Skip to main content
. Author manuscript; available in PMC: 2017 Oct 4.
Published in final edited form as: Clin Trials. 2008;5(2):93–106. doi: 10.1177/1740774508089279

Table 1.

Bayesian predictive probability approach: A schema and an example.

A. Schema
Y=i Prob(Y=i | x) Bi=Prob(P>p0 | x, Y=i) Ii(Bi> θT)
0 Prob(Y=0 | x) B0=Prob(P>p0 | p, f(p|x, Y=0)) 0
1 Prob(Y=0 | x) B1=Prob(P>p0 | p, f(p|x, Y=1)) 0
m-1 Prob(Y=m-1| x) Bm-1 =Prob(P>p0 | p, f(p|x, Y=m-1)) 1
m Prob(Y=m | x) Bm =Prob(P>p0 | p, f(p|x, Y=m)) 1
B. Example: Nmax = 40, x = 16, n = 23, prior distribution of P ~ beta(0.6, 0.4)
Y=i Prob(Y=i | x) Bi=Prob(P>60% | x, Y=i) Ii(Bi>0.90)
0 0.0000 0.0059 0
1 0.0000 0.0138 0
2 0.0001 0.0296 0
3 0.0006 0.0581 0
4 0.0021 0.1049 0
5 0.0058 0.1743 0
6 0.0135 0.2679 0
7 0.0276 0.3822 0
8 0.0497 0.5085 0
9 0.0794 0.6349 0
10 0.1129 0.7489 0
11 0.1426 0.8415 0
12 0.1587 0.9089 1
13 0.1532 0.9528 1
14 0.1246 0.9781 1
15 0.0811 0.9910 1
16 0.0381 0.9968 1
17 0.0099 0.9990 1