WT mice.

One alternative explanation for the enhanced disease observed in WT mice inocu-
lated with serum from persistently infected Rag1�/� mice was the coinoculation of
factors present in the serum of chronically infected Rag1�/� mice that enhanced
virus-induced disease. To eliminate this possibility, we plaque purified CHIKV from one
of the Rag1�/� serum samples that caused severe disease in WT mice (Fig. 1A, arrow).
Stocks of individual plaque-purified isolates AF6811P1 to AF6811P6 were generated by
a single amplification on Vero cells. WT mice were inoculated with 10 PFU of AF15561
or plaque-purified isolates AF6811P1 to -P3 and monitored for virus-induced effects on
weight gain. In contrast to mice inoculated with AF15561, mice inoculated with the
plaque-purified viruses exhibited reduced weight gain (Fig. 1B) and more severe
musculoskeletal disease signs (Fig. 1C). As the plaque-purified viral isolates retained the
enhanced virulence of Rag1�/� mouse serum-derived AF15561, other serum factors
were not responsible for the more severe disease signs.

Sequencing analysis identifies mutations in E2, E1, and the 3=-UTR. We se-
quenced the complete viral genome of plaque-purified isolate AF6811P2 both at the
consensus level and by Illumina-based deep sequencing. Alignment of sequence reads
obtained by both methods to the reference CHIKV AF15561 genome identified three
mutations in the genome of AF6811P2: a lysine (K)-to-arginine (R) substitution at E2
position 200 (E2 K200R), a synonymous A-to-G mutation in the E1 gene (nucleotide [nt]
10506), and a 44-nt deletion in the 3=-UTR (Table 1). The deep-sequencing results
indicated that these mutations were present in 98.5% or more of the sequence reads,
suggesting that the AF6811P2 plaque-purified virus was clonal. We also sequenced E2
position 200 and the 3=-UTR in the other five plaque-purified isolates and found that
each isolate contained an E2 K200R mutation, with the exception of AF6811P3, which
had a mutation to glutamine at this position (E2 K200Q) (Table 2). A 44-nt deletion
identical to the deletion present in the 3=-UTR of AF6811P2 was present in three of the
other plaque isolates but notably was absent in two others (Table 2), suggesting that
this deletion was selected after the mutation at E2 position 200. E2 residue 200 is
located in domain B and, based on the crystal structure of the pE2-E1 heterodimer (32),
is predicted to make contacts with E1 residues 63 and 95 located in the fusion loop of
E1 (Fig. 1D). Analysis of sequence variation among the 335 available CHIKV genomes in
the NIAID ViPR database (33) revealed that 333/335 genomes (�99%) code for a K
residue at position 200 in E2. The remaining two genomes, isolated from a patient in
Thailand in 1995 (SV0444-95) and from a mosquito from the Ivory Coast in 1993 (ArA
30548), encode an R residue at this site, suggesting that the K200R mutation occurs in
nature. The 44-nt deletion occurs in a duplicated region of the 3=-UTR that is unique to
Asian genotype viruses (Fig. 1E). The 44-nt sequence is also highly conserved, with
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FIG 1 Mutations in E2 and the 3=-UTR enhance CHIKV pathogenicity in mice. (A) WT C57BL/6J mice were inoculated with 103

PFU of AF15561 (n � 5), 20 �l of clarified right ankle tissue homogenate (10 to 20 PFU) collected at day 28 p.i. from 5 individual
chronically infected Rag1�/� mice (n � 5), or 20 �l of serum (10 to 20 PFU) collected from 5 individual chronically infected
Rag1�/� mice (n � 5; data from individual mice are graphed separately) in the left rear footpad. The percent starting body
weight was determined daily. The black arrow indicates the sample used for plaque purification of the virus. (B and C) WT
C57BL/6J mice (n � 6 to 7/group) were inoculated with 10 PFU of AF15561 or plaque-purified AF15561 viral isolates derived
from the serum of a chronically infected Rag1�/� mouse (AF6811P1 to AF6811P3) in the left rear footpad. The percent starting
body weight (B) and disease score (C) were determined daily. Data are derived from two independent experiments. P values
were determined by two-way ANOVA with Bonferroni’s multiple-comparison test. **, P � 0.01; ****, P � 0.0001. (D) CHIKV E2-E1
heterodimer showing the position of E2 residue 200 (PDB accession no. 3N42) (32). E1 is shown in light gray, the E1 fusion loop
is shown in magenta, E2 domain A is shown in dark blue, E2 domain B is shown in orange, and E2 domain C is shown in red.
The lysine residue at E2 position 200 is shown in yellow. (E) Schematic of the 3=-UTR structures of West African (WA); East,

(Continued on next page)
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CHIKV strains across all genotypes encoding one or two copies of this sequence in the
3=-UTR (see Table S1 in the supplemental material).

To confirm that these mutations were responsible for the enhanced virulence of
the adapted AF6811P2 strain, the E2 K200R mutation and the 3=-UTR deletion were
introduced into the plasmid carrying the parental AF15561 cDNA genome to
generate AF15561E2 K200R;ΔUTR. WT mice were inoculated in the footpad with 103

PFU of WT strain AF15561, AF6811P2, or AF15561E2 K200R;ΔUTR, and mice were
monitored for weight gain and musculoskeletal disease (Fig. 1F and G). Similar to
AF6811P2-infected mice, AF15561E2 K200R;ΔUTR-infected mice exhibited diminished
weight gain compared with mice inoculated with AF15561 (Fig. 1F), and remarkably, 1
of 4 mice in both groups succumbed to infection by day 10 p.i. Additionally, both
AF6811P2- and AF15561E2 K200R;ΔUTR-infected mice exhibited more severe signs of
musculoskeletal disease than did mice inoculated with AF15561 (Fig. 1G). At 7 dpi, WT
mice inoculated with AF15561E2 K200R;ΔUTR also displayed more severe inflammation
and injury in tissues distal to the site of inoculation, including the ipsilateral and
contralateral gastrocnemius muscles (leg) and thighs (Fig. 2A and B). Notably, mice
infected with AF6811P2 and AF15561E2 K200R;ΔUTR did not develop more severe swelling
of the inoculated foot than did AF15561-infected mice (data not shown). These data
indicate that an E2 K200R mutation and a deletion of 44 nt in the 3=-UTR enhance
systemic disease and injury in musculoskeletal tissues distal to the site of inoculation.

AF15561E2 K200R;�UTR displays enhanced dissemination and infection at early
times. Based on the failure of mice infected with AF15561E2 K200R;ΔUTR to gain weight
early after infection, we hypothesized that these mutations enhanced viral replica-
tion in tissues at early time points p.i. To evaluate viral dissemination and tissue
burdens, WT mice were inoculated in the left rear footpad with either AF15561 or
AF15561E2 K200R;ΔUTR, and the amount of infectious virus proximal or distal to the site
of inoculation was quantified at 1 and 3 dpi. Both AF15561 and AF15561E2 K200R;ΔUTR

achieved similar titers at 1 and 3 dpi in the left ankle tissue, which is proximal to the
inoculation site (Fig. 3A and B). In contrast to the left ankle, AF15561E2 K200R;ΔUTR rapidly
disseminated to distant tissues and achieved higher titers than those in AF15561-
infected mice by 1 dpi (Fig. 3A) (right ankle, 3,400-fold [P � 0.0001]; right quadriceps,
460-fold [P � 0.0001]; spleen, 38-fold [P � 0.0001]; liver, 28-fold [P � 0.001]; brain,
11-fold [P � 0.0001]). Similarly, AF15561E2 K200R;ΔUTR-infected mice had a higher level of
viremia than did AF15561-infected mice at both 1 dpi (1,000-fold; P � 0.001) and 3 dpi
(1,050-fold; P � 0.01) (Fig. 3A and B). Together, these data suggest that the E2 K200R
mutation and the 44-nt deletion in the 3=-UTR enhance the ability of CHIKV to
disseminate from the site of inoculation.

FIG 1 Legend (Continued)
Central, and South African (ECSA); and Asian genotype CHIKV strains, including the AF6811P2 Asian strain plaque isolated from
the serum of chronically infected Rag1�/� mice. UTR sequence features were annotated according to methods described
previously by Chen et al. (65). Direct repeats are labeled and illustrated by different-colored blocks. Sequence gaps in the
alignment are indicated by white blocks. (F and G) WT C57BL/6J mice were inoculated with 103 PFU of AF15561 (n � 4),
AF6811P2 (n � 4), or AF15561E2 K200R;ΔUTR (n � 4) in the left rear footpad. The percent starting body weight (F) and disease
score (G) were determined daily. P values were determined by two-way ANOVA with Bonferroni’s multiple-comparison test. ***,
P � 0.001; ****, P � 0.0001.

TABLE 1 Mutations identified in AF6811P2a

Nucleotide
position(s)

Genome
region

Mutation
(WT¡AF6811P2)

Amino acid change
(WT¡AF6811P2)

9140 E2 A¡G K200R
10506 E1 A¡T Synonymous
11921–11964 3=-UTR Deletion NA
aMutations were identified both at the consensus level and by Illumina deep sequencing. Sequences were
aligned against the sequence of the AF15561 reference genome (GenBank accession no. EF452493). NA, not
applicable.
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To investigate if the E2 K200R and the 3=-UTR mutations altered viral replication in
cells in vitro, we performed multistep viral growth analysis in murine fibroblasts and
differentiated murine C2C12 muscle cells, key cell type targets in vertebrate hosts (26,
34), and in mosquito-derived C6/36 cells. Virus yields from murine fibroblasts and
murine C2C12 muscle cells inoculated with AF15561 or AF15561E2 K200R;ΔUTR at a
low multiplicity of infection (MOI) (0.1 and 0.01 focus-forming units [FFU]/cell,
respectively) were similar at 12, 24, and 48 h postinoculation (hpi) (Fig. 4A and B).
The yields of infectious virus were reduced in C6/36 mosquito cells infected with
AF15561E2 K200R;ΔUTR (Fig. 4C); however, the magnitude of these differences was
small, only 2- to 3-fold. These data, together with the data demonstrating no
differences in viral loads at the site of inoculation of mice (Fig. 3A and B), suggest
that the E2 K200R and 3=-UTR mutations predominantly impact viral dissemination
in vivo.

The adaptive mutations enhance early viral dissemination independent of
IRF3, IRF7, and IFNAR1. The type I IFN pathway has an important role in restricting
CHIKV replication in mice (26, 35–38). Mice deficient in the transcription factors that
induce type I IFN (IRF3 and IRF7) or in a required subunit of the type I IFN receptor
(IFNAR1) are more susceptible to CHIKV infection, with elevated viral burdens in many
tissues, analogous to our results with WT mice infected with the AF15561E2 K200R;ΔUTR

mutant virus. We hypothesized that the enhanced viral burdens observed at early times
after infection of WT mice with AF15561E2 K200R;ΔUTR might be due to greater antago-
nism of the type I IFN response. To explore this possibility, we compared AF15561 and
AF15561E2 K200R;ΔUTR infections in Irf3�/� Irf7�/� double-knockout (DKO) mice, which
are compromised for the production of type I IFN following CHIKV infection (36, 37).
Regardless of the mouse strain, AF15561 and AF15561E2 K200R;ΔUTR achieved similar
titers in the left ankle tissue after ipsilateral footpad inoculation (Fig. 5A). In both WT
and Irf3�/� Irf7�/� DKO mice, AF15561E2 K200R;ΔUTR rapidly disseminated and achieved
higher viral loads than those in AF15561-infected mice in the right ankle (234-fold [WT]
and 239-fold [Irf3�/� Irf7�/� DKO]; P � 0.05 and P � 0.01, respectively), the right
quadriceps (230-fold [WT] and 2,800-fold [Irf3�/� Irf7�/� DKO]; P � 0.05 and P � 0.001,
respectively), and serum (1,500-fold [WT] and 370-fold [Irf3�/� Irf7�/� DKO]; P � 0.05
and P � 0.01, respectively) (Fig. 5A). Quantification of IFN-� levels in the sera of naive
and CHIKV-infected mice at 1 dpi confirmed that Irf3�/� Irf7�/� DKO mice failed to
produce type I IFN in response to CHIKV infection (Fig. 5B). In addition, we found that
IFN-� levels in the sera of WT mice infected with AF15561E2 K200R;ΔUTR at 1 dpi were
higher than those in the sera of AF15561-infected WT mice (Fig. 5B), demonstrating that
AF15561E2 K200R;ΔUTR infection induces a robust type I IFN response. Consistent with the
findings for Irf3�/� Irf7�/� DKO mice, AF15561E2 K200R;ΔUTR rapidly disseminated and
achieved higher viral loads than did parental strain AF15561 in Ifnar1�/� mice (Fig.
5C). These data suggest that the E2 K200R mutation and the 44-nt deletion in the
3=-UTR enhance the capacity of the virus to rapidly disseminate from the inocula-
tion site by a mechanism that is independent of the evasion or suppression of the
type I IFN response, although a role for IRF5-dependent antiviral responses (39)
cannot be ruled out.

TABLE 2 Analysis of mutations at E2 position 200 and the 3=-UTR deletion in plaque-
purified isolatesa

Plaque isolate
Mutation at E2
position 200

Presence of
3=-UTR deletion

AF6811P1 K200R Absent
AF6811P2 K200R Present
AF6811P3 K200Q Absent
AF6811P4 K200R Present
AF6811P5 K200R Present
AF6811P6 K200R Present
aShown are data from sequence analyses of 6 plaque isolates from the serum of chronically infected

Rag1�/� mice at E2 position 200 and the 44-nucleotide deletion identified in the 3=-UTR.
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FIG 2 Mutations in E2 and the 3=-UTR enhance musculoskeletal tissue injury and inflammation. WT C57BL/6J mice
were inoculated with 103 PFU of AF15561 or AF15561E2 K200R;ΔUTR in the left rear footpad. (A) At 7 dpi, 5-�m
paraffin-embedded sections were generated from the ipsilateral and contralateral hind limbs and stained with
hematoxylin and eosin. Images are representative of results for 8 mice per group. (B) Tissues in the foot, leg, and thigh
from the left (L) and right (R) limbs (n � 8/group) were scored in a blind manner based on the following scale: 0 for
no inflammation, 1 for �5 areas of small clusters of leukocytes, 2 for leukocytes forming larger clusters to thin tracts
through tissue with multiple affected sites, 3 for clusters and tracts of leukocytes coalescing into at least one large area
that displaces/replaces tissue, with or without necrosis and with or without mineralization, and 4 for leukocytes that
are in aggregates that are large enough to replace �40% of normal tissue. Data are derived from results from two
independent experiments. P values were determined by a Kruskal-Wallis test with Dunn’s multiple-comparison test. *,
P � 0.05; **, P � 0.01.

Viral Determinants of CHIKV Virulence Journal of Virology

October 2017 Volume 91 Issue 20 e00816-17 jvi.asm.org 7

http://jvi.asm.org


Both the E2 K200R mutation and the 3=-UTR deletion contribute to enhanced
disease severity. To evaluate the contribution of each mutation individually to the
disease phenotype observed in WT mice infected with AF15561E2 K200R;ΔUTR, we con-
structed AF15561 strains encoding either the E2 K200R mutation (AF15561E2 K200R)
or the 3=-UTR deletion (AF15561ΔUTR). WT mice were inoculated with AF15561,
AF15561E2 K200R;ΔUTR, AF15561E2 K200R, or AF15561ΔUTR and monitored daily for morbid-
ity and musculoskeletal disease (Fig. 6A and B). Mice infected with AF15561E2 K200R

failed to gain weight (P � 0.0001) and developed more severe musculoskeletal
disease (P � 0.0001) than did AF15561-infected mice, suggesting that the E2 K200R
mutation contributes to enhanced pathogenesis in mice. In contrast, mice infected

FIG 3 Mutations in E2 and the 3=-UTR enhance viral dissemination and tissue burdens in WT mice. WT C57BL/6 mice were
inoculated with 103 PFU of AF15561 or AF15561E2 K200R;ΔUTR in the left rear footpad. At 1 dpi (n � 9 mice/group) (A) or 3
dpi (n � 5 mice/group) (B), mice were euthanized, and the amount of infectious virus in the indicated tissues was
quantified by a focus-forming assay. Dashed lines indicate the limit of detection. Data are derived from results from two
independent experiments. P values were determined by Mann-Whitney tests. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****,
P � 0.0001.

FIG 4 AF15561 and AF15561E2 K200R;ΔUTR replicate similarly in vitro. Mouse embryo fibroblasts (A),
differentiated C2C12 murine muscle cells (B), or C6/36 Aedes albopictus mosquito cells (C) were inocu-
lated with AF15561 or AF15561E2 K200R;ΔUTR at an MOI of 0.1 FFU/cell (mouse embryo fibroblasts) or 0.01
FFU/cell (C2C12 and C6/36 cells). At 0 hpi (input) and 1, 6, 12, 24, 48, and 72 hpi, the amount of infectious
virus present in culture supernatants was quantified by a focus-forming assay. Data are representative of
results from two independent experiments. P values were determined by two-way ANOVA with Bonfer-
roni’s multiple-comparison test. **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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with AF15561ΔUTR gained weight similarly to AF15561-infected mice (P � 0.05) and
exhibited similar mild musculoskeletal disease signs, suggesting that this deletion
alone is not sufficient to enhance virulence. However, at later times postinfection
(days 9 to 14 p.i.), mice infected with AF15561E2 K200R more readily gained weight
(Fig. 6A) and displayed less musculoskeletal disease than did AF15561E2 K200R;ΔUTR-
infected mice (days 6 to 14 p.i.) (Fig. 6B), suggesting that when combined with the
E2 K200R mutation, the 3=-UTR deletion enhances the pathogenicity of CHIKV in
mice.

The E2 K200R mutation enhances viral dissemination in mice. We next
evaluated the contribution of each mutation to the pattern of early viral dissemi-
nation. WT mice were inoculated in the left rear footpad with 103 PFU of AF15561,
AF15561E2 K200R;ΔUTR, AF15561E2 K200R, or AF15561ΔUTR. At 1 dpi, as expected, similar
viral titers were detected in the left ankle regardless of the viral strain (Fig. 6C). In
contrast, both AF15561E2 K200R;ΔUTR and AF15561E2 K200R rapidly disseminated to
distant tissues and achieved higher viral loads in the right ankle and quadriceps
than those in mice infected with AF15561 (Fig. 6C). Similarly, AF15561E2 K200R;ΔUTR- and
AF15561E2 K200R-infected mice had a higher level of viremia than did AF15561-infected
mice (Fig. 6C). No differences in viral loads in tissues were detected in mice infected
with AF15561ΔUTR compared with AF15561-infected mice. Collectively, these data
suggest that the E2 K200R mutation enhances the capacity of the virus to disseminate
from the site of inoculation, whereas the deletion in the 3=-UTR is dispensable for these
effects.

DISCUSSION

Several studies have established that mice deficient in adaptive immune responses
develop persistent CHIKV infection in multiple tissues for weeks (23–25, 28, 31, 40).

FIG 5 Mutations in E2 and the 3=-UTR enhance viral dissemination in Irf3�/� Irf7�/� DKO and Ifnar1�/� mice. (A and B) WT and Irf3�/�

Irf7�/� DKO C57BL/6 mice were inoculated with 103 PFU of AF15561 or AF15561E2 K200R;ΔUTR in the left rear footpad. (A) At 1 dpi, the
amount of infectious virus in the indicated tissues was quantified by a focus-forming assay. (B) The amount of IFN-� in serum of
mock-infected (n � 3/group), AF15561-infected (n � 8-9/group), or AF15561E2 K200R;ΔUTR-infected (n � 8 to 9/group) mice was quantified
by an ELISA. (C) Ifnar1�/� C57BL/6 mice were inoculated with 103 PFU of AF15561 or AF15561E2 K200R;ΔUTR in the left rear footpad. At 1
dpi, the amount of infectious virus in the indicated tissues was quantified by a focus-forming assay. Dashed lines indicate the limit of
detection. Data are derived from results from two independent experiments. P values were determined by Mann-Whitney tests (A and C)
or one-way ANOVA with Tukey’s multiple-comparison test (B). *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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Despite sustaining chronic viral replication for as long as 500 days, Rag1�/� mice
exhibit only mild to moderate signs of joint pathology along with modestly elevated
serum levels of tumor necrosis factor (TNF), interleukin-6 (IL-6), and IFN-� (24, 25). Thus,
the isolation of an adapted, more pathogenic, strain of CHIKV from the serum of a
Rag1�/� mouse was unexpected. However, the isolation of a neurovirulent strain of
Sindbis virus from the brains of persistently infected severe combined immune defi-
ciency (scid) mice was previously reported (41), suggesting that persistent replication in
immunodeficient mice can select for more pathogenic alphaviruses. Our findings are in
contrast to those of a previous study in which CHIKV isolated from the serum of
Rag1�/� mice at 100 dpi did not show enhanced fitness when inoculated into WT mice
(25). Similarly, CHIKV isolated from the kidney or brain of Rag1�/� mice at 4 to 6 weeks
postinfection showed a limited number of coding changes, all within the nonstructural
proteins (40), although the effects of these mutations on CHIKV replication and pathogen-
esis were not evaluated. It is possible that differences in the mouse models (young versus
adult mice), founder strains of CHIKV (East, Central, and South African [ECSA] versus Asian
genotype), and sources of infectious virus for the inoculum (serum in our study or cell
culture passage in the previous study [25]) may account for these differences. Indeed, in our
own studies, one mouse receiving serum-derived AF15561 exhibited less severe musculo-
skeletal disease and weight loss, suggesting that AF15561 circulating in the serum of
Rag1�/� mice may be heterogeneous. This is supported by our sequencing results for six
plaque-purified isolates from the serum of one chronically infected Rag1�/� mouse, which
displayed heterogeneity at E2 residue 200 and in the 3=-UTR.

FIG 6 Both the E2 K200R mutation and the deletion in the 3=-UTR contribute to enhanced viral
pathogenicity in mice. (A and B) WT C57BL/6J mice were inoculated with 103 PFU of AF15561 (n �
8), AF15561E2 K200R;ΔUTR (n � 8), AF15561E2 K200R (n � 8), or AF15561ΔUTR (n � 8) in the left rear
footpad. The percent starting body weight (A) and disease score (B) were determined daily. Data are
derived from results from two independent experiments. P values were determined by two-way
ANOVA with Bonferroni’s multiple-comparison test. **, P � 0.01; ***, P � 0.001. The P values
displayed are for AF15561E2 K200R;ΔUTR versus AF15561E2 K200R. (C) WT C57BL/6J mice were inoculated
with 103 PFU of AF15561 (n � 6), AF15561E2 K200R;ΔUTR (n � 6), AF15561E2 K200R (n � 6), or
AF15561ΔUTR (n � 6) in the left rear footpad. At 1 dpi, mice were euthanized, and the amount of
infectious virus in the indicated tissues was quantified by a focus-forming assay. Data are derived
from results from two independent experiments. P values were determined by a Kruskal-Wallis test
with Dunn’s multiple-comparison test. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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Although AF6811P2 was isolated from serum, which tissues or cell types in Rag1�/�

mice shed CHIKV into the circulation are unknown. In contrast to serum, inoculation of
ankle tissue homogenates, which contained infectious CHIKV, from persistently infected
Rag1�/� mice did not result in more severe disease signs, suggesting that discrete
populations of CHIKV with various fitnesses exist within the same host. Further studies
of these populations may provide insight into tissue-specific selective pressures exerted
on CHIKV during acute and chronic infections.

The host pressures that selected for the adaptive mutations are unknown. Rag1�/�

mice can limit CHIKV replication in the absence of adaptive immune responses (24, 25),
likely through type I IFN and other innate immune responses. Mice deficient in the type
I IFN response rapidly succumb to CHIKV infection within days of infection (26, 35–38),
demonstrating an essential requirement for this immune arm to control early CHIKV
replication and dissemination. Passage of the related Semliki Forest virus (SFV) in mice
resulted in a strain of SFV (L10) that was resistant to control by the type I IFN response
(42). Accordingly, an attractive hypothesis was that the increased pathogenicity and
replicative capacity of the adapted CHIKV strain in mice was due to greater resistance
to the host type I IFN response. However, our studies with Irf3�/� Irf7�/� DKO and
Ifnar1�/� mice suggest that the enhanced viral dissemination conferred by the E2
K200R mutation is independent of the antagonism of type I IFN antiviral responses
mediated via IFNAR1. The role that increased resistance to type I IFN responses may
play at later stages of the pathogenic sequence remains to be investigated, as Irf3�/�

Irf7�/� DKO and Ifnar1�/� mice infected with CHIKV rapidly succumb to infection.
Our analyses of tissue viral burden, tissue histopathology, and disease signs in mice

indicate that the AF6811P2 and AF15561E2 K200R;ΔUTR CHIKV strains retain tropism for
musculoskeletal tissues and cause musculoskeletal disease. In addition, mice infected
with AF15561E2 K200; ΔUTR developed viremia with a higher magnitude and a longer
duration than did mice infected with most WT CHIKV strains, a feature that is consistent
with CHIKV-infected humans and nonhuman primates, which also develop a remark-
ably high level of viremia (20, 43–48). The higher viral loads in the quadriceps muscle
of AF15561E2 K200R;ΔUTR-infected mice likely contribute to more severe musculoskeletal
disease, as disease severity correlates with increased viral burdens in muscle tissue in
CHIKV- and Ross River virus-infected mice (34, 38, 49).

Our data indicate that the E2 K200R mutation is sufficient to enhance CHIKV
dissemination and pathogenicity in mice. However, the mechanisms by which this
mutation influences viral dissemination and pathogenesis remain to be determined. E2
residue K200 is highly conserved among strains of all three CHIKV genotypes, with
333/335 CHIKV genomes in the ViPR database (33) encoding a K residue at this position.
The remaining two strains encoded an R residue at this position. The CHIKV E2
glycoprotein forms a dimer with the E1 glycoprotein, and three dimers form one of the
80 spikes on the surface on the virion (32). E2 is highly exposed on the virion and is
responsible for receptor binding while also being the primary target of neutralizing
antibody responses (28, 30, 50). Based on the X-ray crystal structure of the CHIKV E2-E1
heterodimer, E2 residue K200 makes van der Waals contacts with highly conserved E1
residues (C63 and F95) located near or in the conserved E1 fusion loop (32), suggesting
that the K200R mutation might alter E2-E1 interactions at this site (Fig. 1D). E2-E1
interactions in related alphaviruses have been shown to regulate pH-mediated struc-
tural changes (51, 52) that are a requisite for the entry of the virus into the cytoplasm
(53, 54). Mutations in E2 can also influence virion assembly and release in a cell- and
host-specific manner (55–57), dictate viral tropism and pathogenesis in vivo (58–62),
and modulate vector competence (63, 64). Further studies are needed to examine
whether the E2 K200R mutation influences CHIKV cellular tropism, the pH of fusion,
virus assembly and release, or other unknown mechanisms.

Our comparison of AF15561 containing the 3=-UTR deletion alone, AF15561ΔUTR, and
the double mutant strain AF15561E2 K200R;ΔUTR suggests that the 44-nt deletion in the
3=-UTR also contributes to enhanced virulence in mice. The CHIKV 3=-UTR contains
direct-repeat elements formed by duplications within the 3=-UTR (65). Asian genotype
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viruses (e.g., AF15561) encode a divergent 3=-UTR compared to those of strains of the
West African and ECSA genotypes. This divergent 3=-UTR likely was formed by a large
deletion in the 3=-UTR and the subsequent accumulation of adaptive mutations and
duplications due to founder effects, as the Asian genotype diverged from an ECSA
genotype virus (65). The recent identification of a novel duplication in Asian-American
CHIKV isolates suggests that the Asian genotype 3=-UTR is still under selective pressures
(66). The 44-nt deletion identified in the virus persistently circulating in Rag1�/� mice
occurs in a region of the 3=-UTR, element 3B, that is unique to Asian genotype viruses
(Fig. 1E). Thus, the effects of the 44-nt deletion on pathogenicity may be constrained
to Asian genotype viruses. However, the 3A element, present in all genotypes of CHIKV,
contains a similar sequence that differs by only 1 to 4 nt from the 44-nt deletion in 3B.
Further studies are needed to determine if the 3B deletion uniquely affects CHIKV
pathogenicity in mice or whether manipulation of the 3A element, present in all CHIKV
genotypes, can result in similar effects. The function of the 3=-UTR in alphaviral
replication and pathogenesis is largely unknown, as alphaviruses exhibit significant
heterogeneity in this region (67–69). Modulation of the 3=-UTR often results in a fitness
cost in mosquito cells or whole mosquitoes, whereas large deletions are tolerated in
mammalian cells (70–72). However, the 3=-UTR is important for the stability of the viral
genome and likely interacts with host factors to facilitate viral replication (73, 74). CHIKV
and other alphavirus 3=-UTRs interact with the host HuR protein, which protects the
viral RNA from degradation and increases virus yields (75–77). The viral 3=-UTR also can
impact viral tropism and host innate immune responses to RNA virus infection. A
microRNA (miRNA) binding site in the 3=-UTR of eastern equine encephalitis virus for a
myeloid cell-specific miRNA restricts viral replication in myeloid cells, which delays the
induction of the type I IFN response (72). West Nile virus, an unrelated flavivirus, also
encodes a miRNA in its 3=-UTR that enhances replication in mosquito cells (78), and an
RNA secondary structure in flavivirus 3=-UTRs can influence viral replication and innate
responses to infection (79). Given these diverse functions of the 3=-UTR, it remains to be
determined if the deletion in the 3=-UTR alleviates restriction by a host factor, alters
interactions with host proteins that facilitate viral replication, or modulates other
pathways to enhance viral pathogenicity in mice.

Our isolation of a CHIKV strain with enhanced virulence in mice and the identifica-
tion of the E2 K200R mutation and the 3=-UTR deletion defined new determinants of
CHIKV virulence. Understanding the mechanisms by which these mutations in E2 and
the 3=-UTR contribute to enhanced dissemination and acute and chronic pathogenesis
in mice of different ages may provide insight for controlling CHIKV infection and
preventing persistence. Finally, infection of mice by this strain recapitulates the high
level viremia and more severe disseminated acute musculoskeletal disease reported
for humans, which could lead to improvements in the mouse model of CHIKV infection
and disease. These advancements may have utility for defining mechanisms of acute
and chronic disease pathogenesis and for evaluating vaccine candidates and host- and
virus-targeted therapeutics.

MATERIALS AND METHODS
Ethics statement. This study was conducted in accordance with recommendations in the Guide for

the Care and Use of Laboratory Animals (80) and AVMA guidelines for the euthanasia of animals (88). All
animal experiments conducted at the University of Colorado Anschutz Medical Campus were performed
with the approval of the Institutional Animal Care and Use Committee (IACUC) at the University School
of Medicine (assurance no. A3269-01) under protocol B-86514(10)1E. For studies with Ifnar1�/� mice, the
protocols were approved by the IACUC at the Washington University School of Medicine (assurance no.
A3381-01).

Viruses. CHIKV strain AF15561 (GenBank accession no. EF452493) was isolated from a human patient
during an outbreak of CHIKV in Thailand in 1962 and passaged twice in Vero cells (81, 82). A cDNA clone
of AF15561 was generated from 181/25 cDNA by using site-directed mutagenesis as previously described
(58). Virus stocks were generated by the electroporation of BHK-21 cells with in vitro-transcribed RNA as
previously described (24). Cell culture supernatants from electroporated cells were collected, clarified by
centrifugation, and aliquoted. Stock virus titers were quantified by a plaque assay on BHK-21 or Vero
cells.
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Cells. BHK-21 cells (ATCC CCL10) were grown in �-minimal essential medium (MEM-�) (Gibco)
supplemented with 10% bovine calf serum (HyClone), 10% tryptose phosphate broth, penicillin and
streptomycin, and 0.29 mg/ml L-glutamine. Vero cells (ATCC CCL81) were grown in Dulbecco’s modified
Eagle medium (DMEM)–F-12 medium (Life Technologies) supplemented with 10% fetal bovine serum
(FBS) (Lonza), nonessential amino acids (Life Technologies), sodium bicarbonate, penicillin and strepto-
mycin, and 0.29 mg/ml L-glutamine. Mouse embryo fibroblasts and C2C12 murine myoblasts were
cultured in DMEM supplemented with 10% FBS. C2C12 cells were differentiated into myotubes by
culturing in fusion medium (DMEM–2% horse serum) for 5 to 6 days. Aedes albopictus C6/36 cells were
cultivated in Leibovitz-15 medium (Invitrogen) supplemented with 10% FBS, 10 mM HEPES, and
antibiotics (penicillin and streptomycin) at 29°C.

Mouse experiments. WT C57BL/6J mice and congenic Rag1�/� or Irf3�/� Irf7�/� DKO mice were
bred in specific-pathogen-free facilities at the University of Colorado Anschutz Medical Campus.
Ifnar1�/� mice were bred in specific-pathogen-free facilities at Washington University. All mouse
infection studies were performed in animal biosafety level 3 laboratories. Three- to four-week-old mice
were used for all studies, with the exception of experiments with Ifnar1�/� mice, which used 5-week-old
animals. Unless otherwise indicated, mice were inoculated in the left rear footpad with 103 PFU of the
virus in diluent (phosphate-buffered saline [PBS] supplemented with 1% FBS) in a volume of 10 �l.
Mock-infected animals received diluent alone. Mice were monitored for disease signs and weighed at
24-h intervals. In some experiments, mice were scored for musculoskeletal disease as previously
described (83), where a score of 1 indicates a mild deficit in the hind paw gripping ability of the injected
foot only; 2 indicates a mild deficit in the bilateral hind paw gripping ability; 3 indicates a bilateral loss
of gripping ability, with mild bilateral hind limb paresis and an altered gait that is not readily observable;
4 indicates a bilateral loss of gripping ability, moderate bilateral hind limb paresis, observable altered
gait, and difficulty righting self; 5 indicates a bilateral loss of gripping ability, severe bilateral hind limb
paresis, altered gait, and an inability to right self; and 6 indicates a moribund state. On the termination
day of each experiment, mice were euthanized by sedation with isoflurane followed by thoracotomy,
blood was collected, and mice were perfused by intracardiac injection of 1� PBS or 4% paraformalde-
hyde, depending on the experiment. PBS-perfused tissues were removed by dissection and homoge-
nized in TRIzol reagent (Life Technologies) for RNA isolation or PBS–1% FBS for determining tissue titers
by using a MagNA Lyser instrument (Roche).

Selection of viral plaque isolates. Biological clones were isolated from the serum of a viremic
Rag1�/� mouse infected 28 days previously with WT strain AF15561 by plaque purification. Serum was
mixed with PBS plus 1% FBS and adsorbed to Vero cells for 1 h. Following adsorption, cells were overlaid
with immunodiffusion agarose (MP Biomedicals) and incubated for 40 h to allow plaque formation. An
agarose plug was removed from individual plaques by using a pipette tip, and the virus was amplified
by a single passage on Vero cells.

Viral genome sequencing. RNA was isolated from stocks of plaque-purified isolates by using TRIzol
reagent (Life Technologies) according to the manufacturer’s protocol. To generate cDNA, a 1:1 mix of
oligo(dT) and random hexamer primers was used with SuperScript IV reverse transcriptase (Life Tech-
nologies). PCR was performed with primers spanning the viral genome and Q5 high-fidelity polymerase
(New England BioLabs [NEB]). PCR amplicons were purified by using a PCR cleanup kit (Qiagen) and
subjected to Sanger sequencing. Sequences were mapped to the AF15561 genome by using Geneious
software (Biomatters). The AF6811P2 genome was also deep sequenced by using Illumina-based
sequencing. Isolated viral RNA (500 ng) was reverse transcribed by using 500 ng of random primer 9
(NEB) and SuperScript II reverse transcriptase (Thermo Fisher Scientific). Briefly, the reaction mixture was
equilibrated at 25°C for 2 min before the addition of 200 U of SuperScript II reverse transcriptase. The
reverse transcription reaction mixture was incubated at 25°C for 10 min and at 42°C for 180 min and then
inactivated at 70°C for 15 min. Double-stranded cDNA was prepared by using the NEBNext mRNA Second
Strand Synthesis module (NEB). Sequencing libraries were prepared from the double-stranded cDNA by
using the Nextera XT DNA library preparation kit (Illumina). Residual nucleotides were removed by using
Agencourt AMPure XP beads (Beckman Coulter) at a DNA-to-bead ratio of 0.6:1. Library size and quality
were measured by using a 2100 Bioanalyzer (Agilent Technologies) and quantified with a Qubit
fluorometer by using the Qubit dsDNA HS assay kit (Thermo Fisher Scientific). Sequencing reactions were
performed on a MiSeq desktop sequencer (Illumina). Reads were sorted and aligned, and mutations were
characterized by using Bowtie2 (84) and SAMtools (85). Results were visualized by using Integrative
Genomics Viewer (86).

Construction of AF15561E2 K200R, AF15561�UTR, and AF15561E2 K200R;�UTR. To insert the E2 K200R
substitution, the AF15561 cDNA clone was mutated by site-directed mutagenesis (Agilent). Restriction
digestion was performed with XmaI and XhoI to release a 1,035-bp fragment containing the desired
mutation, and this fragment was ligated into an XmaI- and XhoI-digested unmutagenized plasmid. The
ligated fragment was sequenced to confirm that only the desired mutation was present. To insert the
ΔUTR mutation into the AF15561 or AF15561E2 K200R backbone, a multistep cloning approach was used.
cDNA from the AF6811P2 stock or WT AF15561 was generated by the isolation of viral RNA using TRIzol
reagent (Life Technologies), and cDNA was generated by using SuperScript IV reverse transcriptase with
a 1:1 mix of oligo(dT) and random hexamer primers. This cDNA was utilized as a template for PCR using
primers CHIKV_10699F (5=-GCACCATCTGGCTTCAAGTA-3=) and CHIKV_12036R (5=-GAAATATTAAAAACAA
AATAACATCTCCTA-3=) and Q5 high-fidelity polymerase (New England BioLabs). This PCR amplified a
region from the 3= end of E1 to the 3=-UTR immediately preceding the poly(A) tail and contains restriction
sites for SgrDI (CHIKV nucleotide position 10864) and SspI (CHIKV nucleotide position 12032). The PCR
product was cloned into the TOPO-II Zero Blunt vector (Life Technologies). To insert the AF6811P2 3=-UTR
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containing the 44-nt deletion into AF15561 or AF15561E2 K200R plasmids, the viral cDNA-carrying plasmids
and the TOPO vector containing the AF6811P2 3=-UTR were subjected to sequential digestions with
SgrDI (Thermo Fisher) and SspI (New England BioLabs). Fragments were ligated by using T4 DNA ligase
(New England BioLabs). Due to a second SspI site in the pSinRep5 plasmid 200 bp downstream of the
CHIKV poly(A) tail, this strategy resulted in the loss of the poly(A) tail and 200 bp of the plasmid
backbone. To restore the poly(A) tail and plasmid backbone sequence, an unmutagenized AF15561
plasmid was digested with SspI to produce an �200-bp fragment containing the authentic 3=-UTR and
plasmid backbone. The cDNA plasmids lacking the poly(A) tail and 200 bp of the plasmid backbone were
then linearized with SspI. The 200-bp fragment was then ligated into the linearized plasmids. Restoration
of the poly(A) tail and plasmid backbone was confirmed by sequencing.

In vitro virus replication. Triplicate wells were inoculated with CHIKV at the indicated MOIs. Viruses
were adsorbed onto cells for 1 h at 37°C. Wells were then washed three times with 1 ml of room-
temperature 1� PBS. Growth medium was then added to each well, and cells were incubated at 37°C.
For cumulative growth analysis, 100-�l samples of culture supernatants were removed at various times
p.i., and an equal volume of fresh growth medium was added to maintain a constant volume within each
well. Samples were stored at �80°C for analysis by a focus-forming assay.

Plaque and focus-forming assays. To quantify the amount of infectious virus in samples, either a
plaque assay or a focus-forming assay was used. For plaque assays, BHK-21 cells were seeded into 6-well
dishes. Samples containing the virus were serially diluted in a solution containing PBS, 1% FBS, 1� Ca2�,
and 1� Mg2� and adsorbed onto the cells for 1 h at 37°C. Cells were overlaid with 1% immunodiffusion
agarose (MP Biomedicals), and plaques were allowed to form for 36 to 40 h at 37°C. Plaques were
visualized with a neutral red stain, and titers were enumerated as plaques per milliliter of serum or gram
of tissue. For focus-forming assays, Vero cells were seeded into 96-well plates. Samples containing virus
were serially diluted in DMEM–F-12 medium plus 2% FBS and allowed to adsorb onto the cells for 2 h
at 37°C. At the end of 2 h, the sample was removed, and cells were overlaid with 0.5% methylcellulose
in MEM-� plus 10% FBS and incubated at 37°C for 16 to 18 h. Cells were then fixed with 1%
paraformaldehyde and probed with CHIKV-specific monoclonal antibody CHK-11 (87) at 500 ng/ml in
Perm Wash (1� PBS, 0.1% saponin, 0.1% bovine serum albumin [BSA]). The antibody was allowed to bind
for 2 h at room temperature. Next, cells were washed with Perm Wash, secondary goat anti-mouse IgG
conjugated to horseradish peroxidase at a 1:2,000 dilution in Perm Wash was applied, and the mixture
was incubated for 2 h at room temperature. Cells were washed with Perm Wash, and antigen-positive
cells were visualized with the TrueBlue substrate (Fisher). Foci were counted with a CTL Biospot analyzer
and Biospot software (Cellular Technology). Titers were calculated as the number of foci per milliliter of
serum or gram of tissue.

Type I IFN ELISA. The IFN-� level in sera was measured by using a mouse IFN-� enzyme-linked
immunosorbent assay (ELISA) (Pestka Biomedical Laboratories) (49).

Histopathological analysis. At 7 dpi, mice were sacrificed and perfused by intracardiac injection
of 4% paraformaldehyde (pH 7.3), and the indicated tissues were dissected and fixed in 4%
paraformaldehyde (pH 7.3). Tissues were embedded in paraffin, and 5-�m sections were prepared.
Tissue sections were stained with hematoxylin and eosin (H&E) and evaluated by light microscopy.
A board-certified veterinary anatomic pathologist scored the presence, distribution, and severity of
histological lesions in muscle, joint space, synovium, tendon, and periarticular tissue in a blind
manner. The following scoring system was used: 0 for no inflammation, 1 for �5 areas of small
clusters of leukocytes, 2 for leukocytes forming larger clusters to thin tracts through tissue with
multiple affected sites, 3 for clusters and tracts of leukocytes coalescing into at least one large area
that displaces/replaces tissue, with or without necrosis and with or without mineralization, and 4 for
leukocytes that are in aggregates large enough to replace �40% of normal tissue, with or without
necrosis and with or without mineralization.

Statistical analysis. All data were analyzed by using GraphPad Prism 6 software. Data were
evaluated for statistically significant differences by using a two-tailed, unpaired t test; Mann-Whitney
tests; one-way analysis of variance (ANOVA) followed by Tukey’s multiple-comparison test; two-way
ANOVA followed by a Bonferroni multiple-comparison test, or a Kruskal-Wallis test with Dunn’s multiple-
comparison test. A P value of �0.05 was considered statistically significant.
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