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The results of this study show that c-Jun N-terminal kinase 
(JNK) activation was associated with the enhancement of 
docetaxel-induced cytotoxicity by simvastatin in DU145 
human prostate cancer cells. To better understand the basic 
molecular mechanisms, we investigated simvastatin-regulated 
targets during simvastatin-induced cell death in DU145 cells 
using two-dimensional (2D) proteomic analysis. Thus, 
vimentin, Ras-related protein Rab-1B (RAB1B), cytoplasmic 
hydroxymethylglutaryl-CoA synthase (cHMGCS), thioredoxin 
domain-containing protein 5 (TXNDC5), heterogeneous nuclear 
ribonucleoprotein K (hnRNP K), N-myc downstream-regulated 
gene 1 (NDRG1), and isopentenyl-diphosphate Delta-isomerase 
1 (IDI1) protein spots were identified as simvastatin-regulated 
targets involved in DU145 cell death signaling pathways. 
Moreover, the JNK inhibitor SP600125 significantly inhibited 
the upregulation of NDRG1 and IDI protein levels by 
combination treatment of docetaxel and simvastatin. These 
results suggest that NDRG1 and IDI could at least play an 
important role in DU145 cell death signaling as simvastatin- 
regulated targets associated with JNK activation. [BMB Reports 
2017; 50(9): 466-471]

INTRODUCTION

Prostate cancer has become a major health issue in men due 
to relapse after androgen deprivation therapy, leading to 
incurable and highly aggressive castration-resistant prostate 
cancer (CRPC) (1). Epidemiological studies have shown that 
high blood-cholesterol levels are associated with increased risk 

of prostate cancer, and can be reduced by cholesterol-　
lowering drugs (statins) (2). In addition to cholesterol reduc-
tion, statins, such as simvastatin, lovastatin, fluvastatin, and 
atorvastatin, play an important role in the regulation of cell 
proliferation, apoptosis, autophagy, cell motility, invasion, and 
adhesion in various cancer cells (3, 4). Notably, it is known 
that castration-resistant progression in LNCap prostate cancer 
xenografts-bearing mice is delayed by oral administration of 
simvastatin (5), and the clinical use of statins after diagnosis 
decreases the risk of mortality in prostate cancer patients (6).

The c-Jun N-terminal kinase (JNK) belongs to the serine/　
threonine protein kinase family, and is activated through 
phosphorylation(s) by many stress stimuli, resulting in the 
phosphorylation of c-Jun transcription factor; this JNK activation 
signaling is markedly inhibited by the ATP-competitive 
inhibitor SP600125 (7). Previous studies have shown that JNK 
activation is involved in cell death signaling by simvastatin in 
rat C6 glioma cells (8), human leukemia cells (9), and breast 
cancer cells (10, 11). In addition, JNK activation is known to 
be associated with enhanced cytotoxicity by the combination 
of fluvastatin and sorafenib in melanoma cells (12), and the 
combined effect of statin and docetaxel has been studied in 
PC3 human CRPC cells (13, 14). However, the relevance of 
JNK activation signaling to statin-enhanced docetaxel-induced 
cell death has not yet been investigated. Since JNK activation 
signaling is related to statin-induced cell death in some cancer 
cell types (8-12), studies on a new JNK activation signaling 
network may contribute greatly to improving the chemothera-
peutic effect of statins on various cancers, and remain to be 
investigated.

Simvastatin-regulated targets in the mitochondria fraction of 
rat adult brain tissue (15), acute phase of stroke in a rat 
embolic model (16), detergent-resistant membrane domains of 
rat embryonic neuronal cells (17), and mouse calvarial cells 
(18) and rat primary hepatocytes (19) using two-dimensional 
(2D) proteomic analysis after simvastatin treatment have 
already been known. However, simvastatin-regulated targets 
associated with JNK activation in DU145 human prostate 
cancer cell death signaling have not been reported. In this 
study, we investigated whether JNK activation is involved in 
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Fig. 1. JNK activation signaling is 
associated with the enhancement of 
docetaxel-induced cytotoxicity caused 
by simvastatin in DU145 cells. (A) 
DU145 cells were split in a 24-well 
dish, and treated with 0.1% DMSO, 
1-10 M simvastatin (Simva), and 5 
nM docetaxel (Doce) for 24-72 h. The 
cell viability was determined by 
CCK-8 assay. Each bar represents the 
mean ± s.d. of three experiments, 
and the data significance was 
evaluated with Student’s t-test, *P ＜
0.05. (B) Total proteins (20-50 g 
each) were analyzed by Western blot 
using the indicated antibodies.

the enhancement of docetaxel-induced cytotoxicity caused by 
simvastatin in DU145 cells, identified novel targets associated 
with simvastatin-induced morphological changes and cell 
death using 2D proteomic analysis, and examined whether the 
simvastatin-regulated targets are implicated in the JNK activation 
signaling during cytotoxicity by combination of docetaxel and 
simvastatin, through the effect of SP600125.

RESULTS

JNK activation signaling is associated with the enhancement 
of docetaxel-induced cytotoxicity caused by simvastatin in 
DU145 cells
In this study, we used cell viability analysis to show that 
docetaxel-induced cytotoxicity was enhanced by simvastatin 
in a dose- (1, 5, and 10 M) and time-dependent (24, 48, and 
72 h) manner in DU145 human prostate cancer cells (Fig. 1A). 
To investigate whether JNK-dependent signaling is activated 
during cytotoxicity by combination treatment of docetaxel and 
simvastain, we performed Western blot analysis 48 h after 
drug treatment in DU145 cells. Fig. 1B shows that JNK 
phosphorylation was more upregulated by co-treatment of 
docetaxel and simvastatin compared to single treatment, 

leading to activation of the JNK downstream target c-Jun, 
whereas phosphorylation of Akt and ERK was downregulated. 
In addition, protein levels of protein kinase C (PKC) and IB 
kinase  (IKK), which play an important role in nuclear factor 
kappa B (NF-B) activation signaling pathways (20, 21), were 
more downregulated by the co-treatment of docetaxel and 
simvastatin, compared to single treatment (Fig. 1B). These 
results indicate that, as well as Akt, ERK, PKC, and IKK 
inactivation signaling pathways, JNK activation signaling is 
significantly associated with the enhancement of docetaxel-　
induced cytotoxicity caused by simvastatin.

Proteomic analysis of novel targets associated with 
simvastatin-induced morphological changes and cell death in 
DU145 cells
DU145 cell morphology was significantly altered by treatment 
with 10 M simvastatin for 72 h: the attached cells had a 
modified cell body, and the floating cells were changed to a 
smaller round apoptotic phenotype, and were determined to 
be dead cells as a result of trypan blue staining (Fig. 2A and 
2B). To identify novel targets associated with simvastatin-　
induced morphological changes and cell death, we performed 
2D electrophoresis, CBB staining, and PDQuest image analysis 
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Fig. 2. Proteomic analysis of novel targets 
associated with simvastatin-induced morphological 
changes and cell death in DU145 cells. (A) The 
cell morphology was analyzed in a 6-well dish by 
phase-contrast light microscopy. (B) After trypan 
blue staining, dead cells were detected by 
bright-field phase-contrast light microscopy. (C) 
The 2D electrophoresis profile of simvastatin-
regulated protein spots. DU145 cells were cultured 
on a 15 cm dish with 0.1% DMSO (control) and 
10 M simvastatin for 72 h, and were analyzed by 
2D electrophoresis and CBB staining. The 3 
downregulated and 4 upregulated protein spots by 
simvastatin were identified by MALDI-TOF/TOF 
mass spectrometric analysis. Each protein spot is 
indicated by an arrow and SSP number on a 
representative 2D image. (D) Quantitative analysis 
of simvastatin- regulated protein spots. The relative 
intensities of the protein spots were determined 
using PDQuest software. Each bar represents the 
mean ± s.d. of four independent experiments, and 
the data significance was evaluated by Student’s
t-test, *P ＜ 0.05. (E) Verification of protein spots 
identified by MALDI-TOF/TOF mass spectrometric 
analysis. Each protein spot and a piece of -actin 
spot were excised from CBB-stained 2D gels, and 
performed by 10% or 13.5% SDS-PAGE. The 
proteins were analyzed by Western blot using the 
indicated antibodies (upper panels). Without 
stripping, the membranes were reprobed by -actin 
(lower panels).

72 h after 10 M simvastatin treatment in DU145 cells. 
Protein spots that were more than two-fold upregulated or 
downregulated by simvastatin were identified using matrix-　
associated laser desorption/ionization (MALDI) time of flight/time 
of flight (TOF/TOF) mass spectrometry, and Table 1 and Fig. 
2C show the statistically significant results (P ＜ 0.05). Fig. 2D 
shows the quantification results for 3 simvastatin-downregulated 
and 4 simvastatin-upregulated spots analyzed by PDQuest 
software with statistical significance (*P ＜ 0.05). To confirm 
the identified results, each protein spot and a piece of -actin 
spot as a negative control were picked from CBB-stained 2D 
gels, and were analyzed by Western blot. As expected, SSP 
4507, 4451, 3546, 5402, 3136, and 6140 protein spots were 
confirmed as heterogeneous nuclear ribonucleoprotein K 

(hnRNP K), thioredoxin domain-containing protein 5 (TXNDC5), 
cytoplasmic hydroxymethylglutaryl-CoA synthase (cHMGCS), 
N-myc downstream-regulated gene 1 (NDRG1), Ras-related 
protein Rab-1B (RAB1B), and isopentenyl-diphosphate Delta- 
isomerase 1 (IDI1), respectively (Fig. 2E). Since vimentin (18) 
and NDRG1 (17) proteins are already known to be regulated 
by simvastatin, in this study we present five novel simvastatin- 
regulated targets, such as hnRNP K, TXNDC5, cHMGCS, 
RAB1B, and IDI1, suggesting a new role of the targets in the 
regulation of morphological changes and cell death caused by 
simvastatin.
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Spot
number

Protein identification
by MALDI-TOF/TOF MS/MS

Tryptic fragment 
coverage/Matches 

MASCOT  probability 
score/Expect (p)

UniProtKB 
entry/Database

Theoretical 
Mr (Da)/pI

1431 Vimentin 19%/10 fragment 119/2.0e-007 B0YJC4/NCBInr 49680/5.19
3136 Ras-related protein Rab-1B (RAB1B) 17%/7 fragment 99/2.1e-005 Q9H0U4/NCBInr 22328/5.55
3546 Hydroxymethylglutaryl-CoA 

synthase, cytoplasmic (cHMGCS)
23%/11 fragment 93/8.7e-005 Q01581/NCBInr 57828/5.22

4451 Thioredoxin domain-containing 
protein 5 (TXNDC5)

13%/11 fragment 85/0.00055 Q8NBS9/NCBInr 48283/5.63

4507 Heterogeneous nuclear 
ribonucleoprotein K (hnRNP K)

15%/10 fragment 103/8.2e-006 P61978/NCBInr 51230/5.39

5402 Protein NDRG1 (NDRG1 N-myc 
downstream-regulated gene 1)

24%/13 fragment 82/0.00098 Q92597/NCBInr 43264/5.49

6140 Isopentenyl-diphosphate 
Delta-isomerase 1 (IDI1)

34%/10 fragment 128/2.6e-008 Q13907/NCBInr 26645/5.93

Table 1. Simvastatin-regulated protein spots in DU145 prostate cancer cells

Fig. 3. Effect of JNK inhibitor SP600125 on the simvastatin- regulated targets during cytotoxicity by combination of docetaxel and 
simvastatin. (A) Total proteins (30-50 g each) were analyzed by Western blot using the indicated antibodies. (B) DU145 cells were split 
in a 10 cm dish, and treated with 0.3% DMSO, 5 nM docetaxel, 10 M simvastatin, and 2 g/ml SP600125 (SP) for 48 h. The cell 
morphology was analyzed by phase-contrast light microscopy. (C) DU145 cells were split in a 24-well dish, and treated with 0.2% DMSO, 
2 g/ml SP600125, 5 nM docetaxel, and 5 M simvastatin for 48 and 72 h. The cell viability was determined by CCK-8 assay. Each bar 
represents the mean ± s.d. of three experiments, and the data significance was evaluated by Student’s t-test, *P ＜ 0.05. (D) DU145 cells 
were split in a 10 cm dish, and treated with 0.3% DMSO, 5 nM docetaxel, 10 M simvastatin, and 1-2 g/ml SP600125 for 48 h. Total 
proteins (25 g each) were analyzed by Western blot using the indicated antibodies.

Effect of JNK inhibitor SP600125 on the simvastatin-regulated 
targets during cytotoxicity by combination of docetaxel and 
simvastatin
To prove the results of the 2D proteomic analysis, we used 
Western blot analysis to investigate how the identified targets 
are regulated by simvastatin in whole cell extract of DU145 

cells. The results showed that cHMGCS, NDRG1, and IDI 
protein levels were dose-dependently increased by simvastatin 
treatment for 48 h, whereas TXNDC5 was downregulated by 
simvastatin, although the molecular weight of TXNDC5 (∼70 
kDa) was higher than that in Fig. 2C (∼48 kDa), suggesting a 
massive posttranslational modification of TXNDC5 in normal 
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proliferating DU145 cells (Fig. 3A). However for currently 
unknown reasons, no significant effect of simvastatin on the 
hnRNP K and RAB1B proteins was detected, suggesting an 
intracellular localization change of hnRNP K and RAB1B by 
simvastatin, followed by an alteration of solubility during 2D 
sample preparation (Fig. 3A).

Next, we used phase-contrast light microscopy and cell 
viability analysis to investigate how morphological changes 
and cytotoxicity by combination of docetaxel and simvastatin 
are regulated by JNK inhibitor SP600125 in DU145 cells. As a 
result, morphological changes and cytotoxicity due to com-
bination of docetaxel and simvastatin were somewhat signifi-
cantly, but not largely, inhibited by JNK inhibitor SP600125, 
indicating that both JNK-dependent and -independent signaling 
pathways are implicated in cell death mechanisms by docetaxel 
and simvastatin (Fig. 3B and 3C). Finally, we performed 
Western blot analysis in whole cell extract of DU145 cells to 
determine whether the identified targets are associated with 
JNK activation signaling by combination of docetaxel and 
simvastatin. Notably, upregulation of NDRG1 and IDI protein 
levels by co-treatment of docetaxel and simvastatin for 48 h 
was dose-dependently inhibited by SP600125, whereas down-
regulation of TXNDC5 had no significant effect on SP600125 
(Fig. 3D). The hnRNP K and RAB1B protein levels were not 
altered by combination of docetaxel and simivastatin, and had 
no significant effect by SP600125 (Fig. 3D). These results 
suggest that the identified simvastatin-regulated targets may 
play an important role in the regulation of morphological 
changes and cell death by combination of docetaxel and 
simvastatin via JNK-dependent and -independent signal trans-
duction pathways in various cancer cells.

DISCUSSION

Statins inhibit the mevalonate pathway, which is essential for 
the synthesis of various compounds, including cholesterol, 
through the suppression of 3-hydroxy-3-methylglutaryl coenzyme 
A (HMG-CoA) reductase (HMGCR) (3). Simvastatin is one of 
the most commonly used statins, and is known to induce 
apoptosis in glioma (8), leukemia (9), and breast cancer cells 
(10, 11) through JNK activation signaling. Docetaxel is the 
most commonly prescribed anti-cancer agent in the standard 
first-line chemotherapy for metastatic CRPC (22). In this study, 
we demonstrated that JNK activation signaling was associated 
with the enhancement of docetaxel-induced cytotoxicity by 
simvastatin in DU145 human prostate cancer cells (Fig. 1).

It is known that downregulation of vimentin is associated 
with the inhibition of TGF-1-induced epithelial-mesenchymal 
transition by simvastatin in DU145 prostate cancer cells (23); 
downregulation of RAB1B promotes the proliferation and 
migration of triple-negative breast cancer cells by activating 
TGF-1/SMAD signaling (24); TXNDC5 overexpression is 
associated with non-small cell lung carcinoma (25) and CRPC 
tumor (26); NDRG1 mediates tumor-suppressive effects of the 

iron chelator Dp44mT in prostate cancer cells through the 
PI3K/Akt, TGF- and ERK pathways (27); and the intracellular 
localization and phosphorylation status of hnRNP K are 
implicated in the mechanisms that regulate androgen receptor 
expression and activity (28, 29). In addition, it is known that 
high mRNA levels of HMGCR and HMGCS1 are correlated 
with poor prognosis of primary breast cancer (30); IDI1 
functions in the terpenomic diversity by catalyzing the 
conversion of isopentenyl diphosphate (IPP) into dimethylallyl 
diphosphate (DMAPP) in the mevalonate-isoprenoid biosynthesis 
(MIB) pathway (31); and downregulation of the MIB pathway 
is associated with the attenuation of colorectal cancer stem 
cell growth through the inhibition of insulin-like growth factor 
receptor/Akt/mammalian target of rapamycin signaling (32).

In this study, we used 2D proteomic analysis to identify five 
novel simvastatin-regulated targets (hnRNP K, TXNDC5, 
cHMGCS, RAB1B, and IDI1), and two previously known 
simvastatin-regulated targets (vimentin and NDRG1) (Table 1 
and Fig. 2). Moreover, our results have shown that NDRG1 
and IDI1 proteins are at least involved in JNK activation 
signaling during cytotoxicity by the combination of docetaxel 
and simvastatin (Fig. 3D). Taken together, we propose seven 
simvastatin-regulated targets that could play a crucial role in 
the regulation of cell morphology, death, and lipid metabolism 
through JNK-dependent and -independent signal transduction 
pathways. Future molecular and cellular studies of these 
simvastatin-regulated targets are expected to provide a new 
chemotherapeutic mechanism in various cancers.

MATERIALS AND METHODS

See supplementary information.
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