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Abstract

The five-year survival rate for patients with oral cancer remains low, in part because diagnosis 

often occurs at a late stage. Early and accurate identification of oral high-grade dysplasia and 

cancer can help improve patient outcomes. Multi-modal optical imaging is an adjunctive 

diagnostic technique in which autofluorescence imaging is used to identify high-risk regions 

within the oral cavity, followed by high resolution microendoscopy to confirm or rule out the 

presence of neoplasia. Multi-modal optical images were obtained from 206 sites in 100 patients. 

Histologic diagnosis, either from a punch biopsy or an excised surgical specimen, was used as the 

gold standard for all sites. Histopathologic diagnoses of moderate dysplasia or worse were 

considered neoplastic. Images from 92 sites in the first 30 patients were used as a training set to 

develop automated image analysis methods for identification of neoplasia. Diagnostic performance 

was evaluated prospectively using images from 114 sites in the remaining 70 patients as a test set. 

In the training set, multi-modal optical imaging with automated image analysis correctly classified 

95% of non-neoplastic sites and 94% of neoplastic sites. Among the 56 sites in the test set that 

were biopsied, multi-modal optical imaging correctly classified 100% of non-neoplastic sites and 

85% of neoplastic sites. Among the 58 sites in the test set that corresponded to a surgical 

specimen, multi-modal imaging correctly classified 100% of non-neoplastic sites and 61% of 

neoplastic sites. These findings support the potential of multi-modal optical imaging to aid in the 

early detection of oral cancer.
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Introduction

The overall five-year survival rate for oral cancer has remained constant at approximately 

64% over the last decade (1). Early detection is associated with a higher five-year survival 

rate of 80% (1,2). Unfortunately, although the oral cavity is readily accessible for clinical 

examination, only 30% of patients with oral cancer are diagnosed at a localized stage. The 

five-year survival rate for patients with advanced disease is only 37% (1). Early diagnosis of 

oral cancer remains essential for improving treatment outcomes and survival rates.

The current standard of care for oral cancer detection, visual inspection and palpation under 

white light illumination, is strongly dependent on the experience and expertise of the 

clinician. Potentially malignant lesions can often appear similar to benign lesions or be 

missed because of poor visual contrast between the lesion and surrounding normal tissue (2). 

A definitive diagnosis can be confirmed with a biopsy, but the process is resource-intensive, 

time-consuming and requires a trained health-care provider. Imaging tools that can rapidly 

and accurately identify potentially neoplastic oral lesions could improve patient outcomes.

Wide-field autofluorescence imaging (AFI) is a promising method to improve the contrast 

between normal and neoplastic tissue (3–8). Tissue is illuminated with blue or ultraviolet 

light which excites blue-green fluorescence predominantly originating from collagen cross-

links in the stroma (9–11). Neoplasia is associated with loss of fluorescence (LOF) likely 

related to degradation of collagen cross-links (9,11). Secondary contributors to the LOF 

include thickening of the epithelial layer, increase of epithelial scattering, lymphocytic 

infiltration of the lamina propria (subepithelial stroma), and angiogenesis associated with 

dysplasia (9,12–14). AFI has been reported to identify neoplastic lesions with high 

sensitivity; however, it has poor specificity because benign lesions such as inflammation can 

also show LOF (7,9).

High-resolution imaging modalities, such as confocal microscopy or microendoscopy, have 

the potential to improve the specificity of AFI (15–23). Topical contrast agents including 

acetic acid and proflavine highlight cell nuclei and enable direct visualization of cellular 

morphology without removing tissue (20,24–28). Direct visualization of cell morphology 

enables real-time assessment of nuclear features such as nuclear area, nuclear crowding, and 

nuclear to cytoplasmic area ratio (29–31). One drawback of these high-resolution imaging 

techniques is their small field of view, which can potentially miss focal areas of neoplasia.

Multi-modal imaging, where wide-field AFI is used to identify suspicious regions of tissue 

which are then further interrogated with high-resolution imaging, could enable identification 

of neoplastic oral lesions with high sensitivity and specificity. Pierce et al. performed a 30 

patient pilot study to evaluate the accuracy of multi-modal imaging using AFI and high-

resolution microendoscopy (HRME) to identify oral neoplasia (25). Manual image analysis 

of the multi-modal images correctly classified 98% of non-neoplastic imaging sites and 95% 

of imaging sites graded as moderate or severe dysplasia or cancer (25). Moreover, multi-

modal optical imaging with manual image analysis classified as neoplastic 35% of sites 

graded as mild dysplasia; of these, 80% overexpressed p63. In contrast, only 10% of mild 
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dysplasia sites which were classified as non-neoplastic by multi-modal imaging 

overexpressed p63. While results of the initial pilot study were promising, the analysis was 

performed retrospectively in a relatively small dataset. Additionally, the image analysis 

procedure used in the study required several user input steps. Here, we report a prospective 

evaluation of a fully automated analysis of multi-modal optical imaging to identify oral 

neoplasia. Using data from the 30 patients reported by Pierce et al. as a training set, we 

developed an automated image analysis algorithm. We compare performance of this 

automated algorithm to the previously reported manual algorithm. An additional 70 patients 

are then evaluated as a test set.

Materials and Methods

Study population

One hundred patients over the age of 18 scheduled for surgical resection of clinically visible 

oral lesions were recruited for the study and provided written, informed consent prior to 

participation. This study was approved by the Institutional Review Boards of the University 

of Texas M. D. Anderson Cancer Center and Rice University.

Imaging systems

Images of the oral mucosa were obtained using two imaging systems: a wide-field 

autofluorescence imaging system (AFI) and a high-resolution microendoscope (HRME). 

The technical specifications of both systems have been previously described in detail 

(23,25). Briefly, the AFI system collects both a 405 nm excited autofluorescence image and 

a white light reflectance image from a 4.5 cm diameter field of view (FOV) with a 100 μm 

lateral resolution to reveal suspicious regions with LOF. The HRME is a fiber-optic, 

fluorescence microscope that collects a 455 nm excited fluorescence image from a 720 μm 

FOV with a 4.4 μm lateral resolution; topical application of the fluorescence contrast agent 

proflavine (0.01% in PBS) enables visualization of nuclear morphology to confirm the 

presence of neoplasia (32).

Contrast agent

Proflavine has a long history of safe use as a topical antiseptic and has been used as a 

contrast agent for confocal endomicroscopy trials (33,34). Additionally, proflavine is a 

component of triple dye, a topical antiseptic used primarily for umbilical cord care (35). We 

performed this study with proflavine under IND status with the FDA (IND #108932).

Study protocol

We followed the study protocol described in Pierce et al. (25). Briefly, patients were imaged 

while under general anesthesia immediately before surgery. The oral surgeon first performed 

a standard white light examination to identify up to four clinically abnormal imaging sites 

and one clinically normal imaging site. Imaging site locations were selected based on the 

surgeon’s identification of any lesion areas under white light examination; additional sites 

could be selected based on the signal from the imaging systems. Each imaging site was then 

described and classified by the surgeon as normal, abnormal low risk, abnormal high risk, or 

cancer. The surgeon was not blinded to the patient’s history. Next, autofluorescence images 
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were acquired from each anatomic area containing an imaging site. After AFI imaging, up to 

1 mL of proflavine solution (0.01% w/v) was topically applied with a cotton-tipped 

applicator to each region of interest. HRME images were then acquired; the surgeon placed 

the fiber optic probe in gentle contact at each imaging site. A digital photograph was taken 

at each location where the fiber probe was placed for later correlation of imaging and biopsy 

sites. Finally, either a 4 mm punch biopsy was taken at each imaging site location or a 

surgical specimen was taken and the oral surgeon identified the location of the imaging site 

on the specimen after resection of the tissue.

Pathology processing and review

Imaging sites corresponding to a 4 mm punch biopsy and imaging sites corresponding to a 

surgical specimen were evaluated separately. Biopsy and surgical specimens were routinely 

sectioned and stained with hematoxylin and eosin (H&E), then reviewed by the study 

pathologist who was blinded to the optical imaging results. Sites were graded as normal/

hyperkeratosis, mild dysplasia, moderate dysplasia, severe dysplasia, or cancer according to 

the WHO grading system (36).

A systematic review was also performed for histologic slides of the imaging sites taken from 

surgical specimens in the test set classified as neoplastic by optics to evaluate their 

heterogeneity. Each slide was visually evaluated by the study pathologist to measure the 

overall length of the slide specimen and to map the different histologic diagnoses present in 

each slide. The fraction of neoplasia observed in each slide was then calculated using the 

histologic map. Here, fraction of neoplasia is the length of the slide specimen classified as 

neoplastic by the study pathologist divided by the entire length of the slide specimen.

Immunohistochemical staining

To explore correlation between optical and molecular markers of progression, 

immunohistochemical (IHC) staining of molecular markers Ki-67, p63, and PHH3 was 

performed on sites corresponding to a biopsy diagnosed as normal or dysplastic (any grade) 

by pathology to aid in delineation of mild dysplasia. These markers were previously selected 

by Pierce et al. because prior studies have shown they are overexpressed in oral neoplasia 

and associated with the risk of neoplastic progression (25). Ki-67 is widely accepted as a 

marker of cellular proliferation. Increased Ki-67 expression has been observed in oral tissue 

diagnosed from normal through cancer. Additionally Ki-67 has shown predictive potential 

when combined with other markers (37). p63 is part of the p53 tumor suppressor family and 

has been assessed as a biomarker to predict oral cancer risk in patients with leukoplakia (38). 

High expression levels were previously suggested to be well associated with positive optical 

classification using HRME and AFI (25). Lastly, Phosphohistone-H3 (PHH3) is a core 

histone protein associated with mitotic figures (39). Evaluation and expression scoring of 

tissue sections followed the criteria reported in Pierce et al (25). Briefly, IHC staining was 

performed using standard techniques with the automated BOND MAX 

immunohistochemistry stainer by Leica Biosystems. After staining, the study pathologist 

designated a discrete IHC score based on the staining of each marker for each site. Ki-67 

staining was reported as staining confined in the basal layer only, lower one-third of the 

epithelium, mid one-third of the epithelium, or full thickness of the epithelium. p63 
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expression was reported as staining confined in the lower one-third, two-thirds, or full 

thickness of the epithelium. PHH3 staining was reported by quantifying the number of 

positively stained nuclei within a single 20× microscope field of view in addition to the 

epithelial location.

Image selection and quality control

Autofluorescence images were reviewed for quality control using the following criteria: area 

of interest was in focus and no motion blur was present. For each autofluorescence image 

passing quality control, the surgeon selected a 31 × 31 pixel region of interest (ROI) that 

corresponded with the location of an imaging site. This approximately corresponds to the 

area of a four millimeter punch biopsy. The white light image of the anatomic area and the 

digital photograph of the fiber probe location were used as a reference to identify the ROI 

location.

Multiple HRME videos were taken for each imaging site. HRME videos were reviewed 

from each site to select a single, representative image for each imaging site. A single frame 

was first selected from every movie acquired using an automated frame selection algorithm 

described by Ishijima et al (40). Single frames were then reviewed together at each 

corresponding imaging site. Next, three reviewers blinded to the histologic diagnosis of each 

biopsy site selected the single image deemed to have the highest image quality by consensus 

agreement. The reviewers used the following selection criteria: greater than 50% of the 

imaging field of view was unobscured by debris or keratin, motion blur was not present, and 

nuclei could be distinguished by visual evaluation. In the case where multiple high quality 

images were available, reviewers selected the image that appeared to have the largest nuclei 

by visual evaluation.

Quantification of AFI and HRME

To identify suspicious regions in autofluorescence images, the ratio of red to green 

autofluorescence intensity was calculated at each pixel in the image. To account for patient 

to patient variation, this red to green (R:G) intensity ratio map was normalized with respect 

to the R:G intensity ratio of a normal ROI in the same patient. Selection of the normal ROI 

was performed by an automated algorithm which identified the ROI with the lowest R:G 

intensity ratio in the tissue region visible in the image; a clinician subsequently viewed the 

corresponding white-light image and confirmed that this ROI was indeed clinically normal.

HRME images for each site were analyzed using an automated image analysis procedure 

(30). Briefly, the algorithm first identifies regions in the HRME image that are free of areas 

that are too bright or too dim, adjusts the contrast of the image, and converts the image into a 

binary image to separate the nuclei from the cytoplasm. Morphologic filtering is then 

applied to the binary image to eliminate regions corresponding to small pieces of debris. 

After image segmentation, the following metrics were calculated for each HRME image: 

mean, median, and standard deviation of nuclear area, eccentricity, solidity, and aspect ratio. 

Additional metrics included ratio of nuclear intensity to cytoplasmic intensity, Weber 

contrast, Michelson contrast, and nuclear to cytoplasmic area ratio. Additionally, each 

nucleus in the FOV was classified as normal or abnormal using criteria based on nuclear 
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area and eccentricity reported in Quang el al (30). In this case, a nucleus was defined as 

abnormal if its nuclear area was greater than or equal to 162.9 μm2 and nuclear eccentricity 

was greater than or equal to 0.686. Additionally, any nucleus with a nuclear area greater than 

or equal to 200 μm2 was also classified as abnormal regardless of its eccentricity. The 

fraction of abnormal nuclei and the number of abnormal nuclei per mm2 were calculated for 

each FOV. All analyses were performed in MATLAB (Mathworks, Natick, MA).

Classification of imaging sites

A two-class linear discriminant algorithm was developed to discriminate between neoplastic 

(histologically graded as moderate/severe dysplasia or cancer) and non-neoplastic 

(histologically graded as normal) imaging sites. A training set for the algorithm was 

generated using data from the first 30 patients previously reported by Pierce (25) and a test 

set was generated using data from the remaining 70 patients. Imaging sites diagnosed as 

mild dysplasia were excluded from the initial classification. To select the optimal HRME 

image metric, receiver operating characteristic (ROC) curves were generated for each of the 

21 image metrics calculated. Diagnostic performance was evaluated by calculating the area 

under the ROC curve (AUC). The HRME image metric with the largest AUC for the training 

set was selected as the optimal image metric. Next, the normalized R:G ratio and the best 

performing HRME feature were used together to develop a two-class linear discriminant 

analysis algorithm to classify the site as neoplastic or non-neoplastic. The algorithm was 

developed using images from the training set and evaluated using the test set. Performance 

was calculated separately for sites where the histologic diagnosis was obtained from a 

biopsy and where it was obtained from a surgical specimen. The distinction between 

biopsies and surgical specimens was made because imaging site correlation was performed 

at different points in time during the study procedure and because of the difference in size 

between the biopsies and the surgical specimens.

Results

Image selection

One hundred patients were recruited for the study. Images were obtained successfully from 

93 patients; seven were not imaged because of either instrument failure or excess of blood at 

the lesion area. Images were acquired from 296 sites. AFI and HRME images were both 

available and passed QC review at 206 sites. Ninety sites were excluded from the 

multimodal image analysis for the following reasons: missing image data from either AFI or 

HRME (44 sites) or poor quality image from either AFI or HRME (46 sites). Sites excluded 

due to missing data occurred because the AFI image taken did not capture the area where the 

biopsy was taken. Sites excluded because of poor image quality most commonly occurred 

because nuclei could not be visualized in the HRME image because of the presence of 

surface keratin. Table 1 summarizes the histologic diagnosis for all sites included in the 

analysis. For the first 30 patients, images from 92 sites were used for the training set. 

Biopsies were obtained for 86 of these sites, while surgical specimens were obtained from 

six sites. For the next 70 patients a 4 mm punch biopsy was taken for 56 of the imaged sites 

and a surgical specimen was available for 58 of the imaged sites. Images corresponding to 

biopsies and to surgical specimens were evaluated as two separate test sets.
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Application of image analysis

Figure 1 shows multi-modal images analyzed using the automated procedure from a patient 

with a clinically suspicious lesion on the right posterior tongue. Figures 1A and 1B show the 

white light reflectance and autofluorescence images respectively. The white squares in 

Figure 1B represent ROIs corresponding to biopsy site locations. Biopsies were taken at the 

lesion from an area displaying LOF and at a clinically normal region selected by the 

surgeon. Figure 1C shows the normalized R:G ratio overlaid atop the white light image. The 

highlighted areas represent areas with a normalized R:G ratio above a previously established 

threshold value. Figures 1D–1F and 1G–1I show the raw and processed HRME images and 

corresponding histology of site 1 and site 2 respectively. Site 1 was graded as non-neoplastic 

and corresponding images showed a low normalized R:G ratio and number of abnormal 

nuclei (1.26, 99.8). Site 2 was graded as severe dysplasia and corresponding images showed 

a high normalized R:G ratio and number of abnormal nuclei per mm2 (2.39, 371.1).

Table 2 summarizes the area under the ROC curve calculated for the five best performing 

HRME image metrics for imaging sites from the training set. Number of abnormal nuclei 

per mm2 was the best performing HRME metric with an AUC of 0.896.

Diagnostic performance in training and test sets

In the original analysis by Pierce et al., 100 imaging sites were originally acquired from 30 

patients used in the training set. For the automated analysis, eight out of the 100 imaging 

sites were excluded from analysis because of poor image quality. Figure 2A shows the 

original multi-modal image analysis reported by Pierce et al. using nuclear to cytoplasmic 

(N/C) area ratio and normalized R:G ratio; the linear threshold shown correctly classified 

98% of imaging sites histologically graded as non-neoplastic and 95% of histologically 

graded neoplastic imaging sites. Figure 2B shows multi-modal analysis for the training set 

generated from the same 30 patients using the automated image analysis reported here. 

Number of abnormal nuclei per mm2 was used instead of N/C ratio. The linear threshold for 

this analysis correctly classified 95% of non-neoplastic sites and 94% of neoplastic sites. 

Figures 2C and 2D show the multi-modal analysis for the test set. Results for the 56 imaging 

sites that were biopsied are shown in Fig. 2C and results from the 58 sites for which a 

surgical specimen was obtained are shown in Fig. 2D. For sites that were biopsied, the same 

linear threshold used in Fig 2B correctly classified 100% of non-neoplastic sites and 85% of 

neoplastic sites. For the 58 sites corresponding to a surgical specimen, performance was 

comparable for non-neoplastic sites (100% correctly classified), but lower for neoplastic 

sites (only 61% correctly classified).

We hypothesized that the reduced accuracy for identification of neoplasia in sites from 

which a surgical specimen was obtained was because of challenges identifying the location 

from which the image was obtained in the relatively large surgical specimen. Such 

registration errors would not affect performance for non-neoplastic specimens. To test this 

hypothesis, we assessed the fraction of the epithelium that contained neoplasia for each 

surgical specimen. We compared this fraction for neoplastic sites which were correctly 

classified and for those which were incorrectly classified; results are shown in Figure 3. The 

mean fraction of neoplasia in the surgical specimen was significantly lower (p<0.001) in 
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sites that were misclassified as non-neoplastic than in sites that were correctly classified as 

neoplastic, suggesting that the decrease in performance is related to challenges in identifying 

the image site on the surgical specimen.

Stratification of mild dysplasia by immunohistochemistry

Out of the 296 sites imaged, IHC staining for Ki-67, p63, and PHH3 was performed for sites 

that were histologically graded as normal or dysplastic (any grade). Of these sites, IHC 

staining was acquired from 102 sites corresponding to a 4 mm punch biopsy. Complete IHC 

results were available at 97 sites; of these, 48 were graded as normal, 25 as mild dysplasia, 

14 as moderate dysplasia, and 10 as severe dysplasia. Figure 4A shows mean IHC scores for 

each biomarker vs pathology diagnosis; in general, biomarker expression level increased 

with pathology grade for all three markers.

Complete IHC results and multimodal imaging data were available for 44 of the 48 biopsy 

sites graded as normal and 42 of the 49 biopsy sites graded as dysplasia (any grade); of the 

dysplasia sites, 21 were graded as mild dysplasia, 12 as moderate dysplasia, and 9 as severe 

dysplasia. Figure 4B shows the fraction of imaged sites with a positive IHC score for p63 

and for the full panel of markers tested. For sites graded as mild dysplasia, p63 expression 

was elevated in 27% of sites classified as non-neoplastic by optical assessment, but was 

elevated in 60% of sites classified as neoplastic by optical assessment. Figure 4C shows a 

scatter plot of the image metrics for the 21 imaging sites graded as mild dysplasia stratified 

by p63 expression.

Discussion

Early detection of oral neoplasia remains the best way to improve long term patient 

outcomes. Improved diagnostic tools are needed to detect early-stage disease quickly and 

accurately. Multi-modal imaging using AFI to identify suspicious areas and HRME to 

investigate those areas further can be a valuable diagnostic adjunct to identify oral neoplasia. 

The addition of automated image analysis provides quantitative, real-time feedback. We 

developed a two-parameter classification algorithm using a training set generated from the 

first 30 patients enrolled in the study and evaluated its performance in an independent test 

set generated from the remaining 70 patients. In the training set, the automated image 

analysis achieved comparable classification accuracy to previously reported manual results 

while following consistent, objective criteria and minimizing reliance on user input. 

Furthermore, performance of the classification algorithm showed similar performance in the 

test set for those sites which were biopsied immediately following imaging.

The apparently lower sensitivity in sites corresponding to surgical specimens (61% 

sensitivity at sites corresponding to surgical specimens compared to 85% sensitivity at sites 

corresponding to biopsies) is likely due to the challenges in precisely identifying the small 

location that was imaged in the large surgical specimen. The FOV of the HRME is 720 μm 

in diameter, an area that is slightly smaller than a punch biopsy, but more than an order of 

magnitude smaller than a typical surgical specimen. Within a given specimen, histology can 

vary from normal to high-grade dysplasia and back within a small spatial region. The 

multifocal nature of oral dysplasia makes precise coregistration between the image site and 
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the histology result more difficult in large specimens. Figure 3 shows that classification 

errors are more likely in images that were obtained from surgical specimens in which a 

smaller fraction of the epithelium contains neoplasia, consistent with this hypothesis.

It can be challenging for clinicians to estimate the risk of malignant progression for lesions 

with mild dysplasia as it can occur temporarily because of inflammation or trauma or it can 

be the initial stage of transition to high-grade dysplasia (41). We observed high p63 

expression in 60% of sites graded as mild dysplasia and classified as neoplastic by optical 

assessment. In contrast we observed high p63 expression in only 27% of sites graded as mild 

dysplasia and classified as non-neoplastic by optical assessment. These results suggest that 

there is a relationship between high biomarker expression and optical imaging. However, 

other candidate markers for progression should also be explored in a larger number of sites 

with mild dysplasia.

While the work described in this study shows promise, additional work is needed to 

eventually use multi-modal optical imaging practically in a general clinic setting. Future 

work would start with integrating the image analysis algorithms with the image acquisition 

and upgrading instrumentation to improve image quality. Currently, the image analysis 

algorithms have a computation time of approximately 12–16 seconds. Porting to a lower-

level computer language would further reduce this computation time. Instrumentation 

upgrades would entail reducing the size and cost of the systems and reducing the image 

acquisition times to improve image quality. Additionally, integration into the clinical 

workflow could be aided by use of tablet-based interfaces, which has been reported in 

tandem with the HRME (30). Future work will also entail implementing the automated 

image analysis in real-time in order to investigate how the availability of real-time diagnostic 

information will impact the clinician’s decision making process.

Results of this study provide evidence that multi-modal optical imaging could be a valuable 

diagnostic aid to improve identification of oral neoplasia and to assist in determining optimal 

sites for biopsy. Multi-modal imaging provides objective, quantitative results that may be 

especially useful in situations where an expert clinician with experience evaluating oral 

lesions is not available.
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Figure 1. 
Multi-modal images from a patient with a clinically suspicious lesion at the right lateral 

tongue. Top row shows the white light reflectance image (A), autofluorescence image (B), 
and normalized R:G ratio overlay (C). White squares in (B) denote regions of interest 

corresponding to biopsy site locations. Middle row shows the raw HRME (D), processed 

HRME image (E) and corresponding histology image (F) for biopsy site 1. Bottom row 

shows the raw HRME image (G), processed HRME image (H), and corresponding histology 

(I) for biopsy site 2. Histology images taken at 20× magnification. Scale bar denotes 100 

μm. R:G: Red:Green. HRME: High-resolution microendoscope.
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Figure 2. 
Diagnostic algorithm based on multi-modal imaging parameters for (A) training set using 

manual image analysis as reported by Pierce et al. (B) training set using automated image 

analysis, (C) test set using automated analysis of biopsied sites, and (D) test set using 

automated analysis of surgical specimens. Dashed lines represent linear threshold values to 

discriminate neoplastic and non-neoplastic sites. Data from two correctly classified 

neoplastic sites in (C) were omitted from view due to scaling of the x-axis.
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Figure 3. 
Comparison of mean fraction of neoplasia for histologic slides for imaging sites taken from 

surgical specimens in the test set correctly or incorrectly classified as neoplastic by optics. 

*p << 0.001
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Figure 4. 
Immunohistochemical (IHC) analysis of pathologically normal and dysplastic tissue sites. 

(A) Mean IHC score versus pathology grade for each biomarker. Errors bars = standard 

errors. (B) The fraction of tissue sites with positive IHC score for p63 or for the full panel of 

markers vs pathologic and optical diagnosis. (C) Plot of number of abnormal nuclei per mm2 

versus normalized red to green intensity ratio of twenty-one imaging sites diagnosed as mild 

dysplasia by histopathology, stratified by p63 expression. R:G: Red:Green. Dysp: Dysplasia.
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Table 1

Summary of imaging sites in the multimodal image analysis set, by pathologic diagnosis.

Pathologic Diagnosis
Training Set: Patients 1–30 Test Set: Patients 31–100

Biopsy Surgical Specimen Biopsy Surgical Specimen

Normal 37 4 34 6

Mild Dysplasia 14 1 9 8

Moderate Dysplasia 13 0 3 9

Severe Dysplasia 6 0 4 8

Cancer 16 1 6 27

Total 86 6 56 58
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Table 2

Area under the curve (AUC) of the five best performing high-resolution microendoscope (HRME) image 

metrics for the training set.

HRME Image Metric Area under the Curve

Number of Abnormal Nuclei (1/mm2) 0.896

Standard Deviation of Nuclear Area 0.875

Median Eccentricity 0.858

Mean Aspect Ratio 0.857

Mean Eccentricity 0.856
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