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Some microalgae are adapted to extremely acidic environments in
which toxic metals are present at high levels. However, little is known
about how acidophilic algae evolved from their respective neutrophilic
ancestors by adapting to particular acidic environments. To gain
insights into this issue, we determined the draft genome sequence
of the acidophilic green alga Chlamydomonas eustigma and per-
formed comparative genome and transcriptome analyses between
C. eustigma and its neutrophilic relative Chlamydomonas reinhardtii.
The results revealed the following features in C. eustigma that prob-
ably contributed to the adaptation to an acidic environment. Genes
encoding heat-shock proteins and plasma membrane H+-ATPase are
highly expressed in C. eustigma. This species has also lost fermentation
pathways that acidify the cytosol and has acquired an energy shuttle
and buffering system and arsenic detoxification genes through hori-
zontal gene transfer. Moreover, the arsenic detoxification genes have
been multiplied in the genome. These features have also been found
in other acidophilic green and red algae, suggesting the existence of
common mechanisms in the adaptation to acidic environments.
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Several eukaryotic microalgae have been identified in acidic
environments (pH <4.0) such as acid mine drainage (AMD)

and geothermal hot springs (1). In this pH range, cyanobacteria
are not present, and only acidophilic eukaryotic phototrophs are
capable of photosynthesis (Fig. 1) (2, 3). The extremely low pH
of these waters is due to the dissolution and oxidation of sulfur
that is exposed to water and oxygen and produces sulfuric acid
(4). The low pH facilitates metal solubility in water; therefore,
acidic waters tend to have high concentrations of metals (5).
Thus, acidophilic eukaryotic algae usually possess the ability to
cope with toxic heavy metals in addition to low pH, both of which
are lethal to most eukaryotes (2). Acidophilic algae are distrib-
uted throughout different branches of the eukaryotes, such as in
red and green algae, stramenopiles, and euglenids. In most cases,
neutrophilic relatives have been identified, suggesting that aci-
dophilic algae evolved from their respective neutrophilic ances-
tors multiple times independently (6). However, it is largely
unknown how several lineages of algae have successfully adapted
to their acidic environments.
Thus, far, the genomes of three related thermo-acidophilic red

algae, Cyanidioschyzon merolae (7), Galdieria sulphuraria (8), and
Galdieria phlegrea (9), have been sequenced (all belong to the
cyanidialean red algae, which inhabit sulfuric hot springs worldwide
and grow optimally at 40–45 °C and pH 2–3). Genomic analyses
showed that horizontal gene transfer (HGT) from environmental
prokaryotes, the expansion of gene families, and the loss of genes
have probably played important roles in the adaptation of Cyani-
diales to acidic and high-temperature environments (8). Through
HGT, cyanidialean red algae acquired arsenical-resistance efflux

pumps that biotransform arsenic and archaeal ATPases, which
probably contribute to the algal heat tolerance (8). In addition, the
reduction in the number of genes encoding voltage-gated ion
channels and the expansion of chloride channel and chloride car-
rier/channel families in the genome has probably contributed to the
algal acid tolerance (8). Likewise, a study in the acidophilic green
alga Chlamydomonas acidophila showed that phytochelatin syn-
thase genes of bacterial HGT origin played an important role in
the tolerance to cadmium (10).
However, the genomes of acidophilic algae other than cyani-

dialean red algae have not been sequenced. The green and red
algae diverged relatively soon after the emergence of primitive
eukaryotic algae (11). In addition, comparisons with neutrophilic
relatives are feasible in the case of acidophilic green algae but are
difficult in the case of cyanidialean red algae because their last
common acidophilic ancestor diverged from other neutrophilic red
algae 1.2–1.3 billion y ago (12). Thus, whole-genome comparisons
between evolutionarily related neutrophilic and acidophilic green
algae will give insights into how acidophiles evolved from their
neutrophilic ancestors.
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Here, we determined the draft genome of the acidophilic
green alga Chlamydomonas eustigma NIES-2499 isolated from
sulfuric AMD and performed comparative genome and tran-
scriptome analyses between C. eustigma and its neutrophilic
relative Chlamydomonas reinhardtii, which was previously fully
sequenced (13). The results suggest that up-regulation of genes
encoding heat-shock proteins (HSPs) and plasma membrane
H+-ATPase (PMA), loss of fermentative genes that produce organic
acids and thus reduce cytosolic pH, the acquisition of an energy
shuttle and buffering system, and the acquisition and multiplication
of genes involved in arsenic biotransformation and detoxification
have contributed to the adaptation of C. eustigma to acidic condi-
tions. The results also suggest that there are several commonalities
in genomic evolution for adapting to acidic environments among
red algae and green algae.

Results
Habitat, Taxonomic Position, and Physiological Features of the Acidophilic
Green Alga C. eustigma. C. eustigma (a haploid vegetative cell) was
originally isolated together with mosses (14) from sulfuric AMD
in Nagano Prefecture, Japan, in August 1992. We confirmed that

C. eustigma still thrived in that AMD (pH 2.13, 14.5 °C) in Sep-
tember 2013 (Fig. 1A). The water in the AMD contained high con-
centrations of iron, Al3+, and SO4

2− (Fig. 1B), as in the case of other
AMDs (15). C. eustigma exhibits a cell size and morphology very
similar to those of the neutrophilic C. reinhardtii. Both cells possess
two flagella and a large cup-shaped chloroplast in which an eyespot
and a large pyrenoid are formed and proliferate by forming auto-
spores in the mother cell (Fig. 1C). As also shown by a previous
phylogenetic study based on 18S rDNA sequences (16), phylogenetic
analysis based on five chloroplast-encoded genes and two chloro-
plast ribosomal DNA sequences (Table S1) showed that C. eustigma,
together with the fully sequenced neutrophile C. reinhardtii (13),
belongs to the Chlorophyceae, which contains mainly neutrophilic
algae (Fig. 1D). In the phylogenetic tree, all the Chlorophyta (green
algae) except for C. eustigma are neutrophilic (Fig. 1D), suggesting
that the acidophile C. eustigma evolved from a neutrophilic ancestor.
In autotrophic synthetic medium at 20 °C, C. eustigma proliferated at
pH 2.0–6.0 (at pH 1.0 cells grew for a few days, but after that they
died), and pH 3.0–6.0 was optimal for its growth, whereasC. reinhardtii
proliferated at pH 5.0–8.0, and pH 6.0–7.0 was optimal for its growth
(Fig. 1 E and F).
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Fig. 1. Habitat, taxonomic position, and physiological
features of the acidophilic green alga C. eustigma.
(A) The algae inhabiting AMD in Yokote, Nagano Pre-
fecture, Japan, and confirmation of the existence of
C. eustigma. Algae were found predominantly in as-
sociation with acidophilic mosses. (Scale bars: 10 μm.)
(B) pH, temperature, and concentrations of some ions
in the AMD. (C) Cells of C. eustigma NIES-2499 (Left)
and C. reinhardtii 137c mt+ (Right). (Scale bar: 10 μm.)
(D) A phylogenetic tree of green and red algae based
on the concatenated datasets (21 taxa, 11,367 sites) of
five chloroplast protein-coding genes (atpB, psaA, psaB,
psbC, and rbcL) and chloroplast ribosomal DNA se-
quence (16S and 23S). The maximum likelihood (ML)
(RaxML 8.0.0) and Bayesian (MrBayes 3.2.6) analyses
were calculated under separate model conditions.
Bootstrap values (BP) >50% obtained by ML and
Bayesian posterior probabilities (BI) >0.95 obtained by
Bayesian analysis (MrBayes 3.2.6) are shown above the
branches. The branch lengths reflect the evolutionary
distances indicated by the scale bar. Filled red circles on
the right indicate organisms for which genomes have
been sequenced thus far. (E) C. eustigma and C. rein-
hardtii were cultured for 1 d in the same photoauto-
trophic medium at a series of pH. (F) Growth rates of
C. eustigma and C. reinhardtii based on the increase in
the cell number at the indicated pH. The error bars
represent the SD of three biological replicates.
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Characteristics of the C. eustigma Nuclear Genome. To understand
the genetic basis of the adaptation of C. eustigma to an acidic en-
vironment, we sequenced its nuclear genome (Tables S2 and S3).
K-mer analysis of Illumina MiSeq reads yielded two peaks with
similar frequency of coverage (19× and 38×, respectively), sug-
gesting that the C. eustigma genome is a chimera of single and
duplicated regions (Fig. 2A). Considering the length of the dupli-
cated regions, the estimated genome size was ∼130 Mb (Table S3).
Then we obtained Illumina HiSeq and Roche 454 GS FLX+ reads
of the nuclear genome (Table S2). The sequenced DNA reads
were assembled into 519 scaffolds (the N50 scaffold size was
465 kb, and the total length was 67 Mb) (Table S3). Consistent
with the result of K-mer analysis, sequencing coverage ratios of
some scaffolds were two times those of other scaffolds (Fig. 2B and
Dataset S1).
Most of the scaffolds consist of only single or duplicated se-

quences, with a few exceptions (for example, the largest scaffold
is a chimera of single and duplicated regions) (Fig. 2B and

Dataset S1). This result suggests that C. eustigma has experienced
genomic duplication at the chromosomal level but not consider-
able rearrangements of the duplicated regions. Considering the
length of the duplicated regions, the assembled genome size of
C. eustigma was ∼110 Mb (Table S3). The difference between the
estimated (∼130 Mb) and assembled (∼110 Mb) genome sizes is
probably due to the difficulty in resolving repeats, which is often
encountered in genome sequencing studies (17). The C. eustigma
genome exhibits relatively low GC content (45%) compared with
the genomes of other green algae (64% in C. reinhardtii; 56% in
Volvox carteri; 67% in Chlorella variabilis; 53% in Coccomyxa
subellipsoidea) (Fig. 2C).
In the assembled C. eustigma draft genome, 14,105 protein-

coding genes were identified by Augustus software with RNA-
sequencing (RNA-seq) data (genes encoded in duplicated re-
gions are counted as single genes) (Table S3). The BLASTP
search against the Nationl Center for Biotechnology Information
nonredundant (NCBI-nr) database (release 20160519) showed
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Fig. 2. The C. eustigma genome architecture and
comparison of genome contents between C. eustigma
and C. reinhardtii. (A) 31 K-mer depth distribution of
whole-genome Illumina MiSeq reads. Two peaks at
19× and 38× were identified. (B) Distribution of the
relative sequencing coverage ratio in the C. eustigma
genome based on the coverage ratio of 2-kb windows.
The scaffolds are ordered descendingly from the larg-
est one on the x axis. Scaffolds are separated by black
bars. (C) Comparison of the GC contents in C. eustigma
and the evolutionarily related neutrophilic green algal
species with sequence genomes. The x axis indicates
the GC content, and the y axis indicates the proportion
of the bin number divided by the total windows. We
used 500-bp bins (with a 250-bp overlap) sliding along
the genome. (D) Comparison of the number of genes
in C. eustigma and C. reinhardtii whose functions were
assigned to respective KEGG functional categories.
Each bar indicates the number of genes that are
assigned to the particular functional category. (E) Venn
diagram of KEGG Orthology IDs to which one or more
genes are assigned in C. eustigma and C. reinhardtii.
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that 52.1% of C. eustigma proteins are most closely related to
those of Volvocales (C. reinhardtii, Gonium pectorale, and
V. carteri), whereas 19.7% showed no significant similarity to any
known proteins (Fig. S1).

High Expression of HSP and PMA Genes in C. eustigma. To compare
the genomic contents between acidophile C. eustigma and neu-
trophile C. reinhardtii, functional annotations were assigned to
C. eustigma and C. reinhardtii gene models. Predicted genes were
assigned to the Kyoto Encyclopedia of Genes and Genomes
(KEGG) Orthology database through the KEGG Automatic
Annotation Server (KAAS). The analysis assigned unique KEGG
Orthology IDs to 4,470 C. eustigma and 4,741 C. reinhardtii
protein-coding genes, respectively (Table S3). However, there were
no marked differences in the number of genes classified into re-
spective functional categories (Fig. 2D), and most of the KEGG
Orthology IDs (3,006) were shared by the two species (Fig. 2E).
To examine the difference in the expression levels of the

orthologous genes between C. eustigma and C. reinhardtii, we
performed RNA-seq analyses of the two species under their in-
dividual optimal conditions (at 20 °C in the same autotrophic
medium and at pH 3.0 for C. eustigma and pH 7.0 for C. rein-
hardtii). Before comparing the transcriptome, we identified
4,590 one-to-one orthologous genes in the three volvocalean
species (C. eustigma, C. reinhardtii, and V. carteri) by OrthoMCL
(Fig. 3 A and B). Of the 4,590 genes, 1,282 (∼30%) showed a
greater than fivefold difference in the mRNA levels between
C. eustigma and C. reinhardtii (Fig. 3C and Dataset S2). Notably,
in the group that was up-regulated in C. eustigma, HSP genes
were enriched (Fig. 3 C and D and Fig. S2). Consistent with the
result at the mRNA level, previous studies showed that the
acidophile C. acidophila (CCAP 11/137 isolated from acidic fresh
water in Germany), which is closely related to C. eustigma (16),

had higher basal HSP levels (HSP70, HSP60, and HSP20)
than C. reinhardtii (18). These observations suggest that
C. eustigma is constantly exposed to higher stress despite being
adapted to an acidic environment.
In addition, we found that PMAwas highly expressed inC. eustigma

[151th highest reads per kilobase of transcript per million reads
mapped (RPKM) value among 14,105 protein-coding genes]
compared with C. reinhardtii (1,553th highest RPKM value among
17,741 protein-coding genes) (Fig. 3 C and D and Fig. S2).
Maintenance of a neutral pH in the cytosol despite being in an
acidic environment of pH 3 indicates the presence of a 104-fold
proton gradient across the plasma membrane. It has been sug-
gested that this proton gradient in acidophiles is achieved by a
combination of active transport and low permeability of pro-
tons (19). In the acidophile Chlamydomonas sp. (ATCC PRA-
125 isolated from acidic fresh water in Spain), it was previously
shown that average cytosolic pH is maintained at pH 6.6 in the
culture medium at both pH 2 and pH 7 (20). In C. reinhardtii
cultured at pH 7, the average cytosolic pH was 7.1 (20). In
addition, it was shown that 7% more ATP was consumed to
remove protons entering the cytosol across the membrane at
pH 2 than at pH 7 (20). Thus, the high expression of PMA in
C. eustigma probably contributes to maintaining the high proton-
pumping activity against the acidic environment.

Selective Loss of Acid-Producing Fermentation Pathways from C. eustigma.
The above comparison of genome contents showed that several
hundred KEGG Orthology IDs (Fig. 2E) and gene families (Fig.
3A) are specific to either C. eustigma or C. reinhardtii, suggesting
that the gene acquisitions and gene losses by C. eustigma after
divergence from its neutrophilic ancestor also played roles in its
adaptation to an acidic environment.
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Fig. 3. Comparison of genome contents and tran-
scriptome between the acidophile C. eustigma and
neutrophile C. reinhardtii. (A) Venn diagram showing
the number of protein families (by OrthoMCL) shared
by C. eustigma, C. reinhardtii, and V. carteri genomes.
(B) Gene orthologs of C. eustigma, C. reinhardtii, and
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(C) Scatter plot of the mRNA levels of one-to-one
orthologous genes between C. eustigma (pH 3.0,
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Regarding the gene losses by C. eustigma, we found that the
genome had lost many genes involved in anaerobic fermentation
pathways (Fig. 4 A and B). Several lineages of eukaryotic algae
have evolved fermentation pathways that produce ATP when
oxygenic respiration is compromised, for example, under anoxic/
hypoxic conditions resulting from a low level of photosynthetic
activity and local depletion of oxygen by microbial respiration
(21). The alcohol fermentation pathway produces a diffusible,
nonacidic, and relatively nontoxic end product, ethanol, while
other pathways produce organic acids as end products that cause
cytosolic acidification and damage (Fig. 4A) (22–24). Moreover,
organic acids function as uncouplers of the respiratory chain at
low pH by diffusion of the protonated form into the cell, followed by
dissociation of a proton (19).
C. reinhardtii possesses fermentation pathways that produce

both ethanol and organic acids, namely, lactate, formate, and
acetate (Fig. 4 A and B) (24). Although the C. eustigma genome
encodes pyruvate decarboxylase 3 (PDC3) and alcohol de-
hydrogenase (ADH) that produce ethanol, it lacks enzymes in-
volved in organic acid fermentation pathways, such as lactate
dehydrogenase (LDH) that produces lactate, pyruvate formate
lyase (PFL) that produces formate, and both chloroplast and
mitochondrial phosphate acetyltransferases (PAT2 and PAT1)
and acetate kinases (ACK1 and ACK2) that produce acetate
(Fig. 4 A and B). In addition to lacking these genes, C. eustigma
lacks the genes encoding pyruvate:ferredoxin oxidoreductase
(PFR) and hydrogenase (HYDA) and the proteins required for
hydrogenase activation (HYDEF and HYDG) (25). All the

above-mentioned genes absent in C. eustigma are present in other
green algal genomes (C. reinhardtii, V. carteri, and Ch. Variabilis)
(Fig. 4B and Table S4), suggesting that C. eustigma lost these genes
during evolution after divergence from the common ancestor of
C. reinhardtii and V. carteri. We found that some enzymes are also
absent in Co. subellipsoidea C-169 (isolated from Antarctic dried
algal peat) (26). However, based on the phylogenetic relationship
between C. eustigma and Co. subellipsoidea, they probably lost
these genes independently (Fig. 4B).
Consistent with the loss of genes involved in organic acid

fermentation, HPLC analyses showed that C. eustigma produces
little lactate, formate, and acetate (Fig. 4C). These three organic
acids were detected in the supernatant fraction of C. reinhardtii
culture but were scarcely detected in that of C. eustigma under
aerobic conditions (Fig. 4C). When the cells were transferred to
dark and anaerobic conditions, the formate and acetate levels
increased in the supernatant fraction of C. reinhardtii culture 4 h
after the transfer (Fig. 4C), as previously reported (27), but
under these conditions these organic acids still were hardly de-
tected in the supernatant fraction of C. eustigma (Fig. 4C). In
contrast to the loss of organic acid fermentation by C. eustigma, a
higher concentration of ethanol was detected in the supernatant
fraction of C. eustigma culture than in that of C. reinhardtii by the
gas chromatography analysis (Fig. 4C). The cellular ethanol level
increased 4 h after the cells had been transferred from aerobic to
dark and anaerobic conditions in both C. eustigma and C. rein-
hardtii (Fig. 4C). These results indicate that C. eustigma selec-
tively lost organic acid-producing fermentative genes.
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Fig. 4. Loss of organic acid-producing fermentation
pathways by C. eustigma. (A) Overview of the an-
aerobic fermentation pathways in eukaryotic algae
(24, 66). Glucose (stored as starch) synthesized by
photosynthesis is oxidized to pyruvate via glycolysis.
Under anaerobic conditions, the conversion of pyru-
vate to acetyl-coA is catalyzed by the pyruvate for-
mate lyase (PFL1) pathway that generates formate or
by the pyruvate-ferredoxin oxidoreductase (PFR) and
hydrogenase (HYDA) pathway that generates hy-
drogen. In C. reinhardtii, HYDEF and HYDG are es-
sential to activate HYDA (67). Acetyl-CoA enters the
phosphate acetyltransferase (PAT) and acetate ki-
nase (ACK) pathway that generates acetate or the
aldehyde/alcohol dehydrogenase (ADHE) pathway
that generates ethanol. Pyruvate can also be used as
a substrate to generate ethanol or lactate via the
PDC3 (pyruvate decarboxylase 3) and alcohol de-
hydrogenase (ADH) pathway or lactate dehydrogenase
(LDH) pathway, respectively. Acetate is used for lipid
biosynthesis or is converted into acetyl-CoA by acetyl-
CoA synthetase (ACS), which is further processed in the
glyoxylate cycle to regenerate malate and succinate.
ACO, aconitase; CIT, citrate synthase; ICL, isocitrate lyase;
MDH, malate dehydrogenase; MLS, malate synthase;
PEP, phosphoenolpyruvate. (B) Presence or absence of
fermentation genes in the genomes of five green algae
(shown in green) and two thermo-acidophilic red algae
(shown in red). The red boxes indicate the presence of
the gene, and white boxes indicate the absence of the
gene. (C) Concentrations of lactate, formate, acetate,
and ethanol in the algal culture medium before (0 h)
and 4 h after the dark anaerobic treatment. The error
bars represent the SD of three biological replicates. DW,
dry weight; ND, not detected; NS, not statistically sig-
nificant; *P < 0.02, **P < 0.01 (t test).
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In the rice bean Vigna umbellata, it was reported that exposure
of plants to low pH leads to the accumulation of formate. In
addition, overexpression of V. umbellata formate dehydrogenase
in tobacco resulted in decreased sensitivity to low pH and alu-
minum stresses by reducing the accumulation of formate (28).
Thus, the loss of organic acid-producing fermentation pathways
by C. eustigma probably contributed to the adaptation to acidic
environments with high concentrations of metals. This probably
also accounts for the independent loss of fermentation genes
from Co. subellipsoidea because the genus Coccomyxa contains
several acidophilic members (29, 30).
The genome analyses also showed that C. eustigma had lost the

key enzymes of the glyoxylate cycle, namely, malate synthase
(MLS) and isocitrate lyase (ICL) (Fig. 4 A and B). The glyoxylate
cycle converts acetyl-CoA to succinate for the synthesis of carbo-
hydrates and plays an essential role in cell growth on acetate (31).
The loss of these enzymes is probably consistent with the fact that
C. eustigma produces little acetate (Fig. 4C) and/or prevents cy-
tosolic acidification that is caused by succinate production.

Acquisition of the Energy Shuttle and Buffering System Based on
Amidinotransferase and Phosphagen Kinase by C. eustigma Through
HGT. Regarding the gene acquisition by C. eustigma, we found
that the genome encodes two phosphagen kinases (PKs) and one
amidinotransferase (AMGT), which were probably introduced
through HGT (Fig. 5 A–C and Fig. S3). PK and AMGT exist in
various animal, protozoan, and bacterial taxa and function as an
energy shuttle and buffering system (32) (Fig. 5C). PK catalyzes
the reversible transfer of a phosphate between ATP and guani-
dino compounds (e.g., arginine, creatine, glycocyamine, lom-
bricine, and taurocyamine), which are produced from amino
acids by AMGT (Fig. 5C) (32). However, PK or AMGT genes
have not been identified in other Archaeplastida (land plants
and eukaryotic algae whose chloroplasts are of cyanobacterial
primary endosymbiotic origin) (11).
In the C. eustigma genome, PK1 and AMGT are encoded in

the same scaffold close to each other, whereas PK2 is encoded in
another scaffold (Fig. 5A). Phylogenetic analysis showed that
C. eustigma PK1 and PK2 are most closely related to PK proteins
of cryptophytes and stramenopiles, respectively (Fig. 5B). In ad-
dition, C. eustigma AMGT is most closely related to that of bac-
teria and cryptophytes (Fig. S3). PK possesses a guanidine
specificity region, which probably defines the substrate specificity
(33). To determine the substrate of C. eustigma PKs, the guanidine
specificity region was compared with PKs of other organisms for
which substrates have been determined. In the amino acid se-
quence alignment, the guanidine specificity regions of C. eustigma
PK1 and PK2 were found to be most closely related to taurocy-
amine kinase (TK) of Phytophthora infestans (Fig. 5D). By HPLC/
o-phthalaldehyde (OPA) fluorometry, taurocyamine was detected in
C. eustigma cellular extract but not in that of C. reinhardtii (Fig. 5E).
These results suggest that C. eustigma acquired TK and AMGT as
an L-arginine:taurine amidinotransferase through HGT.
The maintenance of a neutral cytosolic pH by acidophiles con-

sumes a large amount of ATP, as described above (20). It was
previously shown that the “artificial HGT of PK,” that is, the ex-
pression of exogenous arginine kinase in yeasts and Escherichia coli,
which do not possess endogenous PKs, increased the resistance to
transient pH reduction by building up an energy-storing phospho-
arginine pool (34, 35). The RNA-seq results showed that PK1, PK2,
and AMGT are relatively highly expressed in C. eustigma, exhibiting
the 1,189th, 381th, and 1,050th highest RPKM values, respectively,
among 14,105 protein-coding genes (Fig. S2 and Dataset S3). Thus,
the acquisition of the PK–AMGT shuttle by C. eustigma has prob-
ably contributed to the supply of ATP needed to maintain cellular
pH against an acidic environment (Fig. 5C).

Enhancement of Arsenic Biotransformation and Detoxification by
C. eustigma Through HGT. In addition to gene loss and acquisition
through HGT, the genomic analysis of C. eustigma suggests that
gene amplifications within the genome have also contributed to
the adaptation to an acidic environment (Fig. 6A). It is known
that natural acidic drainage often contains a very high concen-
tration of toxic metals such as arsenic (36). In addition to ac-
celerating metal solubilization, acidic water protonates arsenic,
which accelerates the penetration of arsenic into cells (2). Ar-
senate (AsO4

3−), an analog of phosphate, is incorporated into
cells along with phosphate, whereas arsenite (AsO3

3−) is incor-
porated into cells through aquaglycoporins (Fig. 6B) (37). Ar-
senite oxidizes thiols of biomolecules and causes strong oxidative
stress (38). Consistent with the higher toxicity of arsenic in acidic
environments, we found that C. eustigma tolerates a >10 times
higher concentration of arsenate than C. reinhardtii (Fig. 6D).
Genomic analyses showed that genes involved in arsenic bio-
transformation and detoxification (37) have been multiplied in
the C. eustigma genome (Fig. 6A). The genome possesses appro-
ximately 10 copies of genes encoding arsenate reductase (ArsC)
and arsenite efflux transporter (ACR3), which are located side-
by-side in the genome, and approximately seven copies of the
gene encoding arsenite S-adenosylmethionine methyltransferase
(ArsM) (Fig. 6A). In addition, genes encoding glutaredoxin
(Grx) (∼20 copies) and glutathione reductase (GR) (two copies),
which are involved in the reduction of arsenate to arsenite (39),
have also been multiplied in the genome (Fig. 6A). Consistent
with the increase in the gene copy number, RNA-seq analysis
showed that ArsM, Grx, and GR mRNA levels are higher in C.
eustigma than in C. reinhardtii, even when both are cultured
under their respective optimal growth conditions without arsenic
(Fig. S2 and Datasets S3 and S4). In addition, ArsC and ACR3
are also relatively highly expressed in C. eustigma, exhibiting
the 1,001th and 177th highest RPKM, respectively, among
14,105 protein-coding genes (Fig. S2 and Dataset S3).
Several studies have already succeeded in enhancing the toler-

ance to arsenic by artificial HGT, for example, by overexpressing
E. coli ArsC and γ-glutamylcysteine synthase (40) (to increase the
thiol pool) or overexpression of the yeast ACR3 in Arabidopsis
thaliana (41). Thus, the multiplication and high expression of ar-
senic biotransformation and detoxification genes in C. eustigma
have probably contributed to the high algal resistance to arsenic.
The comparison of green algal genomes showed that, among

the proteins related to arsenic biotransformation and detoxifi-
cation, ArsC and ACR3 are not encoded in other green algal
genomes except for those of C. eustigma and Co. subellipsoidea
(Fig. 6C and Table S5). Based on the phylogenetic relationship
between these two species, C. eustigma and Co. subellipsoidea
probably acquired ArsC and ACR3 genes independently (Fig.
6C). In the phylogenetic analyses, ArsC of C. eustigma and
C. subellipsoidea formed a clade with those of acidobacteria,
actinobacteria, and δ-proteobacteria (Fig. S4), suggesting the
bacterial HGT origin of C. eustigma ArsC. On the other hand,
C. eustigma and Co. subellipsoidea ACR3 formed a clade with
proteins of charophycean algae and certain land plant species,
and this clade is a sister group of fungal proteins (Fig. S5). Thus,
the origin of C. eustigma ACR3 is not clear at this point; how-
ever, given that only a limited number of green algae and land
plants possess ACR3 (Fig. S5), it is likely that ACR3 was acquired
by these species multiple times independently through HGT.
Thus, the multiplication of both genes derived from their
eukaryotic ancestor (ACR3, Grx, and GR) and genes acquired
through HGT (ArsC and ACR3) probably contributed to the
adaptation of C. eustigma.

Discussion
The above analyses showed that the C. eustigma genome has ex-
perienced large-scale duplication throughout its genome (Fig. 2B)
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and has a lower GC content than evolutionarily related neutrophilic
green algae sequenced thus far (Fig. 2C). However, it is currently
unclear whether there are any relationships between these features
in the genome structure and the adaptation to an acidic environ-

ment. Generally, genome or gene duplication is widely considered
to facilitate environmental adaptation because the redundancy
generated allows the evolution of new beneficial gene functions that
are otherwise prohibited due to functional constraints (42). Genomic
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consumed by plasma membrane H+-ATPase (PMA) to pump protons from the cytosol to outside the cell. Orn, ornithine. (D) Amino acid sequence alignment of the
guanidine specificity region in C. eustigma phosphagen kinase with those of other organisms. The guanidine specificity regions (33) are shaded red, and taur-
ocyamine kinases are shaded green. D1 and D2 represent domain 1 and domain 2, respectively, of two-domain enzymes. AvGK, Alitta virens glycocyamine kinase;
CePK, C. eustigma phosphagen kinase; EfLK, Eisenia fetida lombricine kinase; LpAK, Limulus polyphemus arginine kinase; PiTK, Phytophthora infestans taurocy-
amine kinase; TcCK, Tetronarce californica creatine kinase. (E) Fluorometric detection of amines in cellular extractions by HPLC/OPA. The control is a chromatogram
of a standard mixture of amino acids and taurocyamine. Asp, aspartic acid; OH-Pro, hydroxyproline; P-ET-Amine, o-phosphoethanolamine; Pro, proline; P-Ser,
o-phosphoserine; Ser, serine; Tac, taurocyamine; Tau, taurine; Thr, threonine; α-A-A-A, α-aminoadipic acid.
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GC content is predicted to affect genome functioning and species
ecology significantly. However, the biological significance of GC
content diversity remains elusive because of a lack of sufficiently
robust genomic data (43).
Comparative genome and transcriptome analyses suggest that

the following features of genomic evolution have contributed to
the adaptation of C. eustigma to an acidic environment. (i) HSPs
and PMA became expressed at high levels. (ii) The genome lost
fermentative genes that produce organic acids in the cell. (iii) The
genome acquired genes encoding the PK–AMGT energy shuttle
and buffering system and genes that are involved in arsenic bio-
transformation and detoxification through HGT. (iv) The genes
involved in arsenic biotransformation and detoxification, derived
from a green algal ancestor or acquired through HGT, were mul-
tiplied in the genome.
In addition, based on this study and the results of previous

studies in other acidophilic algae, it is suggested that these ge-
nomic changes are probably common trends in the adaptation to
acidic or other extreme environments, as discussed below. Re-
garding (i), we also found that HSPs are highly expressed in the
thermo-acidophilic red alga Cy. merolae under its optimal con-
ditions (in an autotrophic medium at pH 2.5 and 42 °C), as in the
case of C. eustigma compared with C. reinhardtii (Fig. S2 and
Dataset S5). Regarding (ii), Co. subellipsoidea also lost organic
acid-producing fermentation genes independently from C. eustigma
(Fig. 4 A and B). The genus Coccomyxa contains several acido-
philes (29, 30). However, it is currently unclear whether there is a

correlation between the loss of organic acid-producing fermenta-
tion and adaptation to an acidic environment in acidophilic red
algae, because they possess only the lactate fermentation pathway
and alcohol dehydrogenases (Fig. 4 A and B). Regarding (iii), al-
though the HGT of PK–AMGT into acidophiles has not been
reported in other acidophiles, the acquisition of arsenic bio-
transformation and detoxification genes through HGT has been
found in the green alga Co. subellipsoidea and thermo-acidophilic
red algae (Fig. 6C) (8). The green alga Co. subellipsoidea acquired
ACR3 (Fig. 6C and Fig. S5), and the red alga G. sulphuraria ac-
quired ArsB through HGT (8) (Fig. 6C). Regarding (iv), in the
G. sulphuraria genome, genes of the chloride channel and chloride
carrier/channel families have been multiplied and are thought to be
important to acid tolerance (8). In addition, an archaeal ATPase of
HGT origin has been multiplied and probably contributes to heat
tolerance (8).
This study and recent studies on the genomes of acidophiles

have started to reveal commonalities in genomic evolution re-
garding adaptation to an acidic environment. Besides increasing
our understanding of evolution, this information could also have
important applications. Microalgae have been cultivated at a
large scale to produce functional foods and pigments and are
also considered to be an alternative source for biofuels because
of their relatively rapid growth to a high concentration (44).
Acidophilic microalgae have an advantage in that they can be
cultivated outdoors without the risk of contamination by other
undesirable organisms (45). In addition, trials using acidophiles
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for bioremediation (46) and metal recovery have also been
initiated (47). An understanding of the genetic basis of acid and/
or metal tolerance is also necessary to confer such abilities to
other organisms.

Methods
Algal Strains. C. eustigma (NIES-2499; Microbial Culture Collection at the
National Institute for Environmental Studies) and C. reinhardtii 137c mt+
were used in the current study. C. eustigma and C. reinhardtiiweremaintained
with gyration (100 rpm) on a rotary shaker (NR-2; Taitec) in photoautotrophic
medium (9.35 mM NH4Cl, 81.15 μM MgSO4·7H2O, 68.04 μM CaCl2, 10 mM
KH2PO4/K2HPO4, 59.2 μM FeCl3, 0.73 μM MnCl2·4H2O, 0.31 μM ZnSO4·7H2O,
0.0672 μM CoCl2·6H2O, 0.0413 μM Na2MoO4·2H2O, 0.5046 μM CuSO4·5H2O,
13.75 μM Na2EDTA·2H2O) at pH 3.0 and pH 7.0, respectively, at 21 °C under a
12-h light/12-h dark photoperiod (30 μE·m−2·s−1).

Genomic DNA Sequencing. Genomic DNA of C. eustigma was extracted, and
sequencing libraries were prepared according to ref. 48. The shotgun and
paired-end libraries (8 kb) were sequenced by Roche 454 GS FLX+ Titanium
(Roche Diagnostics). The paired-end (400-bp) library was sequenced by HiSeq
2500 with 100 base-paired end format with the TruSeq SBS kit v3 (Illumina,
Inc.). The paired-end (800-bp) and mate-pair libraries (3, 5, and 8 kb) were
sequenced by MiSeq (Illumina, Inc.) with the MiSeq reagent kit version 3 (600
cycles; Illumina). The MiSeq reads were filtered using ShortReadManager (49),
based on a 17-mer frequency.

Estimation of the Genome Size by K-mer Analysis. The MiSeq paired-end reads
were used for the K-mer 31 frequency distribution analysis using JELLYFISH
(50). The total genome size was estimated by analyzing the occurrence and
distribution of K-mers using the following formula: Estimated genome size
in base pairs = K-mer number/depth. The 31 K-mer depth distribution of the
MiSeq paired-end reads exhibited two peaks (Fig. 2A). The estimated ge-
nome size of C. eustigma was ∼130 Mb, when the ×19 was considered as the
main peak.

Genome Assembly, Scaffolding, and Gap Closing. The Roche 454 shotgun and
paired-end reads were assembled de novo by Newbler version 2.9 (Roche)
with the following parameters: -mi 98 -mL 80 -scaffold -large -s 500. Sub-
sequent scaffolding of the Newbler output contigs was performed by SSPACE
(51) using the Illumina paired-end and mate-pair information (Table S2).
GMcloser (52) was used for gap filling with preassembled contigs and Illu-
mina paired-end reads. The genome sequence was improved with Illumina
paired-end reads using iCORN2 (53). To remove mitochondrial and chloro-
plast DNA sequences, tblastn (54) searches were performed against scaffolds
by using amino acid sequences of C. reinhardtii mitochondrion- and chloroplast-
encoded proteins as queries. By the tblastn search, one mitochondrial DNA
scaffold and two chloroplast DNA scaffolds were identified, and these scaffolds
were removed from the assembly.

Estimation of Coverage Ratio in the C. eustigma Genome. The sequencing
coverage ratiowas assessedby calculatingnormalized coveragedepth followedby
manual inspection of depth variation along each scaffold. The MiSeq read data
(6,660,746 reads) were mapped to the scaffolds using Bowtie2 versiom 2.1.0 (55)
with default settings. Mapped reads in sequence alignment/map (SAM) format
were converted to the binary version of the SAM file (BAM format) using
the Samtools version 0.1.19 (56) <view>, <sort>, and <index> commands. The
aligned reads in BAM format were filtered for duplicates using the Samtools
version 0.1.19 <rmdup> command. After the removal of duplicates, BAM files
were converted to browser extensible data (BED) format using the Bedtools
version 2.17 (57) <bamToBed> command. Genome-wide windows were defined
using the Bedtools<makewindows> command, and then coverage depth of each
individual window was calculated using the Bedtools <coverage> command. The

histogram of the coverage ratio exhibited two major peaks that probably cor-
respond to single and duplicated regions. The relative coverage ratio (shown in
Figs. 2B and 6A) was normalized by the averaged coverage depth of the probable
single regions.

Prediction and Annotation of the Nuclear Genes. Nuclear genes were predicted
by Augustus 3.0.3 (58). Assembled transcript sequences were mapped to the
scaffolds by BLAT (59) to assess the likelihood that each sequence was in-
deed a transcript. The manually curated 1,900 gene models were used as
Augustus training sets, and 14,105 genes were predicted by Augustus with
transcript evidence. The KEGG Orthology ID assignment was performed for
all predicted genes in the C. eustigma and C. reinhardtii genomes. The as-
signments were performed by the KAAS (60).

Comparison of mRNA Levels of Orthologous Genes in C. eustigma and C. reinhardtii.
To identify one-to-one orthologous genes in the three Volvocales
(C. eustigma, C. reinhardtii, and V. carteri), gene clustering analysis was per-
formed by OrthoMCL (61) with the following parameters: inflation value =
1.5, percentMatchCutoff = 50, and evalueExponentCutoff = −10. A BLASTP
search for predicted amino acid sequences with an E-value of 1e−10 in the
three algal species was performed using NCBI BLAST+ version 2.2.30. In total,
we found 4,590 one-to-one ortholog pairs. Gene-expression scores were
obtained from RNA-seq data by mapping the clean reads to the genes by
Bowtie2 version 2.1.0 (55). SAMtools (56), BEDtools (57), and R version 2.14.2
(62) were used to calculate the tag-count data that were mapped to the
coding genes. Normalization of the orthologous gene-expression scores was
performed by RPKM normalization. After obtaining the normalized ex-
pression scores of orthologous genes for each sample, the scores were log
(base 10)-transformed and plotted to produce a scatter graph for compari-
son of the expression scores of the two algal species.

Comparison of mRNA Levels in Algal Species. The RNA-seq reads were mapped
to the C. eustigma, C. reinhardtii (JGI, version 5.5), or Cy. merolae (Cyanidio-
schyzon merolae Genome Project) coding sequences by Bowtie2 (55) with the
default parameters. The Bowtie2 outputs were processed to obtain tag counts.
Since it has been shown that the GC content affects the read abundances in an
RNA-seq dataset (63), counts were full-quantile normalized within a sample by
GC content bias-correction methods implemented in the EDASeq R package
(64). These normalized counts were used to calculate the mRNA level of each
gene (in RPKM units) in the algal samples according to ref. 65.

Data Availability. The C. eustigma NIES-2499 whole-genome and gene models
have been deposited in DNA Data Bank of Japan (DDBJ)/European Molecular
Biology Laboratory (EMBL)/GenBank under the accession code PRJDB5468. The
dataset includes sequences of the nuclear and mitochondrial genomes. Because
the chloroplast genome was highly repetitive and the genome could not be
assembled well, the chloroplast genome was omitted from the dataset. The
RNA-seq data of C. eustigma and C. reinhardtii have been deposited in DDBJ/
EMBL/GenBank (accession codes PRJDB6154 and PRJDB6155, respectively).
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