
Prior expectations induce prestimulus
sensory templates
Peter Koka,b,c,1, Pim Mosterta, and Floris P. de Langea

aDonders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands; bPrinceton Neuroscience Institute,
Princeton University, Princeton, NJ 08544; and cDepartment of Psychology, Yale University, New Haven, CT 06511

Edited by Christopher Summerfield, University of Oxford, United Kingdom, and accepted by Editorial Board Member Leslie G. Ungerleider August 17, 2017
(received for review April 5, 2017)

Perception can be described as a process of inference, integrating
bottom-up sensory inputs and top-down expectations. However, it is
unclear how this process is neurally implemented. It has been
proposed that expectations lead to prestimulus baseline increases
in sensory neurons tuned to the expected stimulus, which in turn,
affect the processing of subsequent stimuli. Recent fMRI studies
have revealed stimulus-specific patterns of activation in sensory
cortex as a result of expectation, but this method lacks the temporal
resolution necessary to distinguish pre- from poststimulus processes.
Here, we combined human magnetoencephalography (MEG) with
multivariate decoding techniques to probe the representational con-
tent of neural signals in a time-resolved manner. We observed a
representation of expected stimuli in the neural signal shortly before
they were presented, showing that expectations indeed induce a
preactivation of stimulus templates. The strength of these prestimu-
lus expectation templates correlated with participants’ behavioral
improvement when the expected feature was task-relevant. These
results suggest a mechanism for how predictive perception can be
neurally implemented.

prediction | perceptual inference | predictive coding |
feature-based expectation | feature-based attention

Perception is heavily influenced by prior knowledge (1–3).
Accordingly, many theories cast perception as a process of

inference, integrating bottom-up sensory inputs and top-down
expectations (4–6). However, it is unclear how this integration
is neurally implemented. It has been proposed that prior ex-
pectations lead to baseline increases in sensory neurons tuned
to the expected stimulus (7–9), which in turn, leads to improved
neural processing of matching stimuli (10, 11). In other words,
expectations may induce stimulus templates in sensory cortex
before the actual presentation of the stimulus. Alternatively, top-
down influences in sensory cortex may exert their influence only
after the bottom-up stimulus has been initially processed, and
the integration of the two sources of information may become
apparent only during later stages of sensory processing (12).
The evidence necessary to distinguish between these hypoth-

eses has been lacking. fMRI studies have revealed stimulus-
specific patterns of activation in sensory cortex as a result of
expectation (9, 13), but this method lacks the temporal resolu-
tion necessary to distinguish pre- from poststimulus periods.
Here, we combined magnetoencephalography (MEG) with
multivariate decoding techniques to probe the representational
content of neural signals in a time-resolved manner (14–17). The
experimental paradigm was virtually identical to the ones used in
our previous fMRI studies that studied how expectations mod-
ulate stimulus-specific patterns of activity in the primary visual
cortex (9, 11). We trained a forward model to decode the ori-
entation of task-irrelevant gratings from the MEG signal (18, 19)
and applied this decoder to trials in which participants expected
a grating of a particular orientation to be presented. This analysis
revealed a neural representation of the expected grating that
resembled the neural signal evoked by an actually presented
grating. This representation was present already shortly before

stimulus presentation, showing that expectations can indeed in-
duce the preactivation of stimulus templates.

Results
Participants (n = 23) were exposed to auditory cues that pre-
dicted the likely orientation (45° or 135°) of an upcoming grating
stimulus (Fig. 1 A and B). This grating was followed by a second
grating that differed slightly from the first in terms of orientation
and contrast. In separate runs of the MEG session, participants
performed either an orientation or contrast discrimination task
on the two gratings (details are in Materials and Methods).

Behavioral Results. Participants were able to discriminate small dif-
ferences in orientation (3.9° ± 0.5°, accuracy = 74.0 ± 1.6%, mean ±
SEM) and contrast (4.6 ± 0.3%, accuracy = 76.6 ± 1.5%) of the
cued gratings. There was no significant difference between the two
tasks in terms of either accuracy (F1,22 = 3.38, P = 0.080) or reaction
time (RT) (mean RT = 633 vs. 608 ms, F1,22 = 2.89, P = 0.10).
Overall, accuracy and reaction times were not influenced by whether
the cued grating had the expected or the unexpected orientation
(accuracy: F1,22 = 0.21, P = 0.65; RT: F1,22 < 0.01, P = 0.93), and
there was no interaction between task and expectation (accuracy:
F1,22 = 0.96, P = 0.34; RT: F1,22 = 0.09, P = 0.77). Note that these
discrimination tasks were orthogonal to the expectation manipula-
tion in the sense that the expectation cue provided no information
about the likely correct choice.
During the grating localizer (Fig. 1C; details are in Materials

and Methods), participants correctly detected 91.2 ± 1.6%
(mean ± SEM) of fixation flickers and incorrectly pressed the
button on 0.2 ± 0.1% of trials, suggesting that participants were
successfully engaged by the fixation task.

Significance

The way that we perceive the world is partly shaped by what we
expect to see at any given moment. However, it is unclear how this
process is neurally implemented. Recently, it has been proposed
that the brain generates stimulus templates in sensory cortex to
preempt expected inputs. Here, we provide evidence that a repre-
sentation of the expected stimulus is present in the neural signal
shortly before it is presented, showing that expectations can indeed
induce the preactivation of stimulus templates. Importantly, these
expectation signals resembled the neural signal evoked by an ac-
tually presented stimulus, suggesting that expectations induce
similar patterns of activations in visual cortex as sensory stimuli.
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MEG Results—Localizer Orientation Decoding. As mentioned, par-
ticipants were exposed to auditory cues that predicted the likely
orientation of an upcoming grating stimulus. The question that
we wanted to answer was whether the expectations induced by
these auditory cues would evoke templates of the visual stimuli
before the presentation of the gratings. To be able to uncover such
sensory templates, we trained a decoding model to reconstruct the
orientation of (task-irrelevant) visual gratings (Fig. 1C) from the
MEG signal in a time-resolved manner. We found that this model
was highly accurate at reconstructing the orientation of such
gratings from the MEG signal (Fig. 2). Grating orientation could
be decoded across an extended period (from 40 to 655 ms post-
stimulus, P < 0.001 and from 685 to 730 ms, P = 0.018), peaking
around 120–160 ms poststimulus (Fig. 2C). Furthermore, in the
period around 100–330 ms poststimulus, orientation decoding
generalized across time, meaning that a decoder trained on the
evoked response at, for example, 120 ms poststimulus could re-
construct the grating orientation represented in the evoked re-
sponse around 300 ms and vice versa (Fig. 2D). In other words,
certain aspects of the representation of grating orientation were
sustained over time.

MEG Results—Expectation Induces Stimulus Templates. Our main
question pertained to the presence of visual grating templates
induced by the auditory expectation cues during the main ex-
periment. Therefore, we applied our model trained on task-
irrelevant gratings to trials containing gratings that were either
validly or invalidly predicted (Fig. 3A). In both conditions, the
decoding model trained on task-irrelevant gratings succeeded
in accurately reconstructing the orientation of the gratings
presented in the main experiment (valid expectation: cluster
from training time 60–410 ms and decoding time 60–400 ms,
P < 0.001 and from training time 205–325 ms and decoding
time 400–495 ms, P = 0.045; invalid expectation: cluster from
training time 75–225 ms and decoding time 75–330 ms, P =
0.0012 and from training time 250–360 ms and decoding time
195–355 ms, P = 0.027).
If the cues induced sensory templates of the expected grating, one

would expect these to be revealed in the difference in decoding

between validly and invalidly predicted gratings (details of the sub-
traction logic are in Materials and Methods). Indeed, this analysis
showed that the auditory expectation cues induce orientation-specific
neural signals (Fig. 3A, Bottom). These signals were present already
40 ms before grating presentation and extended into the poststimulus
period (from decoding time −40 to 230 ms, P = 0.0092 and from
300 to 530 ms, P = 0.016). Furthermore, these signals were un-
covered when the decoder was trained on around 120–160 ms
poststimulus during the grating localizer (Fig. 3B), suggesting that
these cue-induced signals were similar to those evoked by task-
irrelevant gratings. In other words, the auditory expectation cues
evoked orientation-specific signals that were similar to sensory signals
evoked by the corresponding actual grating stimuli (Fig. S1A).
In sum, expectations induced prestimulus sensory templates that

influenced poststimulus representations as well; invalidly expected
gratings had to “overcome” a prestimulus activation of the oppo-
site orientation, while validly expected gratings were facilitated by a
compatible prestimulus activation (Fig. S1B). The poststimulus
carryover of these expectation signals lasted throughout the trial
(Fig. S1C).
As in previous studies using a similar paradigm (11, 20), there

was no interaction between the effects of the expectation cue and
the task (orientation vs. contrast discrimination) that participants
performed (no clusters with P < 0.05) (Fig. S2A). In other words,
expectations evoked prestimulus orientation signals to a similar
degree in both tasks (Fig. S2B). This suggests that influences of
expectation on neural representations are relatively independent
of the task relevance of the expected feature, in line with our
previous fMRI study (11). Note, however, that, unlike in that
study, there was no significant modulation of the orientation signal
by task relevance (no clusters with P < 0.05) (Fig. S2A). The reason
for this lack of difference is unclear, although it should be noted
that there was a trend toward participants having higher accuracy
and faster reaction times (see above) on the contrast task than on
the orientation task. This may suggest that the two tasks were not
optimally balanced in terms of difficulty, precluding a proper
comparison of the effect of task set in this study.
In our previous fMRI study, we found a relationship between

the effects of expectation on neural stimulus representations and

Fig. 1. Experimental paradigm. (A) Each trial started with an auditory cue that predicted the orientation of the subsequent grating stimulus. This first
grating was followed by a second one, which differed slightly from the first in terms of orientation and contrast. In separate runs, participants performed
either an orientation or contrast discrimination task on the two gratings. (B) Throughout the experiment, two different tones were used as cues, each one
predicting one of the two possible orientations (45° or 135°) with 75% validity. These contingencies were flipped halfway through the experiment. (C) In
separate grating localizer runs, participants were exposed to task-irrelevant gratings while they performed a fixation dot dimming task.
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performance on the orientation discrimination task. Specifically,
participants for whom valid expectations led to the largest im-
provement in neural stimulus representations also showed the
strongest benefit of valid expectations on behavioral perfor-
mance during the orientation discrimination task (11). This re-
lationship was absent for the contrast discrimination task when
grating orientation was task-irrelevant. This study allowed us to
test for a similar relationship, with an important extension: here,
we could test whether neural prestimulus expectation signals are
related to behavioral performance improvements. We quantified
the decoding of the expected orientation just before grating pre-
sentation (−50 to 0 ms, training window 120 to 160 ms) and cor-
related this with the difference in task accuracy for valid and invalid
expectation trials, across participants. This analysis revealed that
participants with a stronger prestimulus reflection of the expected
orientation in their neural signal also had a greater benefit from
valid expectations on performance on the orientation task (r = 0.44,
P = 0.035) (Fig. 4, Left). No such relationship was found for the
contrast task, where the orientation of the gratings was not task-
relevant (r = −0.13, P = 0.55) (Fig. 4, Right). This is exactly the
pattern of results that we found in our previous fMRI study but with
the important extension that it is the prestimulus expectation effect
that is correlated with behavioral performance, whereas the pre-
vious study did not have the temporal resolution to distinguish pre-
from poststimulus signals.
In this study, neural orientation signals were probed by ap-

plying a forward model that takes the noise covariance between
MEG sensors into account (details are in SI Materials and
Methods). This model was superior to a forward model that did

not correct for the noise covariance (Fig. S3), suggesting that
feature covariance is an important factor to take into account
when applying multivariate methods to MEG data. Corroborating
this notion, a two-class decoder that corrected for noise covariance
(16) was able to reproduce our effects of interest (Fig. S4), showing
that the expectation effects do not depend on a specific analysis
technique as long as the covariance between MEG sensors is taken
into account.
Finally, there was no difference in the overall amplitude of the

neural response evoked between validly and invalidly expected
gratings (no clusters with P < 0.4) (Fig. S5).

Discussion
Here, we show that expectations can induce sensory templates of
the expected stimulus already before the stimulus appears. These
results extend previous fMRI studies showing stimulus-specific
patterns of activation in sensory cortex induced by expectations
that could not resolve whether these templates indeed reflected
prestimulus expectations or instead, stimulus specific error sig-
nals induced by the unexpected omission of a stimulus (9, 13).
Furthermore, the strength of these prestimulus expectation sig-
nals correlated with the behavioral benefit of a valid expectation
when the expected feature (i.e., orientation) was task-relevant
(11). These results suggest that valid expectations facilitate
perception by allowing sensory cortex to prepare for upcoming
sensory signals. As in a previous fMRI study using a very similar
experimental paradigm (11), the neural effects of orientation ex-
pectations reported here were independent of the task relevance of

Fig. 2. Localizer orientation decoding. (A) The output of the decoder consisted of the responses of 32 hypothetical orientation channels; shown here
are decoders trained and tested on the MEG signal 120–160 ms poststimulus during the grating localizer (cross-validated). Shaded region represents SEM.
(B) Decoder output over time, trained and tested in 5-ms steps (sliding window of 29.2 ms), showing the temporal evolution of the orientation signal. (C) The
response of the 32 orientation channels collapsed into a single metric of decoding performance (SI Materials and Methods) over time. Shaded region rep-
resents SEM; horizontal lines indicate significant clusters (P < 0.05). (D) Temporal generalization matrix of orientation decoding performance obtained by
training decoders on each time point and testing all decoders on all time points (as above, steps of 5 ms and a sliding window of 29.2 ms). This method
provides insight into the sustained vs. dynamical nature of orientation representations (15). Solid black lines indicate significant clusters (P < 0.05); dashed
lines indicate grating onset (t = 0 s).
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the orientation of the gratings, suggesting that the generation of
expectation templates may be an automatic phenomenon.
The fact that expectation signals were revealed by a decoder

trained on physically presented (but task-irrelevant) gratings sug-
gests that these expectation signals resemble activity patterns in-
duced by actual stimuli. The expectation signal remained present
throughout the trial and extended into the poststimulus period,
suggesting the tonic activation of a stimulus template. These results
are in line with a recent monkey electrophysiology study (10), which
showed that neurons in the face patch of inferior temporal cortex
encode the prior expectation of a face appearing both before and
after actual stimulus presentation. When the subsequently pre-
sented stimulus is noisy or ambiguous, such a prestimulus template
could conceivably bias perception toward the expected stimulus
(21–24).
What is the source of these cue-induced expectation signals?

One candidate region is the hippocampus, which is known to be
involved in encoding associations between previously unrelated
discontiguous stimuli (25), such as the auditory tones and visual
gratings used in this study. Furthermore, fMRI studies have
revealed predictive signals in the hippocampus (13, 26, 27), and
Reddy et al. (28) reported anticipatory firing to expected stimuli
in the medial temporal lobe, including the hippocampus. One
intriguing possibility is that predictive signals from the hippo-
campus are fed back to sensory cortex (13, 29, 30).
Previous studies have suggested, both on theoretical (31) and

on empirical (32, 33) grounds, that top-down (prediction) and
bottom-up (stimulus-driven or prediction error) signals are sub-
served by distinct frequency bands. Therefore, one highly in-
teresting direction for future research would be to determine
whether the expectation templates revealed here are specifically
manifested in certain frequency bands (i.e., the alpha or beta band).
In addition to expectation, several other cognitive phenom-

ena have been shown to induce stimulus templates in sensory
cortex, such as preparatory attention (17, 34), mental imagery
(35–37), and working memory (38, 39). In fact, explicit task
preparation can also induce prestimulus sensory templates that
last into the poststimulus period (17). Note that, in this study,
the task did not require explicit use of the expectation cues, and
the task response was, in fact, orthogonal to the expectation.
Furthermore, there was no difference in the expectation signal
between runs in which grating orientation was task-relevant
(orientation discrimination task) and when it was irrelevant
(contrast discrimination task); suggesting expectation may be
a relatively automatic phenomenon (11, 40). In fact, neural
modulations by expectation have even been observed during
states of inattention (41), in sleep (42), and in patients experi-
encing disorders of consciousness (43). One important question
for future research will be to establish whether the same neural
mechanism underlies the different cognitive phenomena that
are capable of inducing stimulus templates in sensory cortex or
whether different top-down mechanisms are at work. Indeed, it
has been suggested that expectation and attention, or task
preparation, may have different underlying neural mechanisms
(20, 44, 45). For instance, predictive coding theories suggest that
attention may modulate sensory signals in the superficial layers
of sensory cortex, while predictions modulate the response in
deep layers (5, 46).
One may wonder why this study does not report a modulation of

the overall neural response by expectation, while previous studies
have found an increased neural response to unexpected stimuli (40,
47–51), including some using an almost identical paradigm as this
study (11, 20). Of course, this study reports a null effect, from which
it is hard to draw firm conclusions. However, it is possible that the
type of measurement of neural activity plays a role in the absence of
the effect. Most previous studies reporting expectation suppression
in visual cortex used fMRI, whereas this study used MEG. It is
possible that the blood oxygen level-dependent (BOLD) signal, a

Fig. 3. Expectation induces stimulus templates. (A) Temporal generalization
matrices of orientation decoding during the main experiment. Decoders were
trained on the grating localizer (training time on the y axis) and tested on the
main experiment (time on the x axis; dashed vertical line indicates t = 0 s, onset
of the first grating). Decoding shown separately for gratings preceded by a
valid expectation (Top), an invalid expectation (Middle), and the subtraction of
the two conditions (i.e., the expectation cue effect; Bottom). Solid black lines
indicate significant clusters (P < 0.05). (B) Orientation decoding during the main
task averaged over training time 120–160 ms poststimulus during the grating
localizer. That is, B shows a horizontal slice through the temporal generaliza-
tion matrices above at the training time for which we see a significant cluster of
expected orientation decoding, for visualization. Shaded regions indicate SEM.
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mass action signal that integrates synaptic and neural activity as well
as integrating over time, is sensitive to certain neural effects that
MEG, which is predominantly sensitive to synchronized activity in
pyramidal neurons oriented perpendicular to the cortical surface, is
not. It is even possible that, within MEG, different types of sensors
(i.e., magnetometers, planar and axial gradiometers) differ in their
sensitivity to expectation suppression (52).
Recent theories of sensory processing state that perception re-

flects the integration of bottom-up inputs and top-down expecta-
tions, but ideas diverge on whether the brain continuously generates
stimulus templates in sensory cortex to preempt expected inputs
(10, 23, 53, 54) or rather, engages in perceptual inference only after
receiving sensory inputs (55, 56). Our results are in line with the
brain being proactive and constantly forming predictions about
future sensory inputs. These findings bring us closer to uncovering
the neural mechanisms by which we integrate prior knowledge with
sensory inputs to optimize perception.

Materials and Methods
Participants. Twenty-three (15 female, age 26 ± 9 y old, mean ± SD) healthy
individuals participated in the MEG experiment. All participants were right-
handed and had normal or corrected to normal vision. The study was approved
by the local ethics committee [Commisie Mensgebonden Onderzoek (CMO)
Arnhem-Nijmegen, The Netherlands] under the general ethics approval (Imaging
Human Cognition, CMO 2014/288), and the experiment was conducted in accor-
dance with these guidelines. All participants gave written informed consent
according to the Declaration of Helsinki.

Experimental Design. Each trial consisted of an auditory cue followed by two
consecutive grating stimuli (750-ms stimulus-onset asynchrony between
auditory and first visual stimulus) (Fig. 1A). The two grating stimuli were
presented for 250 ms each separated by a blank screen (500 ms). A central
fixation bull’s eye (0.7°) was presented throughout the trial as well as during
the intertrial interval (ITI; 2,250 ms). The auditory cue consisted of either a
low- (500 Hz) or high-frequency (1,000 Hz) tone, which predicted the ori-
entation of the first grating stimulus (45° or 135°) with 75% validity (Fig. 1B).
In the other 25% of trials, the first grating had the orthogonal orientation.
Thus, the first grating had an orientation of either exactly 45° or 135° and a
luminance contrast of 80%. The second grating differed slightly from the
first in terms of both orientation and contrast (see below) as well as being in
antiphase to the first grating (which had a random spatial phase). The
contingencies between the auditory cues and grating orientations were flip-
ped halfway through the experiment (i.e., after four runs), and the order was
counterbalanced over subjects.

In separate runs (64 trials each, ∼4.5 min), subjects performed either an
orientation or a contrast discrimination task on the two gratings. When
performing the orientation task, subjects had to judge whether the second
grating was rotated clockwise or anticlockwise with respect to the first
grating. In the contrast task, a judgment had to be made on whether the
second grating had lower or higher contrast than the first one. These tasks

were explicitly designed to avoid a direct relationship between the per-
ceptual expectation and the task response. Furthermore, as in a previous
fMRI study (11), these two different tasks were designed to manipulate
the task relevance of the grating orientations to investigate whether the
effects of orientation expectations depend on the task relevance of the
expected feature.

Interleaved with the main task runs, subjects performed eight runs of a
grating localizer task (Fig. 1C). Each run (∼2 min) consisted of 80 grating
presentations (ITI uniformly jittered between 1,000 and 1,200 ms). The
grating annuli were identical to those presented during the main task (80%
contrast, 250-ms duration, 1.0 cycle per 1°, random spatial phase). Each
grating had one of eight orientations (spanning the 180° space, starting at
0°, in steps of 22.5°), each of which was presented 10 times per run in
pseudorandom order. A black fixation bull’s eye (4 cd/m2, 0.7° diameter,
identical to the one presented during the main task runs) was presented
throughout the run. On 10% of trials (counterbalanced across orientations),
the black fixation point in the center of the bull’s eye (0.2°, 4 cd/m2) briefly
turned gray (324 cd/m2) during the first 50 ms of grating presentation.
Participants’ task was to press a button (response deadline: 500 ms) when
they perceived this fixation flicker. This simple task was meant to ensure
central fixation, while rendering the gratings task-irrelevant. Trials con-
taining fixation flickers were excluded from additional analyses.

Orientation Decoding Analysis. To probe sensory representations in the visual
cortex, we used a forward modeling approach to reconstruct the orientation
of the grating stimuli from the MEG signal (17–19, 57). This method has been
shown to be highly successful at reconstructing circular stimulus features,
such as color (18), orientation (17, 19, 57), and motion direction (22), from
neural signals. Neural representations in MEG signals have also been suc-
cessfully investigated using binomial classifiers (58); however, when it comes
to a continuous stimulus feature, such as orientation, forward model re-
constructions provide a richer decoding signal than binomial classifier ac-
curacy (59). We made certain changes to the forward model proposed by
Brouwer and Heeger (18) (most notably, taking the noise covariance into
account; details are in SI Materials and Methods) to optimize it for MEG
data, given the high correlations between neighboring sensors, based on
ref. 16. In sum, this previously published and theoretically motivated
decoding model was optimally suited for recovering a continuous feature
from MEG data. For our main analyses, the forward model was trained on
the data from the localizer runs, in which the gratings were task-irrelevant,
and then applied to the main task data to uncover sensory templates in-
duced by prestimulus expectations (details are in SI Materials and Methods).
Our effects of interest (Fig. 3 and Fig. S6) were reproduced using a two-class
decoder (Fig. S4).

The full methods can be found in SI Materials and Methods.
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Fig. 4. Correlation between neural expectation signals and behavioral improvement by expectation. Neural prestimulus expectation decoding (on the x axis)
correlated with behavioral improvement induced by valid expectations (on the y axis) during the orientation discrimination task (Left). This correlation was
absent during the contrast discrimination task (Right).
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