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Abstract

Recent advances in cancer immunology, such as the discovery of immune checkpoint inhibitors, 

have validated immune cells as potential key players for effective cancer treatment. The efficacy of 

these therapies seems to be codependent on a tumor-reactive T lymphocyte response. For many 

years, numerous attempts and strategies in developing vaccines to generate tumor-reactive T cells 

have yielded poor results in the clinic due to suboptimal immunogenicity and the inability to 

overcome an immunosuppressive tumor microenvironment. In this review, we summarize past and 

current advances in T cell vaccines and describe our experience in developing optimized methods 

for antigen/adjuvant selection and vaccine administration in order to induce powerful anti-tumor 

responses.

1. Introduction

Undoubtedly, vaccines are effective in preventing infections by recruiting various 

components of the immune system against numerous pathogens. Since the immune system 

has the ability to recognize transformed malignant cells and limit tumor growth, 

immunotherapy has now become an effective way to treat cancer. Amongst various 

components of the immune system T cells and in particular CD8 cytotoxic T lymphocytes 

(CTLs) are the most effective elements in recognizing alterations occurring in transformed 

cells. The antigens recognized by T cells correspond to peptides that associate MHC 

molecules. Such peptides result from processed proteins from the infectious microorganisms 

or derived from abnormally expressed gene products in malignant cells. Tumor-reactive T 
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cells are frequently present in cancer patients in the form of tumor-infiltrating lymphocytes 

(TILs), which normally do not control the disease [1]. However, ex vivo TIL expansion and 

reintroduction into the patients has demonstrated remarkable therapeutic effects in some 

patients [2]. Unfortunately TIL therapy is technically challenging, expensive and not all 

cancers contain TILs. Thus, there is a critical need for other means to generate tumor 

reactive T cells with a simpler and more cost effective strategy such as vaccination.

Checkpoint pathways regulate T cells by blocking their function, presumably to prevent 

pathological autoimmune responses [3]. Antibodies that inhibit two of these immune 

checkpoint blockades, CTLA4 and PD-1, have shown notable anti-tumor effects [4,5]. 

However, the proportion of patients that respond favorably to checkpoint blockade inhibitors 

(CBIs) is low and is confined to particular types of cancer. Because CBIs require the 

presence of an existing pool of tumor-reactive T lymphocytes, many believe that patients not 

responding to CBI lack these T cells. Thus, the expectation is that T cell inducing vaccines 

should increase the effectiveness and expand the applicability of CBIs.

2. Types of T cell vaccines

Various strategies have been used to develop vaccines to generate tumor-reactive T cells 

(Table 1). This work developed from early pioneering observations in mice where killed 

tumor cells vaccines prevented the growth of subsequent challenges with live tumor cells 

[6,7]. Nevertheless these vaccines were less effective when administered into animals 

bearing established tumors. Vaccines consisting of tumors expressing immune-stimulating 

cytokines improved their anti-tumor effects [8], but unfortunately the clinical results were 

not outstanding [9–12]. Thus, major efforts are devoted to designing more effective vaccines 

by utilizing defined tumor antigens (TAgs).

3. Antigen selection

The identification of proteins that function as TAgs for T cells and their corresponding 

peptide epitopes facilitated developing more refined T cell vaccines. Practically, TAgs for T 

cells are grouped into 4 types (Table 2): A) Products of oncogenic viruses; B) 

Developmental or germ cell products; 3) Tissue-specific differentiation antigens; 4) Products 

of genetic alterations derived from malignant transformation.

Tumor whole exome sequencing has allowed identifying mutations that potentially represent 

tumor-specific T cell epitopes [13]. Yet, such mutations must occur in protein-coding 

regions and be contained within peptides binding to MHC molecules. There are numerous 

algorithms used to predict whether a peptide binds to a specific MHC allele [14,15] and 

quantitative peptide/MHC-binding assays can be used to demonstrate the formation of 

peptide/MHC complexes [16]. However, whether a mutated MHC binding peptide is 

effective in generating tumor-reactive T cells depends on whether the mutated epitopes are 

generated by the tumor and expressed as surface peptide/MHC complexes. This fundamental 

requirement is challenging to demonstrate since it requires proof of the mutated peptide 

presence bound to the tumor MHC molecule, for example by mass spectrometry sequencing 

of peptides eluted from purified MHC proteins [17]. Alternatively, attesting tumor cell 
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recognition by T cells specific for mutated peptide would demonstrate this prerequisite. 

Because these approaches are technically challenging, many choose to select mutated 

peptides solely on the basis on MHC binding predictions to produce peptide cocktail 

vaccines, not taking into consideration the possibility that peptides not corresponding to true 

tumor T cell epitopes could generate irrelevant T cell responses that may diminish the 

effectiveness of the vaccine.

Although there are multiple pros and cons related to the use of TAgs from each group (Table 

2), there is still no clear evidence that antigens from one of these types will be more effective 

than the others. The most significant issue for selecting a TAg is related to potential immune 

tolerance that could affect the quality of the T cell response (capacity to recognize the tumor 

cell). Nevertheless, there are examples of successfully eliciting anti-tumor T cell responses 

to “self-antigens”, when immune tolerance was predicted [18–21].

4. Immunization strategy

Whatever TAg type is selected, diverse vaccination approaches have been explored, such as 

recombinant proteins, recombinant viruses, DNA vaccines and synthetic peptides. These 

vaccines are directly administered in vivo with the expectation that professional antigen-

presenting cells (pAPCs) such as dendritic cells (DCs) will capture vaccine components and 

stimulate T cell responses. In other cases the vaccine components are loaded ex vivo onto 

DCs to produce cell-based vaccines. The goal is that the DCs presenting the peptide/MHC 

complexes will stimulate T cells via their T cell receptor (TCR), inducing them to proliferate 

and become effector cells. However, it is evident that effective T cell activation leading to 

expansion, survival and effector function requires more than simple TCR stimulation (Signal 

1). DCs need appropriate activation to provide immune costimulatory signals that promote T 

cell survival and proliferation after TCR stimulation. Costimulation occurs either in the form 

of cell surface receptor-ligand interactions between T cells and DCs (Signal 2), or via 

cytokines (Signal 3). Signal 1 without Signals 2 and 3 fails to generate effective T cell 

responses and leads to T cell dysfunction [22,23]. During an immune response to an 

infectious agent, DC activation results from stimulation of pattern recognition receptors 

(PRRs) such as toll-like receptors (TLRs), and RIG-I-like receptors (RLR) by microbial 

components [24]. Helper CD4 T lymphocytes (HTLs) further promote DC activation 

through CD40L/CD40 [25]. Consequently, effective CTL vaccines must contain immune 

adjuvants that stimulate PRRs, and should stimulate HTLs. Agonistic antibodies to CD40 

have been used to enhance the effectiveness of CTL-inducing vaccines that may not trigger 

HTL responses [20,25,26].

We believe that examining how the immune system responds to an acute infection could 

facilitate developing effective cancer vaccines that elicit large and lasting CTL responses. 

During the course of an immune response to infectious pathogen, the activated CTLs will 

encounter antigen again on infected non-professional APCs cells (e.g., epithelial cells). 

Under these circumstances, production of type-I interferon (IFN-I) by the infected cells will 

function as Signal 3 allowing the CTLs to survive and continue to expand until the infection 

is resolved [27,28]. These basic concepts could be applied for developing cancer vaccines.
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5. Optimization of peptide vaccines

Many favor synthetic peptides as the source of TAg for developing vaccines because they are 

easy to manufacture and characterize in a cost-effective manner for the clinic. Unfortunately, 

numerous clinical studies using peptide vaccines have resulted in suboptimal therapeutic 

benefit in most patients [29–31]. We attribute this failure to two major causes: 1) suboptimal 

immunogenicity, and 2) the presence of an immunosuppressive tumor microenvironment.

Historically vaccines were developed towards eliciting antibodies to prevent infections. 

Thus, vaccine optimization and evaluation relied in measuring antibody titers, leading to the 

selection of immune adjuvants and modes of administration, inducing high antibody titers 

that correlated with protection. Regrettably, cancer vaccine development has followed the 

same approach to induce CTL responses using the same adjuvants and modes of 

administration. Proteins and peptides corresponding TAgs are administered with adjuvants 

such as alum or emulsified in incomplete Freund’s adjuvant and injected subcutaneously to 

generate CTLs. Moreover, evaluating CTL responses is far more complex than measuring 

antibody titters, and some approaches lead to erroneous assumptions of the vaccine’s 

immunogenicity. Ideally, one should quantify numbers of antigen-specific tumor-reactive 

CTLs before and after vaccination. However, CTL tumor-reactivity assays are difficult to 

perform since these necessitate a substantial amount of blood and require tumor cells as 

target cells. Thus, many studies use assays measuring T cell responses (cytokine release) to 

TAg used in the vaccine (peptide, protein) presented by conventional APCs, or assess the 

presence of antigen-specific T cells by flow cytometry using peptide/MHC tetramer staining. 

These methods do not evaluate the ability of the vaccine-induced antigen-reactive T cells to 

recognize tumor cells. Some conclude that a vaccine is immunogenic solely in the basis of 

“statistically significant” differences in numbers of antigen-reactive T cells between pre- and 

post-vaccination samples without taking into account whether these differences are truly 

substantial to hold any biological relevance. What constitutes a biological relevant CTL 

response leading to a meaningful therapeutic benefit? Many factors will influence the 

antitumor effectiveness of the T cell response. In addition to the capacity of the CTLs to 

recognize the tumor cells (quality), the ability of the T cells to traffic and infiltrate the tumor 

and to withstand the inhibitory microenvironment will dictate the necessary numbers of 

CTLs required controlling tumor growth. Nevertheless, one can predict that the efficacy of 

the vaccine’s antitumor effect will depend on the magnitude and quality of the CTL 

response.

Based on the work of other [26], we developed a synthetic peptide vaccination strategy 

(TriVax) that induced rapid and vast CTL responses in mice, where in many instances 50–

80% of all CD8 T cells were specific for the peptide immunogen and recognized tumor cells 

[20,32]. In addition to peptide, TriVax contains a PRR agonist (poly-IC) and a DC-activating 

antibody (anti-CD40 mAb). Later we described a simpler vaccine (BiVax), using 

amphiphilic peptides that self-assembled into nanostructures, which were administered with 

poly-IC without the anti-CD40 mAb [33]. Two sequential immunizations (prime/boost) were 

required for generating large CTL responses. These vaccines had to be injected systemically 

(intravenously or intramuscularly), which disseminates the antigen and adjuvant throughout 

the lymphoid organs, optimizing the recruitment of naive CTLs. Amongst several PRRs 
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tested as adjuvants, poly-IC was unique in promoting vast CTL expansions [20,33]. The 

effectiveness of poly-IC as an adjuvant relies in its capacity to stimulate TLR3, shown to be 

important during priming, and its ability to stimulate MDA5, a cytoplasmic RLR responsible 

for generating IFN-I [34], which was critical for the boost CTL expansions. TriVax and 

BiVax were effective against established tumors in mice. In a model of human papilloma 

virus (HPV)-induced tumors, therapeutic immunization using CTL epitope HPV16-E749–57 

resulted in eradication of tumors [32]. With the less immunogenic B16-F10 murine 

melanoma vaccines using several melanosomal derived CTL epitopes (Trp2180–188, 

Trp1455–463 and gp10025–33) significantly reduced growth of established tumors and tumors 

were rejected when vaccines were combined with PD-1 blockade [20,33].

Some propose the use of long synthetic peptide vaccines because this would force antigen 

presentation by DCs [35]. Although this strategy makes sense, in our view the use of potent 

adjuvants and appropriate routes of administration are more critical than simple peptide 

length. We believe that physical properties of peptides resulting from their amino acid 

sequence and composition will determine the immunogenicity of a vaccine. For example the 

minimal CTL epitope HPV16-E749–57 (RAHYNIVTF) was significantly more immunogenic 

(10 to 100-fold) with BiVax as compared to 2 long peptides, HPV16-E745–57 and HPV16-

E743–77 [33]. The minimal epitope is amphiphilic, since one end is hydrophilic (RAHYN) 

while the other is hydrophobic (IVTF), and when this peptide is resuspended in an aqueous 

solvent it self-associates into virus resembling nanoparticles. On the other hand, the 

elongated peptides HPV16-E745–57 and HPV16-E743–77 are not amphiphilic and are water 

soluble, which could result in rapid clearance and lower immunogenicity. Following this 

rationale, the immunogenicity of several non-amphiphilic minimal CTL epitopes was 

improved by elongating them to form amphiphiles [33].

In addition to helping CTL responses, CD4 HTLs display direct antitumor effector function. 

In many instances HTLs are effective in killing MHC class II (MHC-II) expressing tumor 

cells [36], but in other cases, HTLs can eradicate MHC-II negative tumor cells [37]. Our 

group has been involved in identifying MHC-II binding peptides from numerous human 

tumor antigens capable of functioning as HTL epitopes [19]. Many of these peptides 

function as promiscuous epitopes (can be presented by several MHC-II alleles), potentially 

allowing their use as vaccines in broad patient populations. Following the model used with 

CTL vaccines, we reported the use of TriVax for eliciting substantive HTL responses in mice 

[21]. As with CTLs, the induction of HTLs by TriVax required a systemic prime-boost 

peptide administration and relied on IFN-I. HTL responses by TriVax were more effective 

with a TLR7 agonist instead of poly-IC and were enhanced by an OX40 agonist antibody. 

With a peptide derived from Trp1 (Trp1113–127), TriVax was able to overcome immune 

tolerance and induced HTLs capable of recognizing and killing MHC-II-expressing 

(interferon-gamma treated) B16 melanoma cells. TriVax immunization with the Trp1 HTL 

epitope into mice with established B16 tumors resulted in significant reductions in the rate 

of tumor growth [21].
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6. Future challenges for peptide vaccines

Overall, our results demonstrate that peptide vaccines can be an effective way of inducing 

strong CTL and HTL anti-tumor responses in mice when administered with the appropriate 

adjuvants and immunization routes. However, it remains to be determined whether TriVax, 

BiVax or similar vaccination strategies will be effective in patients. There are several 

necessary prerequisites in order to take TriVax or BiVax into the clinic. Although synthetic 

peptides are relatively easy and cost effective to produce under good manufacturing 

practices (GMP), amphiphilic peptides, especially those containing palmitic acid chains can 

pose a challenge to purify using conventional methods. While currently there are no FDA-

approved humanized anti-human CD40 agonistic antibodies, there are several under 

development, which could be used for TriVax. A GMP grade formulation of poly-IC 

(Hiltonol™ from Oncovir, Inc.) that is stabilized with poly-lysine and 

carboxymethylcellulose (poly-ICLC) has been extensively used in the clinic as an 

experimental drug to induce IFN-I to treat multiple sclerosis and glioblastoma and has been 

recently used as an immune adjuvant. We have experimental evidence in mice that poly-

ICLC is a more potent adjuvant for T cell responses as compared to poly-IC (E. Celis, 

unpublished observations). Lastly, there is some reticence for administering vaccines 

intravenously due to safety concerns. Nevertheless, both TriVax and BiVax are effective in 

mice when injected via an intramuscular route, which also disseminates the peptide, poly-IC 

and antibody systemically to reach most antigen-specific T cell precursors.
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Abbreviations

APC antigen-presenting cell

CBI checkpoint inhibitor

CTL cytotoxic T lymphocyte

DC dendritic cell

GMP good manufacturing practices

HTL helper T lymphocyte

HPV human papilloma virus

IFN-I type-I interferon

pAPC professional antigen presenting cell

PRR pathogen recognition receptor

RIG-I retinoic acid inducible gene-I
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RLR RIG-I-like receptor

TAg tumor antigen

TCR T cell receptor

TIL tumor-infiltrating lymphocyte

TLR toll-like receptor
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Highlights

1. Cancer vaccines have not generated effective anti-tumor responses due to 

suboptimal immunogenicity.

2. Peptide vaccines with appropriate adjuvants are the most promising strategy 

to induce tumor-reactive T cells and treat cancer.

3. The combination of optimized peptides, strong adjuvants and costimulatory 

molecule stimulation together with systemic immunizations results in robust 

T cell responses.

4. Therapeutic peptide-based vaccines can reduce the tumor growth by 

generating tumor-specific CD8 CTLs or CD4 HTLs.

5. Blocking the immunosuppressive tumor microenvironment potentiates the 

effectiveness of cancer vaccines.
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Figure 1. Rational path to designing and testing effective T cell epitope-based vaccines for cancer
The goals of tumor vaccines are to induce strong and lasting antitumor T cells that can 

recognize and kill tumor cells (A), and overcome immunosuppression in the tumor 

microenvironment (B). The 4 steps to develop the vaccines: 1) Epitope selection is critical to 

develop effective T cell epitope-based vaccines. TAg potential epitopes that bind to an MHC 

molecule are predicted using computer-based algorithms and can be validated with binding 

assays. The presence of the peptide epitope on tumor cells can be assessed with mass spec 

sequencing of MHC eluted peptides. Epitope immunogenicity is established by in vitro T 

cell stimulation assays or in vivo by vaccinating HLA transgenic mice. 2) To enhance 

immunogenicity the amino acid sequence of epitope can be modified to increase MHC 

binding or enhance amphiphilicity. 3) The selection of appropriate adjuvants, costimulatory 

agonists and cytokines will determine the magnitude and duration of the T cell responses. 4) 

The mode of vaccine administration (injection route, boosters) and the possibility combining 

the vaccine with adjunct treatments are factors to consider for achieving effective antitumor 

responses. The immunogenicity and effectiveness of vaccines should be monitored by 

measuring realistic antitumor effects in vivo (a), changes in TAg-specific T cells pre- and 

post-vaccination (b), assessing T cell reactivity to tumor cells (c), infiltration of T cells in 

tumors (d), and evaluating skin delayed type hypersensitivity (DTH) responses in the 

vaccinees.
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Table 1

Development of vaccines to generate tumor-reactive T cells

Strategy General Overview Reference

Cell-based vaccines

Tumor cells/lysate Killed autologous tumor, cancer cell lines or cell lysates 7, 38

Genetically modified tumor cells Tumor cell lines bioengineered to express cytokines (e.g. GM-CSF, IL- 4) 8–12, 39

Dendritic cells DCs are isolated or prepared ex vivo and loaded with TAg and then injected to 
patients

40

Microorganism-based vaccines

Recombinant viruses Attenuated viruses that encode TAg 41–43

Recombinant bacteria Attenuated, TAg-expressing bacteria (Listeria, Salmonella) 44–45

Recombinant yeast Recombinant yeast particles expressing TAg on their surface enhance and promote 
presentation of TAg by APCs while avoiding risks associated with live pathogen 
vaccine models

46

Subunit vaccines

Peptides, proteins Short, or long TAg-derived; synthetic peptides including helper epitopes; 
carbohydrate- mimetic peptides

20, 21, 26, 30–33, 
35, 47

DNA or RNA DNA plasmids or RNA encoding TAg or identified T cell epitopes injected to 
transduce host cells to express TAg

48, 49

Heat shock proteins HSP-TAg complexes isolated from patient tumor extracts to target TAg to APCs 50
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Table 2

Types of tumor antigens for T cells

TAg Type Pros Cons Examples

A. Products of oncogenic 
viruses

High immunogenicity (no tolerance) The target tumors are limited EBV, HBV, HPV

B. Developmental or germ 
cell products

Lower risk of recognizing self- 
antigens in normal tissue (low 
tolerance)
TAgs can be pharmacologically 
induced in tumor cells

Possibility of adverse effects to 
reproductive organs???

Tumor-testis antigens (MAGE-A3, 
NY- ESO1)

C. Tissue-specific 
differentiation antigens

High specificity, lower risk of off- 
target effects

The target tumors are limited, 
possibility of adverse effects to 
normal tissues
Low immunogenicity (tolerance)

Melanosomal proteins (gp100, 
Trp1, Melan- A/Mart-1), prostatic 
proteins (PSA, PAP)

D. Products of genetic 
alterations derived from 
malignant transformation

High immunogenicity The identification of neoepitopes 
in each individual (i.e. expensive 
and complicated)

a) Overexpressed gene products 
(HER2/NEU, CEA
b) Mutation-derived epitopes (P53, 
Ras, EGFRvIII, BCR-ABL, point 
mutations/neoepitopes)
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