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ABSTRACT Classically, natural killer (NK) cells have been defined by nonspecific in-
nate killing of virus-infected and tumor cells. However, burgeoning evidence sug-
gests that the functional repertoire of NK cells is far more diverse than has been
previously appreciated, thus raising the possibility that there may be unexpected
functional specialization and even adaptive capabilities among NK cell subpopula-
tions. Some of the first evidence that NK cells respond in an antigen-specific fashion
came from experiments revealing that subpopulations of murine NK cells were able
to respond to a specific murine cytomegalovirus (MCMV) protein and that in the ab-
sence of T and B cells, murine NK cells also mediated adaptive immune responses to
a secondary challenge with specific haptens. These data have been followed by
demonstrations of NK cell memory of viruses and viral antigens in mice and pri-
mates. Herein, we discuss different forms of NK cell antigen specificity and how
these responses may be tuned to specific viral pathogens, and we provide assess-
ment of the current literature that may explain molecular mechanisms of the novel
phenomenon of NK cell memory.
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Cellular components of the innate immune system are typically characterized as
using a finite number of germ line-encoded pattern recognition receptors to sense

pathogens, neoplastic cells, and other tissue damage (1–3). In contrast, the adaptive
immune system, which includes T and B cells and their effector functions, relies on
recombinase-activating gene (RAG)-dependent nonhomologous end-joining of chro-
mosomal DNA and its recombination to generate a substantial T and B cell receptor
repertoire capable of antigen-specific recognition (4). Activation of T and B cells by their
cognate antigen leads to activation, proliferation, and the selection of high-affinity
effector and memory cells and results in accelerated and enhanced recall responses by
memory T and B cells upon reexposure (1–3). Medically, we exploit the ability to elicit
memory immune cells via vaccination, as optimal vaccine strategies are designed to
induce long-lived, antigen-specific memory T and B cells that mediate rapid, high-
affinity recall responses upon encounter of the actual pathogen. In contrast, innate cells
have been thought of solely as a nonspecific first line of defense against pathogens that
may also serve to augment or tune adaptive responses but do not generate memory
in their own right.

Natural killer (NK) cells are primary effector cells of the innate immune system that
can rapidly eliminate tumor and virus-infected cells. Although NK cells have not
traditionally been thought to carry adaptive capabilities or require antigen priming,
they do encode a complex array of receptors to recognize specific ligands on target
cells, and the tuned integration of these signals results in cytokine secretion and
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cytolysis or, alternatively, tolerance (5). In humans, the largest group of NK cell
receptors belong to the killer cell immunoglobulin (Ig)-like receptor (KIR) family, which
consists of type I integral membrane proteins that form a polymorphic family within the
Ig superfamily (6, 7). In mice, a similar group of NK cell receptors are type II integral
membrane, C-type lectin-like molecules belonging to the Ly49 family (8). Both KIRs and
Ly49s are germ line encoded, highly polymorphic receptors and selectively expressed
on most naive NK cells, but NK cells can express one or more receptors (6, 7). KIRs and
Ly49 receptors recognize host-derived major histocompatibility complex class I (MHC-I)
molecules, contribute to the processes of “licensing” and “education” which occur
during NK cell development, and ensure that only NK cells capable of engaging
self-MHC with their inhibitory receptors are allowed to become functionally competent
but are also restrained from killing healthy cells (9–13). Other receptor families in both
mice and humans are leukocyte immunoglobulin-like receptors (LIRs), C-type lectin-like
receptors (LLRs), tumor necrosis factor (TNF) superfamily receptors, and natural cyto-
toxicity receptors (NCRs), including members of the NKG2 family, and the common NK
cell receptors NKp30, NKp46, and NKp80 (7, 14–20). Interestingly, NK cells and T cells
share a progenitor. Both express NCRs, and many effector functions, such as gamma
interferon (IFN-�) release and perforin/granzyme-mediated killing, overlap significantly
between NK cells and cytotoxic T lymphocytes (CTLs) (21). Indeed multiple cellular and
noncellular components of the innate and adaptive immune system have been con-
served in vertebrates for hundreds of millions of years, making it tempting to speculate
that evolutionary pressures may have led to the development of an adaptive immune
system from its innate counterpart in higher-order vertebrates (22). Over the past 10
years, a multitude of independent studies have revealed that subsets of murine and
primate NK cells are capable of antigen-dependent expansion and long-lived immu-
nological memory. Together, these data suggest that NK cell function may traverse
both innate and adaptive immune systems, thus representing a third lineage of
lymphocytes capable of antigen specificity. Here, we summarize and discuss current
knowledge of NK cell-mediated adaptive immunity, its origins, and potential clinical
applications (Fig. 1; Table 1).

ADAPTIVE NK CELL-MEDIATED IMMUNE RESPONSES TO ALTERED
SELF-ANTIGENS

Exposure to haptens, self-proteins altered by the addition of a chemical moiety (23),
induces a classical contact hypersensitivity (CHS) response, and typically the first
exposure to hapten results only in sensitization. A second exposure to the same hapten
generates an immune reaction resulting in a characteristic itchy rash, fluid-filled blisters,
and hives. Human examples of hypersensitivity disease include asthma, rhinoconjunc-
tivitis, otitis, rhinosinusitis, urticaria, angioedema, eczema, food allergy, drug allergy,
insect allergy, occupational allergic diseases, and anaphylaxis (24). The CHS response is
commonly used to investigate sensitization and antigen recall and was thought to be
mediated primarily by T, NKT, and/or B cell activation (25). However, in 2006, O’Leary et
al. reported that a novel subset of murine-liver-resident Thy1� (CD90�) Ly49C� (in
C57BL/6 mice) DX5� and NKG2D� NK cells can mediate antigen-specific long-lived
immunological recall responses to haptens in a RAG-independent manner (26). These
findings were highly surprising, as they demonstrated that certain subsets of NK cells
are capable of adaptive CHS responses, and flow cytometric analyses and confocal
microscopy further confirmed that NK cells are recruited to sites of CHS upon hapten
challenge (26). Sensitization of NK cells may occur in lymph nodes, since antibody-
mediated blockade of P-, E-, and L-selectin or genetic deficiency in L-selectin (27–29)
blocked CHS responses in sensitized mice. Interestingly, only sensitized liver-resident
Thy1� NK cells transferred CHS responses into naive lymphopenic hosts, while naive,
sensitized hepatic Thy1� or splenic NK cells did not (26). In 2010, these findings were
further clarified by Paust et al. in experiments demonstrating a requirement for
adaptive NK cells to express CXCR6, which is expressed on about half of all murine-liver
NK cells and for which the ligand, CXCL16, is constitutively expressed on liver sinusoidal
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endothelial cells and upregulated at sites of inflammation (30, 31). Indeed, CXCR6-
deficient mice have reduced numbers of NK cells, exhibit poor NK cell survival upon
adoptive transfer, and significantly reduced memory responses. Interestingly, adminis-
tration of a blocking antibody specific to NKG2D also diminishes the CHS response (26),
suggesting that NKG2D may somehow be important in NK cell-adaptive responses.
Further phenotyping of hapten-sensitized NK cells via adoptive transfer and CHS
identified adaptive murine NK cells as liver-resident NK cells that are positive for CD45,
CD90, CD11b, Ly49C/I, CXCR6, and NK1.1 (C57BL/6) or DX5 (C57BL/6 or BALB/c) but
negative for CD27 (26, 31–33). Of note, while four laboratories successfully transferred
NK cell memory to non-cytomegalovirus (non-CMV) antigens using DX5� as a selection
marker for their antigen-sensitized liver NK cells (26, 31–33), one laboratory was unable
to do so and suggested instead that CD49a-expressing NK cells mediate antigen-
specific memory (34, 35).

NK CELL-MEDIATED ADAPTIVE IMMUNE RESPONSES TO NON-CMV PATHOGENS
IN MICE

As discussed above, initial findings of antigen-dependent NK cell memory in mice
against haptens have been described. Subsequent experiments expanded these find-
ings of clinically relevant NK cell memory to human immunodeficiency virus (HIV)
group antigen (gag)- or envelope (env)-containing virus-like particles (VLP) and those
containing influenza A virus-derived matrix protein 1 (M1) (31). NK cell memory of M1
VLP was transferred to naive lymphopenic recipients of M1-sensitized lung NK cells, as
demonstrated by delayed-type hypersensitivity (DTH) and prolonged survival of recip-
ient lymphocyte-deficient mice upon challenge with influenza A PR8 virus, suggesting
that liver NK cells may not be the only memory NK subset in mice. Even exposure to
inactivated viruses, such as vaccination with UV-inactivated vesicular stomatitis virus
(VSV), elicited adaptive immune responses in murine-liver-resident NK cells. These

FIG 1 Examples of antigen-specific, cytokine-induced, and memory-like NK cells in mice and humans/nonhuman primates (NHP). Venn
diagrams represent examples of evidence for adaptive NK cells and whether these have been demonstrated as being truly antigen
specific, cytokine induced, and memory-like or a combination of these. Microbial pathogens or other agents for which memory NK
cells have been demonstrated are color coded. Ellipses indicated those agents that have been demonstrated in mice (dashed line) or
humans/NHP (solid line). AML, acute myeloid leukemia; VLP, virus-like particles.
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vaccine-induced memory NK cells were pathogen specific, were developed in the
absence of RAG and T and B cells, and protected T and B cell-deficient mice from lethal
viral challenge (26, 31). Independent verification of NK cell-mediated innate immune
memory to vaccinia virus was published by Gillard et al., who demonstrated the ability
of Thy1� liver-derived NK cells to mediate adaptive immunity to this pathogen (33). In
addition, Paust, et al. demonstrated clearly that NK cell memory of non-CMV viral
antigens, like haptens, is confined to NK cells that express the chemokine receptor
CXCR6 (31).

NK CELL-MEDIATED ADAPTIVE IMMUNE RESPONSES TO HERPESVIRUSES IN
MICE AND HUMANS

Murine CMV (MCMV) is a commonly studied example of NK cell-mediated antiviral
surveillance, as this virus has evolved elaborate mechanisms to evade NK cell responses
and has also provided strong evidence in support of adaptive functions by NK cells
(36–39). NK cells express on their cell surface activating receptors that specifically
recognize MCMV-derived proteins, including Ly49H, which recognizes m157 (36–38,
40–42), and Ly49P, which recognizes m04 (43). However, this interaction is unique to B6
mice, as neither outbred mice nor inbred mice on a non-C57BL/6 background (BALB/c)
express Ly49H and as such are highly susceptible to MCMV infection (44). NK cell-
mediated long-term survival and memory responses to m157 MCMV antigen have
recently been shown in B6 bone marrow chimera mice (45), in which Ly49H lymphope-
nia was induced through Dap12 deficiency. In this lymphopenic environment, Ly49H�

NK cells proliferated upon MCMV infection, contracted subsequently, and persisted in
lymphoid and nonlymphoid organs for several weeks (45). These self-renewing memory
NK cells rapidly degranulated and produced cytokines upon reactivation, and adoptive
transfer of 10-fold-fewer memory NK cells was protective upon MCMV challenge
compared to what occurred with naive NK cells. Since Ly49H is expressed on splenic
and hepatic NK cells, both subsets responded to m157, although liver NK cells prolif-
erated more vigorously than those derived from spleen. In contrast, there was no
correlation between Ly49-activating receptors on hepatic NK cells and CHS activity, and

TABLE 1 NK cell memory and memory-like responsesa

Species Type
Pathogen(s), antigen(s), or
disease Receptor(s) and/or cell phenotype

Ligand(s) or
stimulus(i) Reference(s)

Mice Antigen specific Haptens (DNFB, oxazalone) NK1.1� or DX5� (CD49b) and CXCR6�

NKG2D� CD90� CD11b� CD27�

DX5� CD49a�

? 26, 31, 32,
34

HIV VLP (Gag, Env) NK1.1� or DX5� and CXCR6� ? 31
Influenza VLP (M1 or HA/M1) NK1.1� or DX5� and CXCR6� ? 31
Influenza virus NK1.1� or DX5� and CXCR6� DX5�

CD49a�

? 31
35

Vesicular stomatitis virus NK1.1� or DX5� and CXCR6� ? 31
Vaccinia virus NK1.1� or DX5� and CD90� ? 33
Murine cytomegalovirus Ly49H�, Ly49P� m157, m04 43–45
BCG, M. tuberculosis ? CD27, IL-21 85

Cytokine induced Ly49H�, NK1.1� IL-12, IL-15, IL-15 87

Humans and NHP Antigen specific Human cytomegalovirus NKG2C� CD57�

SIV, SHIV NKG2A�, NKG2C� Gag, Env 78
HIV, SIV antigens by adenovirus

vectors
NKG2A�, NKG2C� Gag, Env 78

BCG CD56� CD16lo ? 86
Cytokine induced Acute myeloid leukemia NKG2D� DNAM-1� IL-12, IL-15, IL-15 89

Inactivated influenza virus IFN-��R2� IL-2 88
Memory-like Human cytomegalovirus NKG2C�, �-chain� Antibody 90, 91

HIV NKG2C�, �-chain� Antibody 92
HCV NKG2C�, �-chain� Antibody 93
Epstein-Barr virus CD56bright NKG2A� CD56dim NKG2A�

NKG2A� 2B4� NKG2D�

? 51, 57–60

aVLP, virus-like particles; NHP, nonhuman primates.
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splenic NK cells were unable to mediate CHS responses (26). Hence, the requirements
of Ly49-activating receptors during NK cell-meditated memory responses may vary
depending on the antigen and MHC haplotype, and their precise requirement to NK
cell-mediated memory requires further study. Interestingly, while both splenic and
hepatic NK cells respond to MCMV infection, they do so in an organ-specific manner
(46, 47). In the spleen, perforin mediates viral clearance, while IFN-� mediates protec-
tion in the liver. It would, therefore, be most informative for future studies to directly
compare splenic and hepatic memory NK cell responses to MCMV challenge using
adoptive transfers. While the full mechanisms mediating establishment of a long-lived
memory NK cell pool of MCMV following infection are unclear, the proapoptotic factor
Bim has been implicated in shaping the size and functional profile of long-lived
memory NK cells in a mechanism analogous to that of memory CD8� T cells (48). Also,
as with autophagy-dependent formation of CD8� T cell pools, surviving NK cells that
undergo mitophagy during the contraction phase depend on BNIP3 to select survival
of memory NK cells (49).

Although adaptive NK cell responses to CMV have been delineated most clearly for
MCMV, empirical evidence suggests that a similar phenomenon may occur in humans.
First identified as an expansion of NKG2C� NK cells in response to human CMV
(HCMV)-infected fibroblasts (50), it was later clarified that CD57� NKG2Chi NK cells
expand early after HCMV infection in vivo and are highly specific to the virus (51, 52).
NK cells are typically the first lymphocytes to reconstitute after hematopoietic stem cell
(HSC) transplantation and during reconstitution are reciprocally modulated by reacti-
vated CMV (52, 53). Inhibition of CMV replication is modulated, at least in part, by
NKG2C, which binds to HLA-E, which in the steady state presents signal peptides
derived from other MHC-I proteins (54). It is currently unknown if a CMV-encoded
ligand for NKG2C exists, but 5% of humans are NKG2C null and 20% are NKG2C
heterozygous, and these genetic attributes carry significant implications in transplant
immunology (55). Indeed, cord blood (CB) grafts expressing an NKG2C deletion allele
possessed a high risk of CMV reactivation after CB transplantation and a reduced risk
with the presence of the wild-type allele (56). Further evidence that NKG2C-mediated
NK cell activation has a profound effect on the NK cell repertoire and CMV-specific NK
memory in humans comes from a comparison of NK cells from CMV-seronegative and
CMV-seropositive recipients of CB-derived HSCs (55). While NKG2C expression remained
unchanged in patients without CMV viremia, in patients who reactivated CMV, NKG2C
expression increased significantly during the acute phase of CMV infection, similar to
what occurred with NK cells in other patients with CMV reactivation (53). Newly formed
NK cells from patients who reactivated CMV after HSC transplantation also had a more
mature phenotype and produced significantly more IFN-� both before and after
detection of CMV viremia and anti-CMV therapy. Interestingly, the NKG2C� CD57� NK
cells that expand in CMV infection are not responsive to Epstein-Barr virus (EBV)-
infected cells, suggesting that this phenotype is not a universal response to herpesvirus
infections (51). However, several independent studies have indicated that specific
subsets of NK cells are also enhanced in their responses to EBV infection (57–60),
including a CD56bright NKG2A� CD94� CD45� CD62L� population that accumulates in
the tonsils of infected individuals (57). These NK cells secrete IFN-� in response to
EBV-infected cells and can restrict the transformation of EBV-infected B cells in vitro (57,
59). In a second study of pediatric patients, a subset of CD56dim NKG2A� NK cells
expands for several months following acute mononucleosis (caused by EBV) and
preferentially responds to EBV-expressing B cells displaying lytic antigens, suggesting
that this subset may play a key role in the control of primary EBV infection (60). Finally,
an NKG2A� 2B4� CD16– CD57– NKG2D� NK cell subset was recently shown to mediate
a specific response to lymphoblastoid cell lines latently infected with EBV (58).

NK CELLS IN HUMAN IMMUNODEFICIENCY VIRUS INFECTION

Multiple studies have demonstrated an association between NK cells and control of
HIV replication, as well as simian immunodeficiency virus (SIV) in macaque models. NK
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cells expand during primary infection (61, 62) prior to the development of CD8� T
lymphocytes and have evolved multiple mechanisms to recognize, lyse, or otherwise
inhibit HIV- and SIV-infected cells via virus-induced downmodulation of MHC class I
molecules (63) or upregulation of NKG2D ligands on target cells (64, 65) and secretion
of the infection-blocking �-chemokines CCL3, CCL4, and CCL5 (66). Although these
functions are innate in nature, burgeoning evidence has suggested that the NK cell
response to HIV/SIV is robust and may not be entirely nonspecific. Indeed, NK cells have
been linked to controlled viremia in HIV type 1 (HIV-1) elite controllers and long-term
nonprogressors and reduced acquisition in HIV-1-exposed seronegative individuals,
and peptide-specific NK cell responses have been shown to block HIV mother-to-child
transmission (67–73). Longitudinal studies suggest that NK cells may be associated with
preventing disease progression in SIV-infected macaques (74, 75), and experimental NK
cell depletion results in increased virus replication (76, 77). Importantly, Reeves et al.
also recently described evidence of antigen-specific NK cell memory responses
mounted against SIV/simian-human immunodeficiency virus (SHIV) infections as well as
against adenovirus 26 (Ad26) vaccine antigens in rhesus macaques (78). Responses
were dependent on NKG2 molecules, but delineating the full mechanisms of primate
NK cell memory will require further study. Many detailed analyses of NK cells in HIV and
SIV have focused on KIR interactions with cognate HLA ligands that do not represent
memory per se but demonstrate the potential for antigen-specific modulation of the NK
cell response. One example is the coexpression of the KIR3DS1 allele in conjunction
with HLA class I alleles from the HLA-Bw4 family being associated with delayed AIDS
progression and greater suppression of virus replication in autologous CD4� T cells
(79–82). NK cells may also exert selective pressure on virus replication, as evidenced by
HIV-1 polymorphisms associated with KIR2DL2 that can confer resistance to NK cells
(69). Similarly, SIV peptides can modulate recognition of rhesus KIR; in one example,
Mamu-KIR3DL05 is stabilized by certain peptides, but not by others, and the NK cell
response can even be suppressed in this manner (83). A highly conserved HIV peptide
that binds to HLA-E has also recently been shown to contribute to the sensitivity of
HIV-infected cells to NKG2A-expressing NK cells (84).

NK CELL MEMORY OF MYCOBATERIUM TUBERCULOSIS

A nonviral form of memory NK cells has recently been described by Venkatasubra-
manian et al. and is present in spleens and draining lymph nodes of mice infected with
Mycobacterium tuberculosis (85). Using a mouse model of tuberculosis (TB) infection, the
authors were able to induce IFN-�-producing CD27� memory-like NK cells upon
bacillus Calmette-Guerin (BCG) vaccination (the antigen used in the tuberculin test).
Memory NK cells provided protection against subsequent TB challenge but not against
challenge with other bacterial pathogens. Interestingly, murine TB-specific memory NK
cells are distinct from CXCR6� memory NK cells found in liver and are RAG dependent,
although they do not require RAG expression but rather T cell-produced interleukin 21
(IL-21) for their induction and/or survival (85). Recently, BCG-specific memory NK cells
were also identified in vaccinated humans and were found to be both long-lived and
rapidly expanded upon BCG revaccination (86). Although the mechanisms and full
phenotypic and functional profiles remain unclear, BCG-specific responses were found
primarily among CD56� CD16lo NK cells. All together, these exciting findings suggest
that multiple subsets of distinct memory NK cells coexist and may protect their host
using distinct mechanisms of induction, maintenance, and action.

OTHER FORMS OF TRAINED NK CELL-MEDIATED IMMUNITY
Cytokine-induced memory NK cells. Another form of NK cell memory comes from

initial studies by Cooper and colleagues, who demonstrated that cytokine-activated NK
cells persist in naive hosts 7 to 22 days after adoptive transfer (87). Restimulation of
these NK cells results in significantly elevated IFN-� production, while granzyme B
expression and killing ability are similar to those in naive NK cells. It is unlikely that this
type of NK cell memory is entirely dependent on cytokine exposure after sensitization,
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since cytokine-mediated NK cell activation cannot fully explain antigen-specific re-
sponses. Nonetheless, NK cells retained an intrinsic memory of prior activation, a
function until now attributed only to antigen-specific adaptive immune cells. Interest-
ingly, recent similar studies have shown that influenza vaccination can also generate
cytokine-induced memory NK cells (88). Hence, NK cell-mediated effector functions
during antitumor responses and allergic and infectious diseases may clinically be more
important than initially appreciated, and cytokine-induced memory NK cells may be
attractive therapeutic targets for disease treatment (89).

Memory-like NK cells. In addition to describing true antigen-specific NK cells, a
recent study has identified a subpopulation of “memory-like” NK cells, which are
exquisite effector cells when granted specificity through antibody binding. These cells,
described in humans in 2013 by Zhang et al. (90), express high levels of Fc�R (including
CD16) but lack the intracellular �-signaling chain. So-called (g–) or Fc�RΔg NK cells are
found at low frequencies in all individuals but expand in HCMV-seropositive persons.
Following initial antibody binding, these cells become epigenetically modified and
long-lived and are capable of significantly enhanced antibody-dependent functions
and numerical expansion upon new antibody binding (91). Fc�RΔg NK cells, partially
identifiable by NKG2C and NKp30 expression, have been shown to exhibit potent
antiviral functions against HCMV, herpes simplex virus (HSV), and influenza virus in the
presence of their respective antiviral antibodies, regardless of previous antigen expo-
sure. Recently, Fc�RΔg NK cells with enhanced antibody-dependent cellular cytotoxicity
(ADCC) have been shown to be increased 7-fold in HIV-infected persons and are also
associated with protection from progressive liver disease in hepatitis C virus (HCV)
infection (92, 93). Thus, this memory-like NK cell subpopulation has become an
attractive target for antibody-based vaccines and immunotherapeutics.

NK CELL DIVERSITY IN VIRAL INFECTIONS AS A MECHANISM FOR MEMORY NK
CELL GENERATION

It is unclear how NK cell memory of viral pathogens affects the diversity of the
human NK cell repertoire. In the adaptive immune system, immune memory decreases
repertoire diversity by increasing the frequency of cells expressing a single receptor
specific for pathogens that have been encountered before. Among NK cells, this
relationship is less clear, because with a few exceptions (such as the Ly49H-mediated
recognition of m157 of murine CMV [45]), a specific receptor that mediates NK cell
recognition and memory has not been identified. Instead, there are numerous associ-
ations between certain NK cell receptors and different viral infections in human, yet
there are only a few situations in which there is a mechanistic understanding of how
these receptors contribute to viral recognition (reviewed in reference 94). It is possible
that distinct receptor combinations are required to respond to different viruses, making
the elucidation of the requirements for a specific virus more challenging in light of the
diversity receptor expression profiles within the NK cell repertoire. NK cell diversity may
be best defined based on combinatorial expression patterns of activating and inhibitory
receptors, whose signals are integrated to control NK cell function (95). Recent work has
revealed that these receptors assort on the cell surface to generate a vast diversity of
distinct phenotypic subsets, with 6,000 to 30,000 unique NK cell subsets per individual
(95). This raises the possibility that specific subsets might be enhanced in their ability
to recognize distinct pathogens, and a memory response may result in a shift in the NK
cell repertoire to increase the frequency of these subsets. However, to date, only human
CMV infection is associated with dramatic imprinting on the NK cell repertoire (96).

Interestingly, in vitro experiments suggest that short-term exposure to virus-infected
cells actually increases human NK cell diversity (95). This shift in diversity may represent
a short-term accommodation to “tune” the NK cell response to detect a specific
pathogen. Consistently with this idea, a human immune repertoire with increased
expression of maturity markers, such as CD57, is associated with shifts in the expression
patterns of activating and inhibitory receptors in vivo (97). Such shifts, which generally
favor greater expression of activating receptors, might decrease the threshold for NK
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cell activation upon a secondary exposure. Consistently with this idea, more mature
CD57� NK cells display enhanced cytokine secretion but diminished cytotoxic activity
in response to autologous HIV-infected T cells in vitro (98), suggesting that the viral
exposure modulates the quality of the NK cell response to subsequent infections.
Consistently with this idea, exposure to many pathogens is associated with shifts in the
expression patterns of a variety of natural killer cell receptors (94, 99).

Collectively, these findings raise the question of what effects chronic exposure to
different viruses has on the NK cell repertoire. On one hand, exposure to viruses might
give rise to adaptive and pathogen-specific cells, but on the other hand, it might lead
to a more mature repertoire that favors cytokine secretion over direct killing. In a small
study of women at risk of HIV infection, higher NK cell diversity was associated with
increased HIV acquisition risk (98). Together, these data support a model in which
exposure to a given pathogen might give rise to rare populations of memory cells that
are difficult to detect among the overall increase in diversity. However, the cells that
have diversified in response to one pathogen may be less “flexible” in their ability to
respond to a de novo pathogen.

SPECULATION ON EVOLUTIONARILY CONSERVED ADAPTIVE IMMUNE
MECHANISMS

The phenomenon of antigen-specific NK memory is entirely unprecedented and
suggests an alternative pathway to generate immunological memory that is funda-
mentally distinct from all known cellular and molecular mechanisms of adaptive
immunity. Based on the findings presented herein, we hypothesize that vertebrates
have evolutionarily conserved the ability to generate a diverse antigen receptor family
in a RAG-independent manner, resulting in NK cell-mediated adaptive immunity.
Interestingly, evidence for a RAG-independent generation of a clonal repertoire of
lymphocytes has been described in the only two surviving jawless vertebrates, lam-
preys and hagfish, which use recombinatorial assembly of leucine-rich-repeat genetic
segments to generate diversified variable lymphocyte receptors (VLRs) (22, 100).
Lamprey-expressed VLRs allow adaptive, clonal immune responses to a variety of
antigens, rejection of secondary-skin allographs, and DTH not unlike DTH responses
mediated by murine NK cell subsets. While lampreys express several genes or gene
homologues that are important for adaptive immune responses (100–102), the num-
bers of immune gene homologs are comparatively low relative to that of jawed
vertebrates. That said, lampreys are considered the most phylogenetically primitive
species that may have an adaptive immune system. We are tempted to speculate that
their ability to develop an adaptive immune system may have been key in their
evolutionary survival. Further evidence that NK cell memory may not be restricted to
higher-order vertebrates and may be highly evolutionarily conserved can be found in
a recent report from Garcia-Valtanen et al. (103), who demonstrated that RAG-deficient
zebrafish are also capable of antiviral innate immune memory. The responsible cell type
could not be identified in this species, as regents to distinguish between innate
immune cells of zebrafish are currently lacking; however, gene expression profiling did
uncover an enhanced cytotoxic response. Whether mouse (or human) NK cells utilize
similar or distinct mechanisms to generate a diverse antigen-receptor repertoire in a
RAG-independent manner is under intense investigation. Indeed, data presented by
Paust et al. outlined the development of a sorting strategy to identify and isolate
2,4-dinitrofluorobenzene (DNFB)-specific NK cells from livers of DNFB-sensitized RAG-
knocked-out mice, whereby the nuclei were then transplanted into enucleated oocytes
for the generation of embryonic stem cell lines that were used to clone mice (104). NK
cells from cloned animals and about 50% of the F2 offspring instantly responded to
DNFB without requiring prior sensitization but could not be sensitized to other haptens.
These data strongly suggest that the nuclear information for hapten specificity of
memory NK cells persists even in a donor nucleus whose epigenetic state was reset by
nuclear reprogramming and subsequent breeding. This apparent genetic fixation
would not be explained by epigenetic regulation of conventional “hard-wired” NK

Minireview Journal of Virology

October 2017 Volume 91 Issue 20 e00169-17 jvi.asm.org 8

http://jvi.asm.org


receptors but is expected if antigen receptor specificity is encoded at the level of
genomic DNA and may suggest an entirely novel mechanism to generate receptor
diversity (104).

CONCLUDING REMARKS

All together, the findings discussed herein challenge the notions that innate cells are
incapable of innate immune memory or that adaptive immune memory is somehow
strictly RAG dependent. Significant data also suggest that it is unique populations of NK
cells or receptors that mediate adaptive immunity and that these functions might be
conserved among species. Mechanistic evaluations remain ongoing, but the concept of
NK cell memory has now evolved from immunologic heresy to a broad field of study,
and it will be exciting to see how NK cell memory responses can be harnessed for
improved vaccines and novel immunotherapies.
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