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Polycystic kidney disease (PKD) is one of the most common 
inherited disorders, involving progressive cyst formation in the 
kidney that leads to renal failure. FK506 binding protein 12 
(FK506BP) is an immunophilin protein that performs multiple 
functions, including regulation of cell signaling pathways and 
survival. In this study, we determined the roles of PEP-1- 
FK506BP on cell proliferation and cyst formation in PKD cells. 
Purified PEP-1-FK506BP transduced into PKD cells markedly 
inhibited cell proliferation. Also, PEP-1-FK506BP drastically 
inhibited the expression levels of p-Akt, p-p70S6K, p-mTOR, 
and p-ERK in PKD cells. In a 3D-culture system, PEP-1- 
FK506BP significantly reduced cyst formation. Furthermore, 
the combined effects of rapamycin and PEP-1-FK506BP on cyst 
formation were markedly higher than the effects of individual 
treatments. These results suggest that PEP-1-FK506BP delayed 
cyst formation and could be a new therapeutic strategy for 
renal cyst formation in PKD. [BMB Reports 2017; 50(9): 
460-465]

INTRODUCTION

Polycystic kidney disease (PKD), one of the most common 
genetic kidney disorders, is characterized by progressive cyst 
formation and development of fluid-filled cysts in the kidney, 

ultimately leading to end-stage kidney disease (1-3). Two 
major PKD subtypes have been identified i.e, autosomal 
dominant PKD (ADPKD) and autosomal recessive PKD 
(ARPKD). ADPKD is the most highly prevalent inherited 
disorder caused by either PKD1 or PKD2 gene mutations and 
affects one in 1000 adults. ARPKD is caused by a PKHD1 gene 
mutation and affects one in 20,000 children (4-6). Although 
the exact mechanisms of cyst formation in PKD are not clear 
yet, recent studies have demonstrated that various factors, 
including cytokines, growth factors, extracellular matrix (ECM) 
components and matrix metalloproteinases (MMPs) contribute 
significantly to cell proliferation and cyst formation in human 
patients and animal models of PKD (4, 7-12). 

It has been shown that mammalian target of rapamycin 
(mTOR) and Akt signaling play important roles in the 
pathophysiology of PKD via increased mTOR activation in 
both human PKD and animal models. The collective evidence 
suggests that the common feature of PKD is mTOR activation. 
Therefore, the regulation of mTOR activation is important in 
the development of therapeutic strategies for PKD treatment 
(13-16). In addition, other studies have shown that phosphory-
lation of PI3K, Akt, mTOR, and mitogen-activated protein 
kinase (MAPK) pathways markedly inhibited cancer cell 
proliferation and growth, suggesting that understanding of 
these mechanisms may contribute to the development of drugs 
for the inhibition of cell proliferation and growth (17-20). 

FK506 binding protein 12 (FK506BP), one of the FKBP 
family of proteins, is a major immunophilin protein and 
demonstrates peptidylprolyl cis/trans isomerase (PPIase) activity 
(21). FK506BP performs multiple functions in cells e.g., 
protein folding, regulation of calcium-dependent phosphatase 
calcineurin (CaN) and transforming growth factor- (TGF-) 
(21, 22). In addition, other studies have shown that FK506BP 
has protective effects in neurodegenerative processes and 
apoptotic neuronal cell death in diseases, including Parkinson’s 
diseases, suggesting that FKBP plays important roles in cell 
survival and may provide a new therapeutic target for 
neurodegenerative diseases (23-29). The complex of FK506BP 
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Fig. 1. Purification and transduction of PEP-1-FK506BP into WT9-7 
cells. Purified PEP-1-FK506BP and control FK506BP were analyzed 
by 15% SDS-PAGE (A) and subjected to Western blot analysis 
with an anti-histidine antibody (B). Transduction of PEP-1-FK506BP 
into WT9-7 cells. The cells were treated with PEP-1-FK506BP (5 
M) proteins for 2 h and observed by confocal microscopy (C). 
Scale bar = 20 m.

Fig. 2. Transduction efficiency of PEP-1-FK506BP. 0.5-5 M of 
PEP-1-FK506BP proteins was added to WT9-7 cell culture media 
for 2 h (A) or PEP-1-FK506BP (5 M) proteins was added to the 
cell culture media for 10-120 min (B). The stability of PEP-1- 
FK506BP. WT9-7 cells were treated with 5 M PEP-1-FK506BP 
and incubated for 1-60 h, analyzed by Western blotting, and 
band intensity was measured by densitometry (C). WT9-7 cells 
were treated with PEP-1-FK506BP (5 M) and rapamycin (0.5 nM) 
for 24 h. Cell proliferation was determined (D). *P ＜ 0.05 and 
**P ＜ 0.01, compared with control cells. 

and rapamycin plays a role as inhibitor of mTORC1 activation 
which, in turn, leads to suppression of cell growth via 
regulation of cell signaling in various cells, including cancer 
cells (30-32).

Although FK506BP has multiple potent therapeutic 
functions, it is limited for therapeutic application since it is 
very low delivery efficiency. Therefore, we fused FK506BP 
and a PEP-1 peptide (one of the various protein transduction 
domains [PTDs]). This fusion protein was able to cross 
membranes such as the blood-brain barrier (BBB) without any 
toxic effects (33, 34). In a previous study, we have shown that 
PEP-1-FK506BP inhibited atopic dermatitis (AD) and eye 
diseases (35, 36). Although FK506BP is known to perform 
multiple functions in cellular processes, the effects of FK506BP 
in PKD remains unclear. Therefore, we investigated the effect 
of PEP-1-FK506BP on cell proliferation and cyst formation in 
PKD. Our results showed that PEP-1-FK506BP markedly 
inhibited cell proliferation and cyst formation in PKD cells. 

RESULTS AND DISCUSSION

PEP-1-FK506BP transduction into WT9-7 PKD epithelial cells
PKD, a well-known genetically inherited disorder, leads to the 

formation of cysts in the kidney and eventually causes renal 
failure (1-3). However, there no specific anti-PKD agent has 
been developed to prevent or treat renal failure. Although 
FK506BP is associated with survival processes in cells (21, 22), 
the roles of FK506BP in PKD are not clear. In this study, we 
investigated the roles of PEP-1-FK506BP on cyst formation. 
PEP-1-FK506BP was purified as described in previous reports 
(35, 36). As shown in Fig. 1A and 1B, we used SDS-PAGE and 
Western blotting to identify and confirm the purities of 
PEP-1-FK506BP and the control FK506BP. We also used 
immunofluorescence staining (Histidine and DAPI) to show 
that PEP-1-FK506BP could be transduced into WT9-7 cells 
(Fig. 1C). Other studies have shown that various PEP-1 fusion 
proteins could be transduced into cells (37-39).
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Fig. 3. Effects of PEP-1-FK506BP on cell proliferation. WT9-7 cells 
were treated with PEP-1-FK506BP (5 M) and rapamycin (0.5 
nM). After 24 h, the expression levels of Akt (A), p70S6K and 
mTOR (B), and ERK (C) were determined by Western blotting 
using the indicated specific antibodies. **P ＜ 0.01, compared 
with control cells. 

Next, we used Western blots to analyze the extent to which 
PEP-1-FK506BP could be transduced into WT9-7 cells. The 
cells were treated with various concentrations of PEP-1- 
FK506BP (0.5-5 M) for 2 h or with PEP-1-FK506BP (5 M) for 
different durations (10-120 min). Time- and dose-dependent 
transductions of PEP-1-FK506BP transduced into WT9-7 cells 
are shown in Fig. 2A and 2B. However, control FK506BP 
without a PEP-1 peptide did not transduce into cells. 
Furthermore, we determined the intracellular stability of 
PEP-1-FK506BP in WT9-7 cells (Fig. 2C). PEP-1-FK506BP was 
stable for 12 h in cells. Consistent with previous studies, these 
results indicated that PEP-1-FK506BP could be efficiently 
transduced into WT9-7 cells where it remained stable (35, 36). 

Effects of PEP-1-FK506BP on WT9-7 cell proliferation 
Several studies have demonstrated that various factors, 
including cytokines and growth factors, play a role in the 
proliferation of cystic epithelial cells – one of the key features 
of PKD (4, 7, 8). Thus, we investigated the effects of PEP-1- 
FK506BP on WT9-7 cell proliferation using a MTT cell 
viability assay. As shown in Fig. 2D, PEP-1-FK506BP markedly 
inhibited WT9-7 cell proliferation when compared to control 
cells. Combined treated with rapamycin and PEP-1-FK506BP 
further inhibited cell proliferation relative to the inhibition of 
proliferation by only rapamycin or PEP-1-FK506BP. Rapamycin 
is a known inhibitor of mTOR signaling, which inhibits 
cellular growth, proliferation, and cytogenesis in PKD. In 
addition, preclinical studies have shown that inhibition of 
mTOR activation in an animal model of PKD reduced PKD, 
suggesting that mTOR inhibition will effectively slow cyst 
proliferation (14, 40-43). In agreement with other studies, we 
have shown that PEP-1-FK506BP and rapamycin significantly 
inhibited WT9-7 cell proliferation. 

In addition, we examined the effect of PEP-1-FK506BP on 
the signaling pathways regulating cellular proliferation in 
WT9-7 cells. Several studies have shown that inhibition of 
signaling involved in cellular proliferation, including mTOR, is 
attenuated in PKD patients. Because inhibition of the mTOR 
signaling pathway is associated with therapeutic benefits in 
PKD animal models, the results suggest that inhibition or 
regulation of cell proliferation signals is one of the key 
therapeutic targets for PKD (14, 16, 44, 45). As shown in Fig. 
3A-3B, phosphorylation patterns of Akt, p70S6K and mTOR 
were significantly reduced by PEP-1-FK506BP. In contrast, 
rapamycin increased the phosphorylation of extracellular 
signal-regulated kinase (ERK) (Fig. 3C). However, combined 
treatment with PEP-1-FK506BP and rapamycin markedly 
reduced the phosphorylation patterns of Akt, p70S6K, mTOR 
and ERK compared with the same result obtained following 
treatment with only PEP-1-FK506BP or rapamycin in WT9-7 
cells. 

It is well known that mTOR is involved in different signaling 
pathways, including PI3K/Akt, NF-B, and protein synthesis. 
Additionally, the mTOR signaling pathway plays a crucial role 

in the regulation of cell proliferation, survival, and growth by 
phosphorylation of ribosomal p70S6 kinase (p70S6K). The 
latter enzyme is downstream of mTOR in eukaryotic cells 
(13-16, 43-45). ERK, one of the MAPKs, is associated with cell 
proliferation in cells (17-20). In addition, Chang et al. demon-
strated that PKD cellular proliferation is associated with the 
ERK signaling pathway (46). Consistent with these results, we 
demonstrated that PEP-1-FK506BP inhibited cell proliferation 
via regulation of associated signaling pathways, including Akt, 
p70S6K, and ERK.

Effects of PEP-1-FK506BP on cyst formation in 3D culture
Several studies in human PKD patients and animal PKD 
models have demonstrated that overexpression of collagen is 
highly associated with PKD and the progression of cystic 
diseases (11, 47-49). Thus, we examined the effect of PEP-1- 
FK506BP on cyst formation in Madin-Darby canine kidney 
epithelial (MDCK) cells using three-dimensional collagen I cyst 
culture systems. The formation of cysts was markedly 
decreased compared to the same process in the control 
following treatment of cells with PEP-1-FK506BP (Fig. 4). The 
formation of cysts was also significantly decreased in the 
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Fig. 4. Effects of PEP-1-FK506BP against cyst formation. MDCK 
cells were treated with forskolin to stimulate cyst formation. After 
PEP-1-FK506BP (5 M) and rapamycin (0.5 nM) were added to 
the culture media, cyst formation was observed via a microscope 
(A) and cyst size was measured (B). *P ＜ 0.05 and **P ＜
0.01, compared with control cells. 

rapamycin-treated cells. The cells treated with both PEP-1- 
FK506BP and rapamycin, showed similar levels of cyst 
formation compared to treatment with only rapamycin. 

Rapamycin is clinically used as an immunosuppressant and 
considered to be a key therapeutic drug for the treatment of 
PKD (45). However, several studies demonstrated that com-
binations of rapamycin with other drugs have synergistic 
effects, whereas rapamycin alone shows insufficient therapeutic 
effects in PKD (13, 15, 42, 50). Although further study is needed 
to understand the precise therapeutically beneficial molecular 
mechanism, these results indicate that a combination of 
PEP-1-FK506BP with rapamycin plays a critical role in the 
inhibition of cyst formation in PKD. Since various clinical trials 
in PKD have failed at the present time, our discovery of an 
effective therapeutic target for this disease bodes well for 
future applications. 

In conclusion, we showed that PEP-1-FK506BP could be 
transduced into PKD cells and inhibited cell proliferation and 
cyst formation. These results suggest that PEP-1-FK506BP plays 
crucial roles in PKD and may be a new potential target 
molecule for PKD. 

MATERIALS AND METHODS

Materials 
WT9-7 cells, originally derived from a human autosomal 
dominant polycystic kidney disease (ADPKD) kidneys, and 
Madin-Darby canine kidney epithelial (MDCK) cells, a normal 
kidney epithelial cell line from Canis familiaris, were obtained 
from the American Type Culture Collection (ATCC; Manassas, 
VA, USA). Histidine and -actin antibodies were obtained 
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Akt, 
p-Akt, p70S6K, p-p70S6K, mTOR, p-mTOR, ERK, p-EKR, and 
peroxidase-conjugated secondary antibodies were obtained 
from Cell Signaling Technology (Beverly, MA, USA). Rapamycin 
was obtained from Sigma-Aldrich (St. Louis, MO, USA). Unless 
otherwise stated, all other agents were of the highest grade 

available. 

Cell culture
WT9-7 and MDCK cell lines were obtained from the American 
Type Culture Collection (ATCC, Manassas, VA, USA). WT9-7 
cells cultured in DMEM containing 10% fetal bovine serum 
(FBS) with antibiotics (100 g/ml streptomycin, 100 U/ml 
penicillin). MDCK cells were cultured in DMEM/F12 with 
10% FBS and antibiotics. Both cells were maintained at 37oC 
in a humidified chamber (5% CO2 and 95% air). 

Purification and transduction of PEP-1-FK506BP into WT9-7 
cells
PEP-1-FK506BP and control FK506BP proteins were purified as 
previously described (35) and quantitated by the Bradford 
assay (51). 

For transduction of PEP-1-FK506BP, WT9-7 cells were 
treated with 0.5-5 M PEP-1-FK506BP for 2 h or treated with 5 
M PEP-1-FK506BP for 10-120 min. Cells were treated with 5 
M PEP-1-FK506BP for 2 h to determine the intracellular 
stability of transduced PEP-1-FK506BP. Cells were then 
washed and further incubated for 1-60 h. 

Confocal microscopy analysis
We performed a previously described double-staining pro-
cedure using Alexa Fluor-488 and DAPI to confirm the 
transduction of PEP-1-FK506BP into WT9-7 cells (35, 52, 53). 
Briefly, the cells were treated with PEP-1-FK506BP for 2 h, 
washed, fixed, and blocked. Then the cells were incubated 
with a His-primary antibody and Alexa Fluor-488 secondary 
antibody in the dark. Nuclei were stained for 2 min with 1 
g/ml DAPI. Fluorescence in the cells was observed using a 
FV-300 confocal microscope (Olympus, Tokyo, Japan). 

Western blot analysis
Proteins were separated with 15% SDS-PAGE and transferred 
onto a nitrocellulose membrane. The membrane was blocked 
with 5% nonfat dry milk in TBST buffer (25 mM Tris-HCl, 140 
mM NaCl, 0.1% Tween 20, pH 7.5) for 1 h and incubated 
with the indicated primary and horseradish peroxidase- 
conjugated secondary antibody. The protein bands were 
detected using ECL reagents (Amersham, Franklin Lakes, NJ, 
USA) and the band density was quantified using Image J 
software (52, 53). 

Cell proliferation assay 
Briefly, cell proliferation was assessed using a previously 
described MTT viability assay (12, 52). Cells (1 × 104) were 
seeded into 24-well plates and incubated for 12 h. Cells grown 
in appropriate culture media were treated with PEP-1-FK506BP 
(5 M) and rapamycin (0.5 nM) for 2 h and 24 h, respectively. 
The cells were then treated with MTT solution and the optical 
density was measured using a microplate reader. Cell 
proliferation was defined as the percentage of untreated 
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control cells. 

Three-dimensional cell culture 
Three-dimensional cell culture was performed as described 
previously (12). MDCK cells were suspended in 10×DMEM 
and 10×reconstitution buffer (2.2% NaHCO3 and 4.8% 
HEPES). Collagen rat tail type I was added to the suspended 
cells and neutralized with 10N NaOH. PEP-1-FK506BP (5 M) 
and rapamycin (0.5 nM) were added to the culture media of 
forskolin-treated cells (forskolin induces cystogenesis). Cyst 
formation was then observed via a microscope. Cyst volumes 
were measured and compared with one another using Adobe 
Photoshop CS3 software. 

Statistical analysis
Data were expressed as the means ± SD from three ex-
periments. Differences among means were analyzed using 
one-way ANOVA and student’s t-tests. Significant differences 
were expressed as P ＜ 0.05 and P ＜ 0.01. 
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