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Abstract

The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were

investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus

ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment

was conducted under controlled condition to analyse how nitrogen deposition affects the

ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes

influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1

yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms

implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the

leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced

the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both spe-

cies, whereas it influenced the light harvesting complex only in the deciduous F. ornus that

was also affected by O3 (reduced assimilation rate and accelerated senescence-related pro-

cesses). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirm-

ing a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful

effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of

nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In

Q. ilex, the interaction was not detected on gas exchange and photosystem functionality;

however, in this species, nitrogen might stimulate an alternative antioxidant response such

as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in

plants treated with both O3 and nitrogen even though reactive oxygen species production

did not differ between the treatments.
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Introduction

Mediterranean forests are subjected to challenging environmental conditions in the current

global change context, since many stressors, individually or in combination, affect plant func-

tionality simultaneously or successively over time [1]. Of more recent concern are the com-

bined effects of ozone (O3) and nitrogen (N) on vegetation [2]. Monitoring activities in

European countries have indicated that studies on O3 exposure effects are essential in Mediter-

ranean regions [3], where the concurrence of high temperature and radiation promote the

photo-stationary cycle toward high O3 concentration during the late spring and summer sea-

sons [4].

O3 impacts forests by increasing the oxidation load, thereby triggering the production of

reactive oxygen species (ROS) that lead to alterations of functional processes at different levels

[5,6]. The production of ROS activates the detoxifying barrier in the apoplast and enzymatic

activity at the symplastic level that have high metabolic cost [7,8], and the capacity to increase

antioxidant defences is recognized as a key factor in determining O3 tolerance [9–12].

Leaf gas exchange is also affected by O3 through a direct impact on stomatal guard cell func-

tionality [13,14] or stomatal number [15], as well as owing to a decrease in the photochemical

and carboxylation efficiency [15–18]. Leaf structural traits such as leaf mass area (LMA), in

addition to leaf nitrogen and carbon concentrations, have been found to reveal ozone sensitiv-

ity and tolerance in different species [19,20], where species with low LMA and high leaf nitro-

gen concentration show higher O3 sensitivity [11,21]. Further, O3 can adversely influence

these functional traits, accelerating leaf senescence processes [22–24].

Nitrogen deposition represents an additional threat for Mediterranean forests adapted to

low nitrogen availability [25]. During the last decades many studies have evaluated the effects

of nitrogen on plant biodiversity and carbon balance or assimilation capacity [26–30], but

many of them have been conducted on pastures [31], boreal and temperate forest species [26],

or in Chaparral species [32,33]. The implications concerning Mediterranean forests are still

scarce [34], and knowledge regarding the response of the large plethora of functional traits to

increasing nitrogen deposition for forest species is lacking [15,35,36]. In Italy, the average

nitrogen throughfall, in terms of NO3NH4, measured using the network of permanent moni-

toring stations, ranges between 4 and 29 kg N ha-1 yr-1 [37], and the critical loads indicated for

Mediterranean forest ecosystems that fall within the range of 10 to 15 kg N ha-1 yr-1 have low

reliability owing to the lack of experimental evidence [26].

Previous studies have shown that higher nitrogen availability can increase stomatal conduc-

tance [38,39], entailing a potential harmful increase in O3 uptake. However the effects of nitro-

gen on hydraulic architecture and stomatal conductance are still contradictory [40]. Higher leaf

nitrogen contents can result in photosynthetic enhancements owing to the key role that nitro-

gen has in Calvin cycle and proteins [41], or by the increase of leaf area. Recent studies on the

interaction between O3 and nitrogen deposition in deciduous species have highlighted that O3

reduced the nitrogen availability for photosynthesis in Fagus crenata [42]; further, the positive

effect on root development owing to nitrogen, is lost at higher O3 levels in Quercus robur L.

[43]. An antagonistic effect was detected on root starch concentrations, where higher nitrogen

levels alleviated the negative impact of ozone [39]. Recent findings suggested that the interac-

tions between O3 and nitrogen depend on the concentration of these two factors and can

change throughout the growing season [2]. Therefore, experiments under controlled conditions

are required to better elucidate the mechanisms underlying the influence of nitrogen on the key

functional traits that are involved in pollutant uptake or antioxidant defence mechanisms [2].

Moreover, species can remarkably differ in nitrogen absorption depending on the succes-

sional stage and resource allocation strategy [44,45]. Deciduous species tend to allocate
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nitrogen to ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco), or to light-harvesting

components in order to enhance the photosynthetic capacity; in contrast, in evergreen species,

nitrogen is preferentially allocated to the cell walls, leading to an increase in the persistence of

leaves [46,47], as well as toughness and chemical defence [48].

In this framework, we performed an experiment under controlled conditions to investigate

how Fraxinus ornus L. and Quercus ilex L. react to nitrogen addition, and how nitrogen avail-

ability can influence the response mechanisms to O3. For both factors, we selected realistic

exposures (20 kg N ha-1 yr-1 and 80 ppb h for N and O3, respectively), since an acute exposure

could hinder the elucidation of mechanisms implemented by the plants [2]. We focused on

these two species that typically co-occur in Mediterranean forests [49], and have different

functional traits and successional positions. F. ornus is typical of early successional stages, with

a rapid growth strategy, whereas Q. ilex belongs to the mature stage of a succession with a slow

growth strategy and a conservative patterns of nutrient use [50]. Moreover, previous studies

have suggested that F. ornus is moderately sensitive to O3 [51], whereas Q. ilex was considered

to be tolerant to this pollutant [11,15,52]; however, to the best of our knowledge, these two spe-

cies have not yet been compared directly.

Owing to leaf habit and more flexible patterns of nitrogen uptake in F. ornus than in Q. ilex
[53], we hypothesized that F. ornus uptakes a large amount of nitrogen and allocates higher

fraction to photosynthetic tissues; in contrast, in Q. ilex, we expected that nitrogen would be

allocated to non-photosynthetic compounds. Since both the hypothesized species-specific

responses to nitrogen are related to O3 tolerance, nitrogen addition could lead to mitigation of

O3 detrimental effects on functional traits. The present study provides new data on F. ornus
and Q. ilex that would be useful to improve the risk assessment for Mediterranean forests sub-

jected to nitrogen deposition and ozone. Furthermore, understanding the mechanisms under-

lying functional trait shifts under multistress environments could facilitate the forecasting of

forests’ responses to global change and addressing biodiversity conservation in the future.

Materials and methods

Growth conditions

Two-year-old seedlings of F. ornus and Q. ilex, obtained from the nursery of Aurunci Regional

Park (Central Italy), were transported to the experimental garden of the Department of Envi-

ronmental Biology, Sapienza University of Rome on 18 May 2016. Plants were transferred to

7L pots along with their clods and the remaining pot volume was filled with a mixture of sand,

turf, and perlite. The experiment was conducted in a ‘walk-in’ chamber facility, consisting of

two closed chambers (2.5 m × 3.9 m × 3 m h): one was used as control and one for O3 fumiga-

tion [54]. Air temperature was maintained at 27.9 ± 1.8˚C during the day and at 22.7 ± 0.9˚C

at night. The relative humidity was 61 ± 6.1%.

In each chamber, a photosynthetic active radiation of approximately 700 μmol m−2 s−1 was

provided for 12 h per day by using 6 metal halide lamps (1000 W; Philips HPI-T). The micro-

climatic conditions were monitored at 5-min intervals and did not differ significantly between

the chambers. In each chamber, plants were randomly relocated daily to reduce possible posi-

tion effects. During the entire experimental period, all plants were watered in order to main-

tain soil close to field capacity and avoid water stress.

Experimental design

After the plants were acclimated for 30 days to the chamber environmental conditions, 20

plants per species were randomly divided into four experimental sets (C, N, O3, and O3N).

Ten plants per species were assigned to the control chamber and thus randomly divided as
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follows: five plants to the control experimental set (C), and five plants to nitrogen addition

experimental set (N). Ten plants per species were assigned to the fumigated chamber and thus

randomly divided as follows: five plants to the O3 treatment (O3), and five plants to the interac-

tion experimental set, treated with both N and O3 (O3N).

The fertilizer was divided into 7 aliquots and applied throughout the experimental period

as an aqueous solution. For this, 100 mL of deionised water was weekly added to each pot with

different doses of ammonium nitrate (NH4NO3): 0 mg for C plants and 0.031 mg for N treat-

ment. The final nitrogen dose was equal to 20 kg N ha-1 yr-1 based on the soil surface area. The

ozone fumigation was started after five nitrogen additions, when the cumulative dose was

roughly equivalent to 14 kg N ha-1 yr-1, which falls in the upper limit of the threshold load cur-

rently indicated as critical for Mediterranean vegetation. The acclimation to nitrogen addition

phase and fumigation period lasted 30 days and 10 days, respectively.

During the fumigation period, the C and N experimental sets were kept in the control

chamber under filtered air (O3 = 0 to maximal 5.8 ppb). The O3 and O3N sets were placed in

the fumigation chamber and exposed for 10 consecutive days to a mean hourly O3 concentra-

tion of 87.00 ± 0.5 ppb for 5 h per day simulating a concentration found in the Mediterranean

rural area during the summer period [55,56]. The cumulative exposure was 2585.47 ppb h,

expressed as AOT40, calculated by summing up all of the exceedances of the hourly O3 con-

centration above 40 ppb during the daylight hours [56]. O3 was generated in the fumigation

chamber by flowing pure oxygen on a UV light source (Helios Italquartz, Milan, Italy), and

then added to the chamber air inlet via a Teflon tube. The O3 concentration at plant height

was continuously monitored using a photometric O3 detector (Model 205;, 2B Technologies,

Boulder, CO, USA).

Leaf gas exchange and chlorophyll (Chl) a fluorescence were measured every three days,

particularly on the first, fourth, seventh and tenth day of fumigation (DOF). Immediately after

the end of fumigation, leaves for biochemical analysis (antioxidant activity) and structural

measurements (nitrogen and carbon concentration, leaf mass area) were sampled; PN/Ci

curves were performed within two days. Further details about the measurements are provided

below.

Gas exchange measurements

Steady state measurements of gas exchange were performed using a portable infrared gas

analyser (CIRAS-2; PP-System International, Amesbury, MA). The net photosynthesis

(PN, μmolCO2 m-2 s-1), leaf transpiration (E, mmolH2O m-2 s-1), stomatal conductance (gs,

mmolH2O m-2 s-1) and sub-stomatal CO2 concentration (Ci, ppm) were simultaneously

measured. The instantaneous water use efficiency (WUE, μmol CO2 mmol H2O-1) was cal-

culated as the ratio between net photosynthetic rates and transpiration rates, and the ratio of

substomatal and ambient CO2 concentration, Ci/Ca, was determined. All measurements

were performed using fully developed leaves.

Chl a fluorescence measurements and application of the JIP-test

The Chl a fluorescence was measured using a Handy PEA direct fluorometer (Hansatech

Instruments, Norfolk, UK) on the same days, hours, and leaves as those used for steady state

gas exchange measurements. After a dark adaptation period of 40 min, obtained using specific

leaf clips, the measured leaves were exposed to a saturating red light pulse (peak 650 nm) of

3000 μmol photons m−2 s−1, for 1 s, thereby generating a fluorescence transient (FT). The FT,

plotted on a logarithmic timescale, showed a polyphasic behaviour, the different steps of which

corresponded to a specific stage in the electron chain between reaction centres of photosystem
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II (PSII) and end acceptors of photosystem I (PSI) [57,58]. The first part of the transient curve

(O–J) is called ‘single turnover region’. It expresses the photochemical events, providing infor-

mation regarding the reduction of plastoquinone. The J–I–P region of the FT is called ‘multi-

ple turnover region’ and reflects the velocity of ferredoxin reduction beyond PSI. In particular,

the I–P region reflects the velocity and quantity of ferredoxin and NADP reduction via elec-

tron donation of PSI. The JIP-test was applied to the FT, and the following parameters were

calculated from each curve:

• φPo: maximum quantum yield of primary photochemistry expresses the probability that an

absorbed photon will be trapped by the PSII reaction centre;

• J-phase: expression of the efficiency with which a trapped exciton can move an electron into

the electron transport chain from plastoquinone to the intersystem electron acceptors;

• IP-phase: expression of the efficiency of electron transport around PSI to reduce the final

acceptors of the electron transport chain, i.e. ferredoxin and NADP+

• PItot: a multiparametric expression that synthesizes the potential for energy conservation

from photons absorbed by PSII to the reduction of PSI end acceptors.

PN/Ci response curves

The response of net photosynthesis to the variation of substomatal CO2 concentration was

measured on the same leaves used for steady state gas exchange. Two intercalibrated CIRAS2

were used for simultaneous measurements in F. ornus and Q. ilex. The PN/Ci curves were con-

structed following Long and Bernacchi, 2003 [59]. Cuvette environment was maintained at

60% relative humidity and 25˚C; photosynthetic active radiation was mantained at the saturat-

ing value of 1000 μmol m-2s-1. The assimilation rate under CO2 saturation (PNmax) was mea-

sured and the maximum electron transport rate driving regeneration of ribulose

1,5-bisphosphate (Jmax, mol m-2 s-1) was calculated according to Loustau et al. 1999 [60]. The

CO2 compensation point Γ (ppm) was derived and the in vivo apparent Rubisco activity

(Vcmax, mol m-2s-1) was calculated as the angular coefficient of the linear part of the curve.

Data at very low [CO2], which can be limited by Rubisco deactivation, were excluded from the

analysis [61].

Leaf chemistry and derivation of the photosynthetic nitrogen use

efficiency

The total leaf nitrogen and carbon concentrations (NL, CL, % dry mass) were determined

using the Dumas micro-combustion technique (Eurovector EA 3000; Milan, Italy) on the

same dried leaf samples used for the calculation of sclerophylly degree (see paragraph Leaf

structural and total biomass traits). Samples were ground in liquid nitrogen, and five subsam-

ples were weighed using a precision balance (MJ-300; d = 0.001g) before the analysis. photo-

synthetic nitrogen-use efficiency (PNUE) was calculated as the ratio of instantaneous PNmax to

nitrogen on an area basis.

Antioxidant enzymes

Antioxidant enzyme activities were determined using fresh leaf material, which was extracted

as described previously [62]. All reagents for oxidative stress detection were purchased from

Sigma-Aldrich (St. Louis, MO, USA). ROS production was detected using the general oxida-

tive stress cell-permeant 20,70dichlorodihydrofluorescein diacetate dye. This dye passively dif-

fuses into the cells and interacts with endogenous esterases, which cleave the diacetate groups.
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The stock solution of the dye (25 μM in DMSO) was diluted to a final concentration of 5 μM.

Fluorescence was monitored using a fluorescence spectrophotometer, with an excitation wave-

length of 350 nm and an emission wavelength of 600 nm. The increase in fluorescence inten-

sity yielded the ROS quantity.

The superoxide dismutase (SOD) activity was determined using an SOD assay kit WST

(Sigma–Aldrich) according to manufacturer’s instructions. The SOD activity (inhibition of

activity) was calculated by measuring the decrease in the colour development at 440 nm. Cata-

lase (CAT, EC 1.11.1.6) activity was measured using a commercial CAT assay kit (Sigma–

Aldrich) following manufacturer’s protocol. CAT activities were calculated and expressed as a

decrease in absorbance at 240 nm due to H2O2 consumption. The total ascorbate peroxidase

(APX, EC 1.11.1.11) activity of leaves was assayed by monitoring the decrease in absorbance at

290 nm due to ascorbate oxidation [63]. The concentration of ascorbic acid (ASC) was mea-

sured as described by [64]. Briefly, total ascorbate was determined after the reduction of oxi-

dised ascorbic acid (DHA) to ASC with 1,4-dithiothreitol, and the concentration of DHA was

estimated from the difference between the total ascorbate pool (ASA plus DHA) and ASC.

Glutathione (GSH) content was determined at 412 nm by using 5,5´-dithiobis(2-nitrobenzoic

acid), according to the spectrophotometric method of [65].

Leaf structural traits

The degree of sclerophylly was estimated by assessing the leaf mass area (LMA, g cm-2). After

petiole exclusion, the leaf area was measured using Image Lab software (http://en.

freedownloadman-ager.org/Windows-PC/Image-Lab.html), and after the samples were dried

at 80˚C to constant weight, the leaf dry weight (g) was measured.

Statistical analysis

The effect of time on ecophysiological measurements (gas exchange and Chl a fluorescence)

was analysed using repeated measurement ANOVA with nitrogen and O3 treatments as

between-subjects factors. Two-way ANOVA, with nitrogen and O3 as fixed factors, with their

interaction factor, was used to analyse the ecophysiological measurements during each sam-

pling date (DOF1, DOF 4, DOF 7, and DOF 10), and to test the differences between treatments

on the PN/Ci curve parameters and on the biochemical and structural measurements per-

formed at the end of the experiment. Two-way ANOVA was followed by post hoc Student–

Neuman–Keuls test at p< 0.05 when necessary. All analyses were performed using Statistica

software, version 7.0 (StatSoft, Tulsa OK, USA).

Results

Steady-state gas exchange

Advancement of time (e.g plant developmental stage) affected all the gas exchanges parameters

for both species, with the exception of WUE in F. ornus. In this species, a significant

time × nitrogen interaction was noted (Table 1A) for all parameters. The time × O3 interaction

was significant for WUE and Ci/Ca in Q. ilex, whereas the three-level interaction was signifi-

cant for WUE and Ci/Ca in both species and for gs only in Q. ilex.

In particular, comparison of the gas exchange parameters of F. ornus for each sampling date

(Fig 1) revealed that nitrogen affected all the assayed parameters at DOF 1, with a decrease in

PN, gs, and Ci/Ca and an increase in WUE. However, at DOF4, only PN was affected and, at the

following sampling dates, no difference from C values was found.
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O3 began to affect PN and gs (-75% and -82% compared to those in the control, respectively)

on DOF 4, lasting with the same order of magnitude through DOF 7 to 10. The interaction sig-

nificantly affected PN and gs for low or high O3 exposure (DOF 1 and 10, AOT40 254.22 and

2585.47 ppb h, respectively); the direction of the interaction remained the same, where the

decrease of PN and gs relative to the control was less pronounced in O3N plants than in O3

alone.

For Q. ilex nitrogen led to the increase in both PN and gs relative to those in C (from +5% to

15% depending on DOF); however, the variability in the data led to p> 0.05 at each DOF

(Fig 2). The main factor affecting gas exchange was O3, entailing a decrement of PN (-60% at

DOF 4, - 28% at DOF 7 and -23% at DOF10) because of stomatal limitation as indicated by

Ci/Ca reduction. The interaction was present on DOF 1, for low O3 exposure (AOT40

254.22 ppb h) only for gs, where the reduction in O3N experimental set was higher than in the

O3 set. At DOF 4 and DOF 10, the reduction of PN and gs in O3N was less pronounced than

that in O3, even if the interaction effect was not significant (Table 1B).

Chl a fluorescence measurements

The repeated measures ANOVA showed that the photosystems functionality was not affected

by time in both species (Table 2A).

Table 1. Analysis of variance of the gas exchange parameters for F. ornus and Q. ilex.

F. ornus Q. ilex

Factors PN gs WUE Ci/Ca PN gs WUE Ci/Ca

a) Repeated measures ANOVA

Time 0.000 0.003 0.077 0.023 0.001 0.000 0.000 0.000

Time × N 0.058 0.004 0.000 0.000 0.612 0.752 0.594 0.559

Time × O3 0.435 0.589 0.173 0.069 0.606 0.070 0.017 0.047

Time × N × O3 0.521 0.109 0.052 0.025 0.124 0.010 0.005 0.006

b) Two-way ANOVA

DOF 1

N 0.033 0.002 0.000 0.000 0.992 0.867 0.715 0.813

O3 0.212 0.055 0.672 0.936 0.076 0.177 0.678 0.861

N × O3 0.013 0.008 0.004 0.005 0.509 0.050 0.036 0.055

DOF 4

N 0.018 0.071 0.640 0.370 0.256 0.299 0.335 0.355

O3 0.001 0.051 0.885 0.900 0.009 0.006 0.025 0.032

N × O3 0.050 0.202 0.970 0.670 0.151 0.469 0.505 0.560

DOF 7

N 0.969 0.922 0.901 0.540 0.074 0.160 0.995 0.706

O3 0.058 0.035 0.022 0.001 0.029 0.004 0.026 0.012

N × O3 0.389 0.728 0.927 0.950 1.000 0.915 0.790 0.754

DOF 10

N 0.432 0.725 0.185 0.162 0.146 0.117 0.496 0.658

O3 0.013 0.014 0.230 0.354 0.006 0.000 0.001 0.004

N × O3 0.008 0.050 0.748 0.944 0.597 0.316 0.858 0.757

Analysis of variance on the steady-state gas exchange parameters: Repeated measures ANOVA (a) and two-way ANOVA (b) of time, nitrogen, O3, and

their interaction effects are reported for each measurement date. DOF = day of fumigation. Significant p-value (p < 0.05) are marked in bold; ‘quasi’

significant values (0.1 > p > 0.05) are underlined.

https://doi.org/10.1371/journal.pone.0185836.t001
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In F. ornus, nitrogen enhanced the primary reactions characterizing the single turnover

region of the fluorescence transient (Fig 3A and 3B). A slight, but significant increase of φPo

occurred at DOF 4 and DOF 10, and the J-phase was affected from DOF 1 to DOF 7

(Table 2B). Nitrogen influenced the IP-phase (rate of reduction of end acceptors ferredoxin

and NADP) on DOF 4 and 10 and the overall functionality of photosystems as showed by the

trend of PItot. O3 affected the JIP-test parameters since DOF 1, decreasing both IP-phase and

Fig 1. Trend of steady-state gas exchange parameters in F. ornus. The trend is shown as the mean and

standard deviation (n = 5) for each treatment. Measurements were performed at the first, fourth, seventh, and

tenth day of fumigation (DOF). Symbols over the bars indicate the significant factors (p < 0.05) affecting the

gas exchange parameters: N, nitrogen effect; O3, ozone effect; O3 ×N, interaction.

https://doi.org/10.1371/journal.pone.0185836.g001

Fig 2. Trend of steady-state gas exchange parameters in Q. ilex. The trend is shown as the mean and

standard deviation (n = 5) for each treatment. Measurements were performed at the first, fourth, seventh, and

tenth day of fumigation (DOF). Symbols over the bars indicate the significant factors (p < 0.05) affecting the

gas exchange parameters: N, nitrogen effect; O3, ozone effect; O3 ×N, interaction.

https://doi.org/10.1371/journal.pone.0185836.g002
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Table 2. Analysis of variance of JIP-test parameters for F. ornus and Q. ilex.

F. ornus Q. ilex

Factors φP0 J-phase IP-phase PItot φP0 J-phase IP-phase PItot

a) Repeated measures ANOVA

Time 0.576 0.781 0.082 0.141 0.249 0.369 0.363 0.419

Time × N 0.670 0.959 0.359 0.250 0.739 0.753 0.565 0.286

Time × O3 0.853 0.979 0.832 0.478 0.879 0.604 0.662 0.521

Time × N × O3 0.062 0.588 0.092 0.220 0.184 0.204 0.788 0.670

b) Two-way ANOVA

DOF 1

N 0.016 0.000 0.075 0.000 0.788 0.213 0.044 0.044

O3 0.625 0.004 0.726 0.005 0.118 0.077 0.001 0.002

N × O3 0.683 0.589 0.321 0.361 0.630 0.870 0.016 0.156

DOF 4

N 0.000 0.042 0.000 0.000 0.987 0.991 0.973 0.816

O3 0.000 0.570 0.443 0.1 0.022 0.365 0.002 0.001

N × O3 0.552 0.435 0.000 0.000 0.521 0.313 0.789 0.776

DOF 7

N 0.072 0.025 0.056 0.028 0.734 0.114 0.151 0.209

O3 0.467 0.781 0.267 0.187 0.056 0.013 0.001 0.001

N × O3 0.064 0.014 0.456 0.820 0.126 0.268 0.936 0.282

DOF 10

N 0.038 0.765 0.000 0.000 0.744 0.374 0.834 0.178

O3 0.795 0.179 0.016 0.114 0.195 0.053 0.003 0.000

N × O3 0.239 0.723 0.009 0.001 0.436 0.642 0.424 0.397

Analysis of variance on JIP-test parameters: Repeated measures ANOVA (a) and two-way ANOVA (b) of time, nitrogen, O3, and their interaction effects,

reported for each measurement date. DOF = day of fumigation. Significant p-value (p < 0.05) are marked in bold; ‘quasi’ significant values (0.1 > p > 0.05)

are underlined.

https://doi.org/10.1371/journal.pone.0185836.t002

Fig 3. Trend of JIP-test parameters in F. ornus. The histograms indicate the percentage variation of each

parameter of all treatments in relation to those in control plants. Measurements were performed at the first,

fourth, seventh, and tenth day of fumigation (DOF). Symbols over the bars indicate the significant factors

(p < 0.05) affecting the gas exchange parameters: N, nitrogen effect; O3, ozone effect; O3 × N, interaction.

https://doi.org/10.1371/journal.pone.0185836.g003
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PItot relative to those in the control. The interaction between nitrogen and O3 was evident on

PItot (DOF 4, 10), with nitrogen ameliorating the detrimental effect of O3 photosystem func-

tionality (Fig 3D).

In Q. ilex, the effect of nitrogen and interaction between factors on photosystems function-

ality was marginal (Fig 4; Table 2), affecting IP-phase and PItot on DOF1 only. The main driver

of photosystem functionality was O3, which influenced the primary photochemistry (Fig 4B)

only during the final phase of O3 exposure (DOF 7 and 10), whereas IP-phase and PItot (Fig 4C

and 4D) were affected by O3 since DOF1.

PN/Ci response curves, leaf chemistry, and structural traits

The parameters derived from PN/Ci curves, together with PNUE, chemical and structural leaf

traits such as nitrogen and carbon concentration for the two species (NL; CL), their ratio, and

LMA are shown in Table 3.

In F. ornus, PNmax increased significantly after nitrogen addition (final dose, 20 kg N ha-1

yr-1), decreasing in response to O3 (Table 3). The nitrogen concentration at the leaf level

increased in the N experimental set, although slightly significantly (p = 0.058). The main driver

of photosynthesis was O3, leading to a reduction of PNmax, Vcmax and Jmax relative to those in C

plants. The NL decreased because of O3 fumigation, entailing a significant change in the CL/NL

ratio. The interaction between factors significantly affected Jmax: O3 limited the positive effect

of nitrogen. In F. ornus, nitrogen did not affect the LMA, whereas this parameter was reduced

by O3 (Table 3).

Interestingly, in Q. ilex, the response curves parameters were affected by nitrogen, thereby

enhancing PNmax as well as the apparent maximum electron transport rate contributing to

RuBP regeneration (Jmax). Nitrogen addition resulted in an increase of NL (+14% and +8% in

N and O3N experimental sets, respectively); however, because of high variability in the data,

no significant nitrogen effect (p> 0.05) was detected. However, CL significantly increased in

the evergreen species.

Fig 4. Trend of JIP-test parameters in Q. ilex. The histograms indicate the relative variation of each

parameter of all treatments in relation to those in control plants. Measurements were performed at the first,

fourth, seventh, and tenth day of fumigation (DOF). Symbols over the bars indicate the significant factors

(p < 0.05) affecting the gas exchange parameters: N, nitrogen effect; O3, ozone effect; O3 × N, interaction.

https://doi.org/10.1371/journal.pone.0185836.g004

Responses of Mediterranean tree species to nitrogen deposition, ozone, and their interaction

PLOS ONE | https://doi.org/10.1371/journal.pone.0185836 October 3, 2017 10 / 20

https://doi.org/10.1371/journal.pone.0185836.g004
https://doi.org/10.1371/journal.pone.0185836


O3 caused the reduction in PNUE, because of slight, but not significant (p> 0.05), reduc-

tion of PNmax and NL, and an increase in CL concentration. No interaction was detected. LMA

decreased in Q. ilex after nitrogen addition, because leaf area increased (data not shown), influ-

encing in the same direction as the LMA of the O3N experimental set.

Antioxidant enzyme activities

In both species, nitrogen addition increased SOD, CAT, and GSH activities, the key enzymatic

components of the first antioxidant defense mechanisms involved in O2
- and H2O2 scavenging

(Fig 5).

In F. ornus, the ROS amount increased significantly under O3 exposure; however, com-

pared to that in C, their concentration in the O3 experimental set was higher than that in the

O3N experimental set. Accordingly, the activity of the first line of ROS scavengers such as SOD

and CAT were higher in O3 than in the O3N experimental set, but the antioxidants involved in

the conversion of H2O2 to O2 or H2O (i.e. APX, ASA, DHA, and GSH) were upregulated in

the O3N plants. Conversely, in Q. ilex, even if ROS were produced to the same extent as in O3

and O3N plants, SOD and CAT were lower in O3N than in O3. All the antioxidants related to

ascorbate-glutathione cycle were higher in O3N than in O3 plants.

Table 3. Parameters derived from the PN/Ci response curves performed at the end of the experimental period and the chemical and structural leaf

traits.

F. ornus p

Parameters C N O3 O3N N O3 O3N

PNmax 25.64 ± 4.40 32.23 ± 4.24 22.73 ± 0.19 22.14 ± 3.65 0.015 0.01 0.09

Vcmax 0.078 ± 0.01 0.067 ± 0.01 0.051 ± 0.00 0.057 ± 0.01 0.742 0.03 0.23

Jmax 106.6 ± 18.44 136.5 ± 13.93 98.32 ± 6.26 91.58 ± 15.58 0.012 0.01 0.04

Γ 48.67 ± 3.68 56.2 ± 18.02 70.65 ± 23.13 52.20 ± 1.68 0.555 0.34 0.18

PNUE 1.9 ± 0.64 1.55 ± 0.28 1.40 ± 0.44 2.19 ± 1.07 0.59 0.86 0.19

NL 1.71 ± 0.09 2.14 ± 0.45 1.26 ± 0.1 1.56 ± 0.32 0.058 0.01 0.71

CL 44.73 ± 0.27 45.31 ± 0.6 44.25 ± 0.45 44.66 ± 0.42 0.094 0.06 0.76

CL/NL 26.15 ± 1.21 21.7 ± 3.97 35.21 ± 2.75 29.49 ± 6.66 0.067 0.01 0.8

LMA 0.013 ± 0.001 0.013 ± 0.001 0.011 ± 0.001 0.012±0.001 0.081 0.003 0.539

Q. ilex p

C N O3 O3N N O3 O3N

PNmax 24.73 ± 3.91 29.9 ± 1.50 23.54 ± 5.41 28.67 ± 3.10 0.003 0.370 0.989

Vcmax 0.076 ± 0.01 0.086 ± 0.009 0.074 ± 0.014 0.10 ± 0.017 0.059 0.498 0.368

Jmax 105.9 ± 12.72 125.8 ± 4.19 102.3 ± 0.99 129.7 ± 8.64 0.000 0.982 0.438

Γ 67.69 ± 1.67 60.06 ± 13.14 67.11 ± 1.92 74.36 ± 12.98 0.972 0.238 0.204

PNUE 3.44 ± 0.97 3.00 ± 0.94 1.84 ± 0.13 2.2 ± 0.54 0.925 0.021 0.372

NL 1.26 ± 0.14 1.44 ± 0.35 1.14 ± 0.07 1.36 ± 0.23 0.158 0.479 0.888

CL 44.43 ± 0.48 45.24 ± 0.37 45.28 ± 0.21 45.55 ± 0.35 0.036 0.026 0.243

CL/NL 35.6 3± 4.03 32.57 ± 7.51 39.79 ± 2.36 34.01 ± 5.45 0.178 0.378 0.663

LMA 0.014 ± 0.001 0.013 ± 0.001 0.015 ± 0.001 0.012 ± 0.001 0.000 0.98 0.01

PNmax, (μmol m-2 s-1) = maximum rate of net photosynthesis; Vcmax, (mol m-2 s-1) = in vivo apparent Rubisco activity; Jmax, (μmol m-2 s-1) = maximum rate of

electron transport; Γ, (ppm) = CO2 compensation point; PNUE, photosynthetic nitrogen use efficiency (μmol mol-1 s-1); NL, nitrogen at leaf level (%); CL,

carbon concentration at leaf level (%); CL/NL, ratio between carbon and nitrogen at leaf level; Leaf Mass Area (LMA, g cm-2). Data are shown as the

mean ± standard deviation (n = 5) for each treatment. On the right panel, results of two-way ANOVA for each parameter are shown. Significant p-value

(p < 0.05) are marked in bold; quasi ‘significant’ values (0.1 > p > 0.05) are underlined.

https://doi.org/10.1371/journal.pone.0185836.t003
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Discussion

The impacts of atmospheric nitrogen deposition and O3 on Mediterranean forests have been

of increasing concern, and experimental data are needed to elucidate the mechanisms of

action, or identify specific functional traits affected by interacting stress factors. Thus, the pres-

ent study aimed to measure the effects of realistic exposure of nitrogen and O3 on a broad

range of traits of two Mediterranean species with different leaf habits, to characterize their

response. The study was performed under controlled condition in a medium-term experiment,

in order to determine the traits that are first affected by nitrogen and how the potential nitro-

gen effects can influence the response to O3. Moreover, to our knowledge, this is the first study

to compare F. ornus and Q. ilex directly after O3 exposure, with important implication for

assessing the risk for these co-occurring species.

Response patterns to nitrogen deposition

An overview of available literature highlights that the results for the effects of nitrogen deposi-

tion at the leaf and plant levels are contradictory [37,66]. The numerous processes involved in

nitrogen assimilation and metabolism might lead to high variability in the assayed data. In our

experiment, after an acclimation period to nitrogen, when the cumulative dose was roughly

equivalent to 14 kg N ha yr-1, which was within the threshold load considered as critical for

Mediterranean vegetation, nitrogen concentration at the leaf level did not increase in both spe-

cies, and no adverse effect was detected on photosynthetic traits (data not shown). When

nitrogen exposure exceeded this level, between 14 and 17 kg N ha yr-1 (DOF 1), assimilation

rate measured under steady state conditions was adversely affected in F. ornus possibly because

of the nitrogen-induced decrease in stomatal conductance, as documented in several species

[67,68]. Indeed nitrogen can affect gs by changing the hydraulic conductivity [40], or by

increasing nitric oxide (NO) emission as a side-reaction of the nitrate assimilation process

[69]. In fact, NO is involved in the ABA-induced stomatal closure process [68,70]. Since the

first mechanism was observed in long-lasting fertilisation experiments (from 2 to 5 years of

nitrogen addition), we argued that, in our study, the nitrogen effect on gs could be mediated

by NO signalling.

Interestingly, in both species, PNmax and Jmax increased because of nitrogen, whereas Vcmax

did not change, namely, the electron transport driving RuBP regeneration was more affected

than carboxylation. This result also explains why the assimilation rate measured under steady

state condition, i.e. in the Rubisco-limited phase [59], did not show variations. Moreover, this

Fig 5. The outputs of biochemical analysis. They are shown for each treatment at the end of the experimental period for F. ornus

(upper panel, from a to g) and Q. ilex (below panel, from h to p). Reactive oxygen species (ROS, %); superoxide dismutase, (SOD,

inhibition rate %); catalase (CAT, U mg-1 of protein); ascorbate peroxidase (APX, U mg-1 of protein); total concentration of ascorbic

acid (ASA, mg g-1); oxidised ascorbic acid (DHA, mg g-1); and glutathione (GSH, mg g-1). Data are means ± standard deviation

(n = 5), and bars not accompanied by the same letter are significantly different at p < 0.05, by using post hoc Student–Neuman–Keuls

test.

https://doi.org/10.1371/journal.pone.0185836.g005

Responses of Mediterranean tree species to nitrogen deposition, ozone, and their interaction

PLOS ONE | https://doi.org/10.1371/journal.pone.0185836 October 3, 2017 12 / 20

https://doi.org/10.1371/journal.pone.0185836.g005
https://doi.org/10.1371/journal.pone.0185836


evidence and the Chl a fluorescence measurement, indicate that, in Q. ilex, a higher fraction of

nitrogen was allocated to components related to biochemical phase of assimilation process

than to light-harvesting elements [71]. This hypothesis is not completely applicable to F. ornus.
In fact, in Q. ilex, nitrogen significantly affects only the parameters related to the functionality

of the end acceptors (i.e. IP-phase and PItot); in contrast in F. ornus primary photochemistry

(φPo and J-phase) was also enhanced by nitrogen, confirming that the partitioning pattern can

differ depending on leaf habit [47].

In agreement with ecophysiological measurements, at the end of the experimental period,

the concentration of nitrogen on mass basis increased to a different extent between the species.

In F. ornus, nitrogen addition resulted in 25% higher NL relative to that in the control

(p = 0.058), whereas in Q. ilex the variation was less pronounced (+ 14%). Notably in both spe-

cies PNUE did not change because of nitrogen addition. PNUE is controlled by physiological

(assimilation rate, Rubisco activity, and nitrogen concentration on area basis) and structural

traits (LMA, leaf thickness) [72], which can change in opposite ways and explain the lack of

difference among treatments. In F. ornus, nitrogen treatment decreased both leaf area and dry

mass, resulting in no LMA variation. However, in Q. ilex, the LMA decreased because of nitro-

gen, since the leaf area increased; thus, the evergreen species did not invest resources in the cell

wall to increase leaf toughness, as reported in other studies [73,74].

These effects of nitrogen supply on leaf structural traits could influence the leaf nitrogen

concentration when it is considered on area-basis [28,75]. In F. ornus, area-based leaf nitrogen

was lower relative to the mass-based value (data not shown), whereas the two values remained

similar in Q. ilex.

Response patterns to ozone

Ozone effect was assessed using a wide range of traits to allow defining thoroughly the differ-

ences in the response patterns between the species. Plant sensitivity to O3 cannot be identified

based on the extent of leaf injury alone, because impairments to photosystem functionality

and photochemistry occur before the appearance of visible injury [54,76]. In our experiment,

although we adopted a realistic O3 exposure (80 ppb h, AOT40 2458), F. ornus seemed to be

sensitive to this pollutant because it did not trigger an active physiological response to O3, such

as avoidance mechanisms, activating instead an incoming injury. The gas exchange reduction

occurred from the first day of fumigation (-55% and -33% for gs and PN, respectively), remain-

ing around this order of magnitude for the entire fumigation period. Furthermore, in this spe-

cies the PN reduction was not merely owing to stomatal limitation, since the PN/Ci response

curves highlighted a decrease of PNmax and of both carboxylation efficiency (Vcmax) and maxi-

mum electron transport rate driving RuBP regeneration (Jmax). The reduction of nitrogen con-

centration can also be a good indicator of O3 injury, helping to define the scale of tolerance

between species [23]. In F. ornus, O3 exposure accelerated the processes related to senescence

as shown by the decrease of leaf nitrogen and dry matter i.e. decrease of LMA. Although the

results from controlled conditions cannot be extended to natural ecosystems, the sensitivity

found in this experiment should be considered for risk assessment of tree species in a Mediter-

ranean climate. The response pattern of Q. ilex to O3 can be attributed to an avoidance mecha-

nism, as shown by traits related to photochemistry, photosystems functionality or structural

traits. The reduction of PN in O3-treated plants relative to controls was less pronounced in Q.

ilex than in F. ornus, starting on DOF 4, and was related to stomatal limitation more than to

biochemical impairments. Indeed, the parameters derived from PN/Ci curves did not indicate

any detrimental effect on Rubisco activity because of O3, whereas the analysis of photosystem

functionality highlighted a down-regulation mechanisms (i.e. reduction of end-acceptors
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activity). The differences in the response strategies implemented by the two species could be

strictly associated with a different antioxidant potential [11]. Indeed, the inherent amount of

CAT, responsible for the removal of H2O2 [77], was higher in Q. ilex. Moreover, the compo-

nents involved in the ascorbate-glutathione cycle (APX, ASA, DHA, and GSH) showed high

concentration or activity in Q. ilex relative to that in F. ornus, but these could be related to the

higher stomatal conductance (that is, high O3 fluxes) in the former species. Furthermore, in

both the species, the finding that, in O3-treated plants, the increase in DHA/ASA ratio was

lower than the increases in APX activity, suggestings that recycling of DHA to ASA was not

compromised by O3.

Response patterns to the interaction between nitrogen deposition and

ozone

Information on the interactive effects of nitrogen deposition and ozone pollution on vegeta-

tion is still scarce [34]. Many of the studies on nitrogen and O3 have focused on the changes in

community structure or species abundance in grasslands ecosystems [30,31,78]. However, few

studies have determined the consequences of nitrogen and O3 interaction on tree species

[24,38,43]. The results highlighted by previous studies suggested that the interactive effects

could be dynamic, changing throughout the growing season, and the effects on key ecophysio-

logical parameters such as PN and gs can remarkably change depending on the concentration

of nitrogen and O3 exposure. In the present study, the interaction followed different patterns

in the two species, confirming our hypothesis that leaf habit plays a crucial role in determining

the way of interaction between the two factors. In particular, in F. ornus, the interaction was

detectable on several traits indicating that nitrogen addition can ameliorate the detrimental

effects owing to O3. Nitrogen had a positive effect on the processes related to photochemistry,

resulting in enhanced carbon assimilation rate in the O3N experimental set relative to that in

the O3 experimental set. The mechanisms involved in this type of response could be associated

with the investment of available nitrogen to proteins that play a crucial role in enhancing the

photosynthetic activity [79]. We argue that nitrogen was partially allocated to light-harvesting

components, increasing the capacity to manage the energy flow through the photosystems

even if stomatal closure occurs [57]. The positive effect of nitrogen on the functionality of

plants treated with O3 could also be attributed to the upregulation of antioxidant response to

O3 implemented by nitrogen addition [80]. In particular, in O3N plants, the APX activity and

ASA and DHA were higher compared to that after treatment with O3 alone. Moreover, in F.

ornus, the O3N experimental set led to lower ROS production relative to that in O3 plants, that

is, lower exposure to oxidative stress, even if the O3 fluxes remained almost the same. On aver-

age, during the entire experimental period, gs was about 96.9 ± 21.2 and 92.5 ± 12.3 in O3 and

O3N, respectively. This could be because of NO synthesis. Plants can emit NO under a series of

stresses [81], in particular under ozone exposure [7], and several studies revealed that high

nitrogen availability can promote NO production [82]. NO is involved in triggering antioxi-

dant response and can react directly with free radicals such as H2O2 and O2
−, thereby decreas-

ing their concentrations. We argue that, in the presence of high nitrogen availability, F. ornus
can cope with incoming oxidative stress via the production of NO, which owing to the rapid

synthesis and prompt availability, allows prompt scavenging of free radicals and concomitantly

increases the photosynthesis rate [83]. As shown by Velikova et al. [78], higher NO is emitted

in isoprene-inhibited leaves; therefore NO synthesis should be favoured in plants that do not

emit VOCs, such as F. ornus. In Q. ilex, a strong monoterpene emitter species [84], the

response to oxidative compounds could be attributed to VOCs [85] rather than to NO. Most

importantly, in both species, nitrogen led to the increase in the constitutive amount of
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antioxidant enzymes such as SOD and CAT, but did not affect their activity (GST did not

change, data not shown).

Unlike in F. ornus, in Q. ilex, the interaction between nitrogen and O3 was weak and

appeared only on DOF 1, when nitrogen seemed to aggravate the stomatal limitation owing to

O3. The gs of O3N plants recovered at the following sampling times to the level in the O3 exper-

imental set.

Photosystem functionality was not affected by the interaction, and Rubisco-related parame-

ters did not show any nitrogen effect (positive or negative) when plants were exposed to O3.

However, interestingly, enzymes such as SOD and CAT, which play a crucial role in determin-

ing a suitable level of ROS in different cell compartments [77], were lower in O3N plants than

in O3 plants, although the ROS production did not differ between the treatments. This evi-

dence suggests that, in Q. ilex, nitrogen addition could enhance secondary metabolism and

promote the production of VOCs that can directly quench O3 without activating an enzymatic

antioxidant response. Conversely, similar to that in F. ornus, nitrogen upregulated the activity

of the ascorbate-glutathione cycle in Q. ilex, indicating that nitrogen deposition can largely

protect against oxidative stressors and to multi-stress condition experienced by Mediterranean

vegetation.

Conclusion

In both species, photosynthetic traits such as photosystem functionality, maximum assimila-

tion and maximum electron transport rate were enhanced by nitrogen at the end of the experi-

ment, when 20 kg N ha-1 y-1 had been reached. Moreover, in both species, nitrogen enhanced

the constitutive level of antioxidant activity, thus with a potential ameliorative effect on O3-

related impacts. In F. ornus nitrogen was allocated to the light harvesting components as

shown by chlorophyll a fluorescence measurements. The results suggest that F. ornus is an O3-

sensitive species, as shown by biochemical limitation to photosynthesis and the acceleration of

leaf senescence-related processes. In F. ornus, nitrogen ameliorated the detrimental effects that

O3 had on the photosynthetic processes. The interaction between nitrogen and O3 had differ-

ent mechanisms of action in the two species. In the deciduous species F. ornus, the lower ROS

production in the interaction experimental set (O3N) might be related to the enhanced nitro-

gen oxide production, whereas, in Q. ilex, nitrogen might have upregulated the secondary

metabolism, promoting high VOCs production. This hypothesis is based on the fact that,

although no difference was noted in ROS production between O3 and O3N plants in this spe-

cies, the activity of the first-level scavenging enzymes such SOD or CAT was lower in the inter-

action experimental set. These results indicate that nitrogen deposition could counteract the

detrimental effect of O3, thus suggesting that nitrogen is an important factor for assessing the

critical level of O3 for Mediterranean vegetation.
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16. Calatayud V, Cerveró J, Calvo E, Garcı́a-Breijo F-J, Reig-Armiñana J, Sanz MJ. Responses of ever-

green and deciduous Quercus species to enhanced ozone levels. Environ Pollut. 2011; 159: 55–63.

https://doi.org/10.1016/j.envpol.2010.09.024 PMID: 20974507

17. Manes F, Donato E, Vitale M. Physiological response of Pinus halepensis needles under ozone and

water stress conditions. Physiol Plant. 2001; 113: 249–257. https://doi.org/10.1034/j.1399-3054.2001.

1130213.x PMID: 12060303

18. Ribas À, Peñuelas J, Elvira S, Gimeno BS. Contrasting effects of ozone under different water supplies

in two Mediterranean tree species. Atmos Environ. 2005; 39: 685–693. https://doi.org/10.1016/j.

atmosenv.2004.10.022

19. Bussotti F. Functional leaf traits, plant communities and acclimation processes in relation to oxidative

stress in trees: a critical overview. Glob Change Biol. 2008; 14: 2727–2739. https://doi.org/10.1111/j.

1365-2486.2008.01677.x

20. Li P, Calatayud V, Gao F, Uddling J, Feng Z. Differences in ozone sensitivity among woody species are

related to leaf morphology and antioxidant levels. Tree Physiol. 2016; 36: 1105–1116. https://doi.org/

10.1093/treephys/tpw042 PMID: 27217527

21. Zhang W, Feng Z, Wang X, Niu J. Responses of native broadleaved woody species to elevated ozone

in subtropical China. Environ Pollut. 2012; 163: 149–157. https://doi.org/10.1016/j.envpol.2011.12.035

PMID: 22325443

22. Karnosky DF, Skelly JM, Percy KE, Chappelka AH. Perspectives regarding 50 years of research on

effects of tropospheric ozone air pollution on US forests. Environ Pollut. 2007; 147: 489–506. https://

doi.org/10.1016/j.envpol.2006.08.043 PMID: 17084004

23. Ribas À, Peñuelas J, Elvira S, Gimeno BS. Ozone exposure induces the activation of leaf senescence-

related processes and morphological and growth changes in seedlings of Mediterranean tree species.

Environ Pollut. 2005; 134: 291–300. https://doi.org/10.1016/j.envpol.2004.07.026 PMID: 15589656

24. Yamaguchi M, Watanabe M, Matsumura H, Kohno Y, Izuta T. Experimental Studies on the Effects of

Ozone on Growth and Photosynthetic Activity of Japanese Forest Tree Species. Asian J Atmospheric

Environ. 2011; 5: 65–78. https://doi.org/10.5572/ajae.2011.5.2.065

25. Uscola M, Oliet JA, Villar-Salvador P, Dı́az-Pinés E, Jacobs DF. Nitrogen form and concentration inter-

act to affect the performance of two ecologically distinct Mediterranean forest trees. Eur J For Res.

2014; 133: 235–246. https://doi.org/10.1007/s10342-013-0749-3

26. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, et al. Global assessment of

nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl. 2010; 20: 30–59. https://

doi.org/10.1890/08-1140.1 PMID: 20349829
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Spain: Modeled patterns and threatened habitats within the Natura 2000 network. Sci Total Environ.

2014; 485–486: 450–460. https://doi.org/10.1016/j.scitotenv.2014.03.112 PMID: 24742555

30. Volk M, Enderle J, Bassin S. Subalpine grassland carbon balance during 7 years of increased atmo-

spheric N deposition. Biogeosciences. 2016; 13: 3807–3817. https://doi.org/10.5194/bg-13-3807-2016
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