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Genome-wide association studies have implicated the ANK3 locus in
bipolar disorder, a major human psychotic illness. ANK3 encodes
ankyrin-G, which organizes the neuronal axon initial segment (AIS).
We generated a mouse model with conditional disruption of ANK3 in
pyramidal neurons of the adult forebrain (Ank-G cKO). This resulted
in the expected loss of pyramidal neuron AIS voltage-gated sodium
and potassium channels. There was also dramatic loss of markers of
afferent GABAergic cartridge synapses, resembling the cortical micro-
circuitry changes in brains from psychotic patients, and suggesting
disinhibition. Expression of c-fos was increased in cortical pyramidal
neurons, consistent with increased neuronal activity due to disinhibi-
tion. The mice showed robust behavioral phenotypes reminiscent of
aspects of humanmania, ameliorated by antimania drugs lithium and
valproate. Repeated social defeat stress resulted in repeated episodes
of dramatic behavioral changes from hyperactivity to “depression-
like” behavior, suggestive of some aspects of human bipolar disorder.
Overall, we suggest that this Ank-G cKO mouse model recapitulates
some of the core features of human bipolar disorder and indicates
that cortical microcircuitry alterations during adulthood may be in-
volved in pathogenesis. The model may be useful for studying dis-
ease pathophysiology and for developing experimental therapeutics.
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Bipolar disorder and schizophrenia are major psychiatric disor-
ders. Bipolar patients experience both mania, with elevated

mood and activity, and depression (often triggered by stress), with
low mood and activity. Bipolar disorder is often uniquely responsive
to lithium (Li). Many loci have been identified by genome-wide as-
sociation studies (GWASs) for schizophrenia (1). By contrast, fewer
loci with genome-wide significance have been identified for bipolar
disorder (2), with some overlap, suggesting some shared mechanisms.
In a recent large GWAS of bipolar disorder (3), the most

significant signal was detected at the ANK3 locus. This finding
has been replicated in many (if not all) GWASs of bipolar dis-
order (3–5). The ANK3 locus is also found to be associated, to a
lesser extent, with schizophrenia (6, 7).
The ANK3 gene encodes ankyrin-G, a large scaffold protein

highly expressed in neurons in the brain (8). Three main brain-
specific splice variants encode 190, 270, and 480 kDa polypep-
tides. The 480-kDa peptide is the major isoform responsible for
organization of the components of the axon initial segment
(AIS), including the clustering of voltage-gated sodium and po-
tassium channels important for generation of the action potential
(9, 10). The 190-kDa isoform is present at dendritic spines (11,
12). Many of the risk alleles for ANK3 are in the five-prime
upstream region, suggestive of changes of expression (13, 14).
Ankyrin-G protein expression was reduced in pyramidal AISs in

superficial layers of schizophrenia cortex (15). These data sug-
gest that ANK3 risk alleles can cause ankyrin-G loss of function.
In cortex, the AISs of pyramidal neurons are innervated by in-

hibitory synapses from chandelier cells, fast spiking interneurons,
whose synapses form GAT-1 and GAD67 positive cartridge-like
structures around ankyrin-G positive AISs (16). Thus, the AIS is an
important site for cortical microcircuit regulation (9), disruptions of
which may contribute to schizophrenia and bipolar disorder (17).
Both mRNA and protein level of GAT-1 and GAD67 are de-
creased in schizophrenia patients’ postmortem brains (18, 19). It is
difficult to study the effects of decreased ankyrin-G in humans, but
a genetic mouse model might elucidate behavioral and cellular ef-
fects of decreased ankyrin-G expression in the forebrain.
A previous study described viral vector-mediated knockdown

of ankyrin-G in hippocampus and heterozygous deletion of a
brain-specific isoform highly expressed in cerebellum. Both models
yielded intriguing behavioral changes (20), but the behavioral
changes were subtle and only partly reflect bipolar disorder.
In this study, we have generated a mouse model with homo-

zygous deletion of all major isoforms of ankyrin-G in pyramidal
neurons of the adult forebrain. We found a robust behavioral
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phenotype reminiscent of some aspects of human mania. Fur-
thermore, we observed dramatic loss of inhibitory cartridge syn-
apses and elevated c-fos expression in relevant brain regions. The
“manic-like” behaviors were substantially ameliorated by classic
antimania drugs lithium and valproic acid (VPA). After social
defeat stress, there was a switch to “depression-like” behavior,
with alternation between mania-like and depression-like behavior
upon repeated stress. We propose that our genetic mouse model
recapitulates some of the key features of human bipolar disorder.

Materials and Methods
Animals. All experiments were conducted following protocols approved by
the Institutional Animal Care and Use Committee at JHU SOM. Ankyrin-G
floxed mice (Ank3flox/flox) with loxP sites flanking exons 22 and 23 of the
Ank3 gene (21) were crossed with Camk2a-Cre mice (JAX) for forebrain-
specific homozygous deletion of ankyrin-G (Camk2a-Cre; Ank3flox/flox)
(named Ank-G cKO), in which exons 22 and 23 of both alleles of the Ank3
gene were excised. Littermates that did not express Cre were used as con-
trols (Ank3flox/flox). All analysis was performed using mice 3.5–7 mo old.

Western Blots. Western blots were performed essentially as described (10);
details can be found in SI Materials and Methods.

Behavior Tests. Behavioral tests are described in SI Materials and Methods.
Mice were housed by sex with three to four mice/cage. Except for a 24-h open
field test, all behavioral tests were done during the light (sleep) phase of mice.
Major experiments were repeated using more than two cohorts of mice.

Drug Treatment. Lithium and valproate were given via chow food for 3 wk to
achieve therapeutic levels, and behavior tests were carried out the next day
after the end of the drug treatments.
Lithium. Mice were fed with 0.2% lithium carbonate chow (Harlan) for 1 wk
followedby 2wkof 0.4% lithium carbonate chow, supplementedwith a bottle of
saline (22). The serum lithium concentration was 0.825 ± 0.082 mEq/L.
Valproic acid.Mice were fedwith chow containing 1.7% sodium valproic acid for
3 wk. The serum VPA concentration was 52.8 ± 6.9 mg/L.
Methylphenidate. Twenty-five minutes before open field test, mice were
treatedwithmethylphenidate (dissolved in saline) via i.p. injection at 10mg/kg or
30 mg/kg body weight. More details can be found in SI Materials and Methods.

Brain Section Preparation, Immune Labeling, and Image Quantification. Per-
fusion, sectioning and immunolabeling were performed using standard
techniques described in SI Materials and Methods. Antibodies are listed in
Table S1. Immunofluorescence images were acquired using confocal mi-
croscopy; see SI Materials and Methods. In each experiment, we used four to
six mice per group and two to seven sections per mouse for quantification
and statistical analysis.

Social Defeat Stress. Mice were repeatedly stressed for 14 d using standard
protocols (23) as described in SI Materials and Methods. Behavioral tests and
adrenal gland weighing were done within 1 wk after stress.

Statistical Analysis. Statistical analyses were performed using SigmaStat
(Systat Software, Inc.) and Statistica 7 (StatSoft, Inc.); see SI Materials
and Methods.

Results
Generation of Forebrain-Specific Ankyrin-G KO Mice. We generated
a conditional Ank3 KO mouse (Ank-G cKO) with homozygous
loss of ankyrin-G expression in forebrain (e.g., cortex, hippo-
campus, and striatum) pyramidal neurons starting from adoles-
cence. Mice were studied at 3 mo of age or older, when there
were consistent changes in ankyrin-G expression and behavior.
Using immunofluorescent labeling, we found that more than
60% of neurons in the cortex lost ankyrin-G at AISs (Fig. 1A and
Fig. S1). Ankyrin-G expression was lost in at least 70% of py-
ramidal neurons marked by CaMKII(+) labeling (Fig. S1 F and
G), but not in parvalbumin(+) fast spiking interneurons (Fig. S1
J and K). Western blots demonstrated a decrease of all three
major isoforms of ankyrin-G expression (190, 270, and 480 kDa)
in forebrain regions (cortex and hippocampus) of Ank-G cKO
mice (Fig. S2).

Ank-G cKO Mouse Cortical Pyramidal Neurons Lose Ion Channel
Expression at the AIS and Show Dramatic Decrease of Markers of
GABAergic Cartridge Synapses. In Ank-G cKO mouse forebrain
(including cortex and hippocampus), we found a substantial loss
of sodium and potassium channels at AISs (Fig. S3 E and F),
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Fig. 1. Genetic deletion of ankyrin-G in AISs of pyramidal neurons of mouse
forebrain, and alteration of presynaptic GABA markers. (A) Confocal images of
mousemotor cortex immunolabeledwith anti–ankyrin-G antibody showing loss of
ankyrin-G at AIS in Ank-G cKO mouse. (Scale bar: 100 μm.) (B) Confocal images
ofmouse piriform cortex labeledwith anti–ankyrin-G (green) and anti–GAT-1 (red)
antibodies in wild-type (Top) and Ank-G cKO (Bottom) mice. (Scale bars: 30 μm.)
The nuclei are labeledwith DAPI (blue). (C–F) Quantification of ankyrin-G (C and E)
and GAT-1 (D and F) at AIS in mouse piriform cortex (C and D) and cingulate
cortex (E and F). Bar graphs represent mean ± SEM; ***P < 0.001, Student t test.
The number of animals per group is indicated at the bottom of each bar graph.
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consistent with prior primary results (10, 24). In cortex, chandelier
inhibitory neurons normally form synapses in cartridge-like
structures innervating pyramidal neuron AISs (16). Cartridge-
like structures in mouse are most evident in the piriform cortex,
as shown by labeling with anti-GAD67 and anti–GAT-1 antibodies
(25); the GAT-1 cartridges are also present in cingulate cortex
(26). We examined GAT-1–labeled cartridges in piriform and
cingulate cortex, and GAD67-labeled cartridges in piriform cortex.
Fig. S3B shows an example of GAD67-labeled cartridges pre-
synaptic to ankyrin-G AIS in the piriform cortex. In piriform
cortex of cKO mice, there was a dramatic reduction in the number
of GAT-1 (Fig. 1 B and D) and GAD67 positive (Fig. S2 B and C)
cartridge synaptic markers. We also observed significantly de-
creased GAT-1 cartridges in cingulate cortex—a brain region
involved in emotion processing (Fig. 1 E and F). Ankyrin-G
expression is also greatly reduced in these brain regions (Fig. 1
B, C, and E and Fig. S3 B and C).

Ank-G cKO Mice Display Mania-Like Behaviors. Overall, male and
female mice show very similar behavioral phenotypes; therefore,
unless mentioned, all of the behavioral results shown in Fig. 2 are
from male mice, in comparison with littermate controls.

We did not observe any differences between Ank-G cKOs and
their littermate controls in appearance, grooming behavior, or body
weight gain, up to at least 7 mo of age. However, Ank-G cKO mice
were hyperactive in a 50-min open field test (Fig. 2A and Fig. S4A).
In a 24-h open field test (lights on at 9 AM, off at 9 AM), cKOmice
showed dramatic hyperactivity during the dark between 9 AM and 9
AM, the “active” period for mice (Fig. 2B and Fig. S4D), which
continued for several additional hours after entering the light or
“inactive” period. In both tests, the Ank-G cKO mice also spent
significantly more time exploring the center zone of the box than
control (Fig. S4 B, C, E, and F), implying elevated exploratory
behavior and decreased “anxiety.” The hyperactivity is not caused
by novel environment, because in a 3-d open field test, cKO mice,
after habituation on the first day, continued being hyperactive on
second and third days (Fig. S4 P and Q).
To further examine the anxiety and exploratory phenotype, we

assessed behavior in the elevated plus maze (EPM) and light/dark
box tests. In the elevated plus maze, the percentages of time and
distance Ank-G cKO mice spent/traveled in the open arm were
about threefold higher than those of control mice (Fig. 2C and
Fig. S4G). In the light/dark box test, Ank-G cKO mice remained
in the lit compartment significantly longer than controls (Fig. 2D).
cKO mice traveled longer distances and at a faster speed in the
elevated plus maze test and displayed a greater number of tran-
sitions between the two boxes in the light/dark box test (Fig. S4H–
J). Thus, Ank-G cKO mice displayed increased exploratory and
reduced anxiety-like behaviors compared with littermate controls.
To evaluate depression-like behavior, we performed the tail sus-

pension test and forced swim test (FST). In both tests, the time mice
spent immobile was shorter in cKO mice compared with controls
(Fig. 2 E and F), indicating decreased depression-like behavior.
Cognitive decline is one of the core features of patients with

schizophrenia, and may be present, but is usually less prominent,
in bipolar disorder (27). We performed Y maze tests (spatial
learning and memory), and 1-h and 24-h novel object recognition
tests (short- and long-term visual memory). Ank-G cKO mice
showed some deficit in Y maze, but not in the novel object
recognition test (Fig. S4 K–O).
Prepulse inhibition (PPI) is a standard measure of sensorimotor

gating. PPI deficit is thought to be characteristic of schizophrenia,
but less consistently observed in bipolar patients (28). Animal
models of schizophrenia typically show deficits in PPI (29). Ank-G
cKOmice demonstrated no obvious deficit in PPI (Fig. S5 A and B).
Hyperactivity is also seen with attention deficit hyperactivity

disorder (ADHD) (30). Methylphenidate is used to decrease ADHD
patients’ hyperactivity, but it increases the activity of individuals
without ADHD (30). Methylphenidate at two different doses made
cKO mice even more active (Fig. S5 C–F), unlike what would be
expected in a mouse model of ADHD.

Mania-Like Behavior in the Ank-G cKO Mice Is Reversed with Clinically
Effective Antimania Drugs. We tested whether Li and VPA, drugs
effective for human mania, altered the behaviors, such as hyper-
activity (open field) or elevated exploration/decreased anxiety
(elevated plus maze) of Ank-G cKO animals. We fed mice with
chow containing Li2CO3 chronically, achieving blood lithium con-
centration within the human therapeutic range. Lithium had little
effect on the behavior of control mice in the open field test, but
reduced Ank-G cKO mice locomotor activity to levels comparable
to that of control (Fig. 2G and Fig. S5G). The central activity of
Ank-G cKO mice was also decreased upon lithium treatment (Fig.
S5 H and I). We also fed mice with VPA containing chow chroni-
cally. The open field test showed that the effects of VPA on control
and cKO mice are similar to lithium (Fig. 2H and Fig. S5 J–L). In
the elevated plus maze test, VPA significantly reduced the elevated
exploratory behavior of cKO mice to the level comparable to con-
trol, with little effect on control mice (Fig. S5 M–P).

Ank-G cKO Mice Pyramidal Neurons Exhibit Increased c-fos Expression.
We reasoned that the increased locomotor activity of Ank-G cKO
mice might involve increased neuronal activity of pyramidal neurons
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Fig. 2. Behavioral characterization and drug rescue. (A and B) Open field test
for locomotor activity: (A) 50 min and (B) 24 h. Number of infrared beam
breaks every 5 min (A) or every hour (B). Shaded area in B indicates the typical
active time of control mice (9 PM–9 AM). Two-way repeated measurement of
ANOVA followed by post hoc t test are shown. (C–F) Tests for anxiety and
depression-like behavior. (C) Elevated plus maze: percent of time mice spend
in the open arm during 6 min. (D) Light/dark box: the time(s) that mice spent
in light box. (E and F) The total immobile time(s) of mice in tail suspension
test (E) and forced swim test (F). Bar graphs represent mean ± SEM; ***P <
0.001, **P < 0.01, Student t test. (G and H) Open field test of lithium-treated
(G) and VPA-treated (H) mice. Number of infrared beam breaks every 5 min.
Li: Mice were fed with 0.2% lithium carbonate chow for 1 wk, followed by
0.4% for 2 wk. VPA: 1.7% sodium valproate chow for 3 wk. Factorial re-
peated measurement of ANOVA followed by post hoc t test are shown. We
detected significant gene × drug interactions in G [F(1, 44) = 20.77, P < 0.001]
and H [F(1, 41) = 10.90, P = 0.002]. The number of animals per group is in-
dicated in figure legend or at the bottom of each bar graph.
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in the motor cortex, and the elevated emotion-related behavior
(altered anxiety, exploration, and depression-like behavior) might
involve altered activity in the cingulate cortex. To test this hypoth-
esis, we placed control or Ank-G cKOmice into an activity chamber
for 25 min and compared the expression of c-fos, a marker for
neuronal activity, between Ank-G cKO and control mice. We also
assessed c-fos in posterior piriform cortex, where GABA synapse
loss was detected in Ank-G cKO mice.
We first examined c-fos expression via 3,3′-diaminobenzidine

(DAB) labeling (Fig. 3A). We chose the retrosplenial dysgranular
cortex (RSD), medial parietal association cortex (MPtA), and lat-
eral parietal association cortex (LPtA) together labeled as RS/PTA,
and the anterior piriform cortex (where ankyrin-G levels were not
changed) as comparison regions. As shown in Fig. 3 B–E, compared
with control, cKO mice had significantly increased c-fos labeling,
in motor, cingulate (B and C) [compared with comparison region
RS/PTA (D and E) on posterior section] and posterior piriform
cortex (D and E) [compared with anterior piriform cortex (B and
C)], but not in comparison regions. We further divided motor
cortex into layers I–III (intracortical association) and layer V and VI
(projection) (B and C). Both regions showed elevated c-fos activity
in Ank-G cKO mice compared with controls. We further examined
cell types with increased c-fos expression and found the elevated
c-fos expression was only present in CaMKII positive excitatory
pyramidal neurons, not in parvalbumin positive inhibitory neurons
(Fig. S6 B and D). The overall number of CaMKII positive and
parvalbumin positive neurons remained the same between control
and cKO mice (Fig. S6 E and F).

Social Defeat Stress Induces Depressive-Like Behaviors in Ank-G cKO
Mice. The hallmark of bipolar disorder in human is the presence
of episodes of both mania and depression, and stress is known to
precipitate depression (31). Prior studies in rodents have demon-
strated that exposure to social defeat stress results in depression-like
behavior (32). After 14 d of chronic social defeat stress (23, 32),
Ank-G cKO mice displayed significantly reduced motor activity in
open field test (Fig. 4A and Fig. S7A) and decreased exploratory
behavior in EPM (Fig. 4B). Both measures were reduced to levels
comparable to those of socially defeated control mice, which is
lower than nonstressed control. Similarly, in the FST for depression-
like behavior, after stress, Ank-G KO mice displayed a large in-
crease in immobile time vs. a relatively small increase for controls
(Fig. 4C). Ank-G cKO mice were more susceptible to stress than
control: the gene × stress interactions are significant in open field
and EPM tests. Upon stress, there are greater fold changes for
cKO than control [EPM (B): 9.8-fold vs. 2.7-fold]. In addition,
Ank-G cKO mice exhibited submissive behavior and adrenal
hypertrophy after social defeat stress, indistinguishable from
stressed control mice (Fig. S7B).
When allowed to recover and then reexposed to social defeat

stress, cKO mice but not controls, first returned to the hyper-
activity, and then again displayed hypoactivity, as indicated by
total activity in the open field test (Fig. 4D). Elevated plus maze
or forced swim test cannot be readily repeated in the same mice;
however, open field central activity also showed switching be-
tween mania-like and depression-like behavior (Fig. 4E).
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Fig. 3. Ank-G cKO mice displayed elevated c-fos labeling, indicating in-
creased cortical neuronal activity. (A) Representative pictures of the DAB
labeling on mouse motor cortex with anti–c-fos antibody. (Left) Control;
(Right) Ank-G cKO. (Scale bar: 100 μm.) (B and C) Schematic illustration and
quantification of c-fos expression at indicated brain regions in anterior
cortex (Bregma 1.42 mm) of Ank-G cKO and control mice. Brain regions used
for quantification are highlighted in B, including motor, cingulate, and
piriform cortex. Motor cortex is further divided into layers I–III, and layers V
and VI for quantification. (D and E) Schematic illustration and quantification
of c-fos expression in posterior cortex (Bregma −2.06 mm). Brain regions
used for quantification are highlighted in D, including RS/PTA and piriform
cortex. RS/PTA is the region comparable to anterior motor + cingulate cor-
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graphs represent mean ± SEM; **P < 0.01, *P < 0.05, Student t test. The
number of animals in each group is indicated in parentheses.
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Fig. 4. Ank-G cKO mice displayed depression-like behavior upon chronic
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gene × environment interactions in A [F(1, 32) = 12.14, P = 0.0015] and B [F(1, 33) =
42.67, P < 0.001] but not C [F(1, 33) = 0.51, P = 0.480].
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Discussion
Although there have been many attempts to develop genetic
mouse models of schizophrenia (33), there have been relatively
few reports of genetic mouse models of bipolar disorder, espe-
cially based on loci with replicated genome-wide significance in
human genetic studies (34). In our conditional KO mouse model
with forebrain deletion of ankyrin-G, we found behavioral
changes reminiscent of aspects of human bipolar disorder and
synaptic and cellular changes correlating with the behavior
changes, although we appreciate that translation from mouse
model to human disease must be done with caution.
Some of previous attempts to develop genetic models of bipolar

disorder in mice have used other loci, such as CLOCK, DAT-1,
NCAN, or SHANK3 (35–38). Many of these mouse models dis-
played behavioral hyperactivity or other features resembling patients
with bipolar disorder. However, none of these genes (exceptNCAN)
show genome-wide association with bipolar disorder. Further-
more, several of these mouse models have phenotypic limitations:
SHANK3-overexpression mice had seizures and failed to respond to
lithium, atypical for human bipolar disorder; the Ncan KO mice
were not reported to have features related to depression (and there
was no cellular and molecular characterization);DAT-1 homozygous
KO mice had decreased activity in response to methylphenidate;
and heterozygous mice had mania-like behavior, but responsive
predominantly to valproate, but less to lithium (39).
The previous study using viral vector-mediated knockdown of

ankyrin-G in the hippocampus yielded intriguing behavioral
changes, especially impulsive behaviors, with some increase in
locomotor activity (20). However, compared with genetic mod-
els, viral injection has practical limitations. Genetic deletion of
Ank3 exon 1b, a brain-specific isoform highly expressed in cer-
ebellum (40) was also reported. Homozygous knockouts were
ataxic, so heterozygotes were used for behavioral studies and
showed relatively subtle changes with no locomotor hyperactiv-
ity. Thus, while this was a pioneering study, it did not provide a
robust genetic model of bipolar disorder (20).
Our model involves substantial loss of ankyrin-G protein ex-

pression. By contrast, decreases of ankyrin-G in human post-
mortem brain in psychiatric disorders are relatively small (15).
Moreover, mouse models of other neuropsychiatric disorders
such as Huntington’s disease or Parkinson’s disease often use
more severe genetic changes than seen in humans to achieve
robust changes within the lifetime of mice (33), and our strategy
is consistent with this experience.
Although the CaMKII-Cre driver expresses Cre at a relatively late

developmental stage, we still found striking cellular and behavioral
changes in Ank-G cKO mice. This suggests altered gene expression
in adulthood can cause synaptic changes with consequent behavioral
alterations and raises the possibility that some changes in human
psychiatric disorders could also be due to synaptic changes in adult-
hood. The timing of the deletion of ankyrin-G may influence the
nature of the behavioral phenotype. Schizophrenia has been more
strongly related to developmental alterations than bipolar disorder
(41). We might hypothesize that schizophrenia-like features would
result from earlier loss of ankyrin-G expression in mice, while bipolar-
like features might result from later loss of expression. A human
patient with a deletion in ankyrin-G had a severe developmental
phenotype with mental retardation (42), possibly reflecting change in
expression in the entire brain throughout development.
At baseline, the Ank-G cKO mice exhibit striking hyperactivity,

one of the core features of human mania, and a translatable phe-
notype which can be assessed in comparable ways in human patients
and in mouse models (43–46). There was also increased explor-
atory behavior, decreased anxiety-like behavior, and decreased
depression-like behavior, all comparable to behaviors characteristic
of human mania. Patients with ADHD also have hyperactivity,
paradoxically ameliorated by methylphenidate (30). By contrast,
Ank-G cKOmice displayed increased activity with methylphenidate
injection (at 10 or 30 mg/kg). The drug × gene × time interactions
are significant, indicating cKO mice may bear different sensitivity to
methylphenidate from control, although the key point is that there

were increases overall, not decreases. We did not detect severe
deficits in cognitive tests, and cognition is generally reported to be
more severely altered in schizophrenia than bipolar disorder (27,
47). Future studies could include more sensitive and sophisticated
cognitive function tests. Sensory-motor gating as tested by PPI,
strongly associated with schizophrenia but less consistently observed
in bipolar patients (28, 48), was normal in cKO mice. There was
dramatic response of key behaviors to lithium and VPA, the classic
drugs for human mania. Thus, although it is important to be cau-
tious when interpreting mouse behaviors in the context of human
psychiatric disorders, especially given the overlap in etiology and
phenotypes of bipolar disorder and schizophrenia (49), our results
support the view that this mouse model displays a phenotype re-
lated more to bipolar disorder than to schizophrenia or ADHD.
Consistent with behavioral hyperactivity, there was increased

c-fos, suggesting increased neuronal activity. Like the loss of
ankyrin-G, the increase of c-fos label was present in pyramidal
neurons, not interneurons. It is most likely that the neurons with
increased c-fos are the same neurons with decreased Ank-G;
however, we cannot exclude the possibility that circuit-based
changes cause increased firing of a few remaining pyramidal neu-
rons without loss of Ank-G to cause the behavioral hyperactivity.
The brain regions with increased c-fos labeling correspond with
changed functional activity: increased c-fos labeling in the motor
and cingulate cortex could correlate, respectively, with elevated
locomotor activity and altered emotion-related behavior.
The increased pyramidal cell activity likely reflects a combination

of changes in intrinsic properties caused by changes in sodium/
potassium channels at the AIS and circuit changes caused by loss of
GABA inhibition at the AIS, presumably with the circuit changes
predominating. There is loss of the GABA synthesizing enzyme
GAD67 as well as the transporter GAT-1 in inhibitory presynaptic
cartridge synapses. Thus, GABA signaling from chandelier synapses
to the AIS is expected to be decreased. Disruption of local in-
hibitory cortical circuitry is emerging as a central mechanism for
schizophrenia (50), with decreased cartridges on cortical pyramidal
neurons in postmortem brain studies (18). Decreased inhibitory
connections have also been reported for bipolar disorder (19).
When quantifying cartridges, we chose piriform and cingulate
cortex because unlike humans, who have clear cartridge synapses
throughout the cortex, mice have the clearest and most distinctive
cartridge synapses in piriform cortex, and to a lesser extent in
cingulate cortex (26). Our findings are consistent with the concept
of alterations of inhibitory synapses in bipolar disorder.
Multiple genetic risk factors including ANK3 may converge

into a few pathophysiological pathways in bipolar disorder, in-
cluding GABA transmission (51). Recent findings implicate
ankyrin-G in AMPA glutamate receptor–excitatory synapse
structure and function, as well as in GABA synapses onto the cell
body (12, 52). Future research may be designed to determine the
contribution of these different aspects.
The Ank-G cKO mice do not undergo spontaneous cycling be-

tween mania-like and depression-like features. However, regular
and spontaneous cycling is not a common phenotype in bipolar
patients, who often have irregular episodes, including depression
triggered by stress. The social defeat stress model is a well-accepted
mouse model of human depression (32), and the Ank-G cKO mice
showed increased susceptibility compared with controls. We thus
suggest that our model represents a robust demonstration of both
poles of behavior in a genetic mouse model of bipolar illness based
on a gene with genome-wide significance in human genetic studies.
Nevertheless, there are limitations to our study. Mouse behav-

ioral changes can only be imperfectly compared with human be-
havior. Most of the behavioral tests (except the 3D open field
recording, which indicated even more robust changes in dark pha-
ses) were done only during day time. Studies were not powered to
detect sex differences or sex × gene interactions. The human vari-
ation in ANK3 may also change splicing or regional brain expres-
sion in ways not modeled in the current study (7, 11, 13, 14, 53).
In conclusion, we found that Ank-G cKO mice displayed

striking behavioral hyperactivity and alterations of emotion-related
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behaviors, with only mild changes in cognition, and no significant
change in sensory-motor gating, suggesting a resemblance to hu-
man mania. The behavioral changes were substantially ameliorated
by drugs specific for human mania. With social defeat stress, the
mice switched to characteristic signs of depression-like behavior,
and showed alternation between mania-like and depression-like
behavior with repeated social defeat stress. Changes in GABA
synapses may underlie some of the behavioral alterations and may
represent synaptic plasticity during adulthood, contributing to the
behavioral phenotypes. We propose these Ank-G cKO mice as a
genetic mouse model of aspects of human bipolar affective disor-
der based on a locus with genome-wide significance for the human

disorder. The model may be useful for studying pathophysiology
and for the development of experimental therapeutics.
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