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Abbreviations
Ap2A	� Diadenosine 5′,5‴-P1,P2-diphosphate (other 

diadenosine polyphosphates are abbreviated 
similarly)

EGFP	� Enhanced green fluorescent protein
MOI	� Multiplicity of infection

1  Introduction

Mammalian genomes typically possess 20–25 genes for 
members of the Nudix superfamily. Nudix proteins hydro-
lyze or bind a wide variety of nucleotide and other phos-
phorylated molecules and are involved in many processes 
including nucleotide pool regulation, metabolic control 
and RNA decapping [1, 2]. Several Nudix hydrolases have 
broad substrate specificities in vitro, making it difficult to 
ascertain their functions in  vivo [2]. This uncertainty is 
compounded by the common misannotation of uncharac-
terized Nudix proteins in online databases as, for example, 
ADP-ribose pyrophosphatases or antimutator 8-oxo-dGT-
Pases based on sequence similarities to well characterized 
proteins with these activities; thus, experimental characteri-
zation is important. Most mammalian nudix proteins have 
been well studied, but a few, such as NUDT13, have not. 
NUDT13 is annotated in some databases as a mitochon-
drial NADH pyrophosphohydrolase. This is based on the 
presence of a putative N-terminal mitochondrial targeting 
sequence and the sequence motif “SQPWPFPxS” that is 
found in all characterized NADH pyrophosphohydrolases 
downstream of the catalytic nudix box [3]. A mitochondrial 
location has also been suggested from a proteomic study 
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[4]. Here, we experimentally confirm these predictions for 
the first time with recombinant mouse Nudt13 expressed 
in a baculovirus system. This should now allow the poten-
tial influence of Nudt13 and its orthologs to be included in 
studies of nicotinamide dinucleotide metabolism, energy 
homeostasis, mitochondrial dynamics and disease where it 
has hitherto not been considered.

2 � Materials and Methods

2.1 � Materials

RIKEN clone 3110052E14, a full-length cDNA insert 
from 13-day mouse embryo head cloned between the XhoI 
and SstI sites of pBluescript I SK(+), was obtained from 
RIKEN (the Institute of Physical and Chemical Research), 
Yokohama, Japan. Bac-N-Blue linear viral DNA, pBlue-
Bac4.5/V5-His vector, Escherichia coli TOP10, Sf21 (Spo-
doptera frugiperda) and High Five (Trichoplusia ni) insect 
cells, Sf-900 II SFM medium, Cellfectin and MitoTracker 
Red CM-H2XRos were from Invitrogen (Thermo Fisher 
Scientific). pEGFP-N1 and pEGFP-C2 were from Clon-
tech. EX-CELL 405 medium was from Sigma. FuGENE 
was from Roche. The anti-His.Tag monoclonal antibody 
was from Merck.

2.2 � Cloning of Nudt13 from cDNA into Baculovirus 
Vector

The mouse Nudt13 gene was PCR-amplified from clone 
3110052E14 using the forward and reverse primers 5′-CAG​
ACT​CGA​GAA​TGA​ATC​GGA​CAA​TGT​CTC​-3′ and 
5′-CCA​TTT​AAG​CTT​AGC​AGC​CAGGG-3′ which pro-
vided a XhoI site at the start of the amplified gene and a 
HindIII site at end. After amplification with Pfu DNA 
polymerase, the Nudt13 PCR product was purified using 
a Qiagen PCR purification kit and digested with XhoI and 
HindIII. The digest was gel-purified and the product ligated 
between the XhoI and HindIII sites of the pBlueBac4.5/
V5-His vector. The resulting pBlueBac-Nudt13 construct 
(10  ng), encoding Nudt13 with a C-terminal His.Tag and 
V5 epitope under the control of the strong polyhedrin 
promoter, was electroporated into E. coli TOP10 cells for 
propagation and its structure confirmed by sequencing.

Recombinant Nudt13 virus was obtained by co-trans-
fection of the pBlueBac-Nudt13 DNA construct with lin-
earized Bac-N-Blue viral DNA in Sf21 cells. pBlueBac-
Nudt13 DNA (2  µg) was mixed with 0.5  µg Bac-N-Blue 
DNA in 1.5 ml Sf-900 II SFM and then 20 µl of Cellfec-
tin was added, mixed for 10  s, then incubated for 45 min 
at room temperature. Sf21 cells (106 cells/60  mm dish) 
were washed with 4 ml Sf-900 II SFM and the transfection 

mixture added. After 4 days at 27  °C, pure recombinant 
Nudt13 plaques were isolated from the viral supernatant 
by blue/white color selection and plaque purification using 
Sf21 cells [5]. The structures of the recombinants were 
confirmed by PCR analysis of purified viral DNA and a 
high titer Nudt13 viral stock (5 × 108 pfu/ml) prepared from 
purified virus [5].

2.3 � Expression and Purification of Nudt13

After optimisation of the time and multiplicity of infec-
tion (MOI) for expression of Nudt13, High Five™ cells 
were seeded as a monolayer in EX-CELL 405 medium in 
10 × 75 mm2 flasks at 107 cells/flask at 27 °C then infected 
with recombinant Nudt13 virus at a MOI of 10. After 
48 h, the cells were dislodged and centrifuged at 1000×g 
for 10 min at 4 °C, then washed with PBS. The cells were 
lysed in 5 ml 50 mM Tris–HCl, pH 8, 50 mM NaCl, 1% 
(v/v) Triton X-100, 1% (v/v) Nonidet P-40, and 1 mM phe-
nylmethylsulfonylfluoride. After 2 h at 4 °C, the lysate was 
sonicated four times, 20 s each time. The extract was cen-
trifuged at 15,000×g for 20 min at 4 °C and the supernatant 
mixed with 1 ml NiCAM™-HC resin (Sigma) equilibrated 
in 50  mM Tris–HCl, pH 8.0, 500  mM NaCl and gently 
shaken for 2 h at 4 °C. The mixture was then poured into 
a 15 × 50 mm column, the column washed with 2 × 10 ml 
50 mM Tris–HCl, pH 8.0, 500 mM NaCl, 10 mM imida-
zole, and the protein eluted with 3 ml 50 mM Tris–HCl pH 
8.0, 500 mM NaCl, 0.25 M imidazole. The purified protein 
was dialysed overnight against 2 × 1 l of 50 mM Tris–HCl 
pH 8.0, 50 mM NaCl, 1 mM dithiothreitol.

2.4 � Nudt13‑EGFP Fusion Constructs and Subcellular 
Localization

The same PCR product used to make the pBlueBac-Nudt13 
construct was used to make N- and C-terminal fusions of 
Nudt13 to enhanced green fluorescent protein (EGFP). It 
was ligated between the XhoI and HindIII sites of pEGFP-
N1 or pEGFP-C2 to give pNudt13-EGFP or pEGFP-
Nudt13 respectively. The plasmids were propagated by 
transformation of E. coli TOP10 cells. HeLa cells, 6 × 104 
cells/dish, were seeded into 35 mm glass-bottomed dishes 
(MatTek, Ashland, MA, USA) in 2 ml complete MEM and 
transfected after 24  h when at 50% confluence. FuGENE 
(2.5 µl/µg DNA) was diluted into 100 µl serum-free MEM, 
incubated for 5 min at room temperature and added drop-
wise to 1 µg pNudt13-EGFP or pEGFP-Nudt13 in a volume 
of 10  µl. The mixture was incubated for 45  min at room 
temperature. The old medium was removed from the dishes 
and replaced with 2 ml of fresh complete MEM and then 
the transfection mixture was added dropwise to the cell 
monolayer. The cells were incubated for up to 24 h at 37 °C 
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in a humidified incubator containing 5% CO2. Mitochon-
dria were visualized by incubating HeLa cells 16–24 h after 
transfection with pNudt13-EGFP in complete MEM con-
taining 50–100 nM of MitoTracker red for 45 min at 37 °C 
in a humidified incubator in 5% CO2. After removal of the 
dye, cells were observed in the confocal microscope as pre-
viously described [6].

2.5 � Enzyme Assays

The standard colorimetric assay (200  µl) for determin-
ing optimal substrate and conditions was incubated at 
37 °C for 20 min and contained 50 mM Tris–HCl, pH 8.0, 
2 mM MnCl2, 1 mM dithiothreitol, 0.5 mM substrate, 1 µg 
Nudt13 and 0.5 µg (1 unit) alkaline phosphatase for phos-
phodiester substrates or 0.5 µg (100 mU) inorganic pyroph-
osphatase for phosphomonoesters. Phosphate released was 
determined colorimetrically [7]. Reaction products were 
identified by high performance ion-exchange chromatog-
raphy after incubation of 0.25 mM substrate with 0.25 µg 
Nudt13 in 100 µl 50 mM Tris–HCl, pH 8, 2 mM MnCl2, 
1 mM dithiothreitol, at 37 °C for 10 min [8]. Kinetic con-
stants were determined using a substrate range from 0.05 to 
0.9 mM and 0.25 µg protein.

3 � Results

3.1 � The Nudt13 Sequence

The mouse Nudt13 gene encodes a 356 amino acid, 
39.6  kDa protein (GenBank Accession No. BAB29203) 
with 78% identity to human NUDT13. It comprises two 
structurally similar domains separated by a rubredoxin-like 
zinc finger (residues 164–195) [9]. The C-terminal domain 
(residues 196–318) has a canonical Nudix fold [10] and 
contains both the catalytic Nudix box and the downstream 
“SQPWPFPxS” motif and is 41% identical to the equiva-
lent region of mouse Nudt12, a mouse peroxisomal NADH 
pyrophosphohydrolase [6] and 39% identical to the C-ter-
minal region of Arabidopsis thaliana AtNUDX19 NADPH 
pyrophosphohydrolase [11]. The N-terminal domain (resi-
dues 46–162) has a rudimentary Nudix fold preceded by 
a 27-residue sequence predicted by MitoProt (97%), and 
TargetP (85%) to comprise a mitochondrial leader sequence 
[12, 13].

3.2 � Cloning, Expression and Purification of Nudt13

All attempts to obtain recombinant Nudt13 by expression 
in E.coli yielded insoluble, inactive protein, which may 
explain the lack of any study reporting the properties of 
this enzyme so far. However, we were successful with a 

baculovirus expression system. The Nudt13 sequence 
was PCR-amplified from a full-length mouse embryo 
cDNA and inserted into the pBlueBac4.5/V5-His expres-
sion vector in frame with the C-terminal His.Tag and V5 
epitope to give a theoretical protein of expected mass 
42,679 Da under the transcriptional control of the bacu-
lovirus polyhedrin promoter. The nucleotide sequence of 
the insert was determined to be exactly the same as that 
submitted to GenBank under accession no. AK014204. 
Sf21 insect cells were co-transfected with the pBlueBac-
Nudt13 DNA construct and Bac-N-Blue viral DNA and 
pure recombinant Nudt13 baculovirus isolated by plaque 
assay and purification.

High Five insect cells were then infected with pure 
Nudt13 virus. SDS-PAGE analysis of a cell lysate 48  h 
after infection showed the presence of a major band cor-
responding to a 42  kDa protein in cells infected with 
Nudt13 virus which represented more than 50% of the 
total cell extract and which was not present in uninfected 
cells (Fig. 1a). The expression of Nudt13 was confirmed 
by western blotting using an anti-His.Tag monoclonal 
antibody which detected the C-terminal His.Tag of the 
recombinant Nudt13 (Fig.  1b). It was purified to homo-
geneity by affinity chromatography on NiCAM-HC resin 
(Fig. 1a, lane 4).
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Fig. 1   Expression of Nudt13 in High Five™ cells. High Five™ cells 
were infected with recombinant Nudt13 virus at a MOI of 10 for 48 h. 
Samples were analysed by SDS-PAGE (15% w/v) and stained with 
Coomassie Blue. a Lane 1 protein standards: bovine serum albumin 
(66 kDa), ovalbumin (45 kDa), glyceraldehyde 3-phosphate dehydro-
genase (36 kDa), carbonic anhydrase (29 kDa), trypsinogen (24 kDa), 
soybean trypsin inhibitor (20  kDa) and α-lactalbumin (14.2  kDa); 
lane 2 control uninfected High Five™ cells; lane 3 high Five™ cells 
infected with Nudt13 virus for 48 h; lane 4 purified Nudt13. b Immu-
noblot analysis of Nudt13 (the same cells as in a, lane 3) using His.
Tag monoclonal antibody
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3.3 � Substrate Specificity and Reaction Requirements 
of Nudt13

Among the substrates tested, Nudt13 showed a high degree 
of specificity towards NADH and NADPH compared with 
other related nucleotides when assayed at a fixed concentra-
tion of 0.5 mM. Low activity was found with Ap2A, NAD+

, 
NADP+

, FAD and ADP-ribose and little or no activity with 
other nucleotides examined (Table 1). With NADH as sub-
strate, Nudt13 displayed optimal activity at alkaline pH, 
between pH 7.8 and 8.2, with about 50% activity remain-
ing at pH 7.0 and 9.0. The enzyme was absolutely depend-
ent on a divalent metal cation for its activity, with 2–5 mM 
Mn2+ proving optimal for all substrates tested. The optimal 
Mg2+ concentration was unusually high at between 40 and 
100 mM, giving about threefold lower activity than 2 mM 
Mn2; only 20% maximum activity remained at 5 mM Mg2+. 
The enzyme obeyed simple Michaelis–Menten kinetics 
with NADH as substrate in the presence of 2  mM Mn2+. 
Km and kcat values were determined for NADH under opti-
mal assay conditions by non-linear regression analysis of 
data obtained by HPLC analysis and were 0.34  mM and 
7 s−1.

3.4 � Product Analysis

To determine the products of NADH and NADPH hydroly-
sis by Nudt13, aliquots of reaction mixtures containing 
each substrate were analysed by HPLC. The disappearance 
of substrate was accompanied by the appearance of AMP 
and NMNH in the case of NADH (Fig. 2a), and 3′,5′-ADP 
and NMNH in the case of NADPH (Fig. 2b).

3.5 � Subcellular Localization of Nudt13

The subcellular localization of Nudt13 was determined 
by expression of the protein in HeLa cells as N- and 
C-terminal fusions with EGFP. HeLa cells transfected 
with pNudt13-EGFP showed a distinctive pattern of fluo-
rescence characteristic of mitochondria (Fig.  3a), while 
cells transfected with pEGFP-Nudt13, in which the puta-
tive N-terminal mitochondrial targetting signal is masked, 
showed a diffuse nucleo-cytoplasmic fluorescence (Fig. 3b) 
similar to EGFP alone (Fig. 3c). The mitochondrial locali-
zation of Nudt13 in cells transfected with pNudt13-EGFP 
(Fig. 3d) was confirmed with Mitotracker Red CM-H2XRos 
staining (Fig.  3e). Superimposition of both green and red 
fluorescence resulted in a yellow image with both signals 
clearly coincident (Fig. 3f).

4 � Discussion

Eukaryotic members of the Nudix hydrolase subfamily pos-
sessing the “SQPWPFPxS” sequence motif characterized 
so far are known or predicted to be peroxisomal—Saccha-
romyces cerevisiae NPY1 [3, 8], Caenorhabditis elegans 
ndx-9 [3], Homo sapiens NUDT12 [6] and A. thaliana 
AtNUDX19 [14], with AtNUDX19 having a dual chloro-
plastic location [11]. Such locations are not surprising as 
many reactions in these organelles are dependent upon 
reduced pyridine nucleotide cofactors. Another subcellu-
lar compartment where such activities would be expected 
is the mitochondrion. In rat hepatocytes, free mitochondrial 
NADH has been measured at 300–400  µM and NADPH 
at 4  mM while the corresponding figures for NAD+ and 
NADP+ are 4–6 and 1  mM respectively [15]. Compared 
to other Nudix NADH pyrophosphohydrolases character-
ized so far, Nudt13 exhibits a strong substrate preference 
for NAD(P)H over any other substrates tested and so a role 
for Nudt13 and its human ortholog NUDT13 in the regu-
lation of NAD(P)H pools can be suggested. Nudt13 might 
also serve to generate NMNH, which may have a specific 
function within the mitochondrion [16].

Nudt13 has the same domain architecture as A. thali-
ana AtNUDX19. The latter enzyme has a marked prefer-
ence for NADPH over NADH [11] and analysis of pyridine 
nucleotide levels in nudx19 deletion mutants has shown 
an increase in intracellular NADPH, but not NADH [17]. 
This along with other phenotypic features of the mutant 
cell lines has suggested that AtNUDX19 is a key factor in 
the regulation of NADPH pools and redox control in this 
organism [17, 18]. Nudt13 does not display the same pref-
erence for NADPH in  vitro as AtNUDX19; however, a 
more detailed analysis of substrate utilization in vitro than 
that presented here is unlikely to reveal the true substrate 

Table 1   Substrate specificity of Nudt13 was determined colorimetri-
cally at a fixed substrate concentration of 0.5 mM

The activity was expressed relative to NADH hydrolysis under the 
same conditions, where 100% was 5.7  µmol NADH hydrolyzed 
min−1 mg−1 protein. Values are the averages of duplicate determina-
tions

Substrate Relative activ-
ity (%)

Substrate Relative 
activity 
(%)

NADH 100 Ap4A 2
NADPH 92 Ap6A 0.5
NAD+ 7 UDP-glucose 2
NADP+ 4 UDP-galactose 0.5
FAD 7 Canonical NTPs <0.1
ADP-ribose 5 Canonical dNTPs <0.1
Ap2A 14 8-oxo-dGTP <0.1
Ap3A 4 5-Me-CTP <0.1
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Fig. 2   Determination of 
reaction products of NADH 
and NADPH hydrolysis by 
Nudt13. The reaction mixtures 
contained 0.25 mM NADH (a, 
b) or NADPH (c, d) and were 
incubated at 37 °C for 10 min 
without (a, c) or with (b, d) 
0.25 µg Nudt13 and the prod-
ucts were separated by HPLC. 
Absorbance at 259 nm (lines); 
absorbance at 340 nm (dashed 
lines). Products were identified 
by comparison to authenticated 
standards

Fig. 3   Subcellular localiza-
tion of Nudt13 by fluorescence 
confocal microscopy. a EGFP 
fluorescence of HeLa cells 
transfected with pNudt13-
EGFP; b EGFP fluorescence 
of HeLa cells transfected 
with pEGFP-Nudt13; c EGFP 
fluorescence of HeLa cells 
transfected with the pEGFP-C2 
vector; d EGFP fluorescence 
of a sample cell transfected 
with pNudt13-EGFP; e red 
fluorescence of the same cell in 
d stained with MitoTracker red 
CM-H2XRos; f superimposition 
of d and e on the bright field 
picture of the same cell

a b c 

d e f 

50 µ 

20 µ
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profile and preference of the mammalian NUDT13 sub-
family in  vivo, given the known difficulties in inferring 
these from in  vitro activities [2, 19]. A good illustration 
of this is the unusual divalent ion requirement of Nudt13. 
Optimal activity in  vitro was obtained in the presence of 
2–5  mM Mn2+or 40–100  mM Mg2+, both of which are 
highly unphysiological. Free matrix Mg2+ has been meas-
ured as 0.67  mM [20, 21] while free Mn2+ is unlikely to 
be greater than 1  µM [22]. The activity of Nudt13 meas-
ured at 0.67 mM Mg2+ was only about 1% of the maximum 
observed and was negligible at 1  µM Mn2+. The micro-
environment of Nudt13 within the mitochondrial matrix 
may of course alter the divalent ion requirement to match 
the physiological setting. Alternatively, substrates as yet 
untested may prove to have low Km values and divalent ion 
optima. By analogy with the MutT and NUDT1 (MTH1) 
8-oxo-dGTPases [23, 24], these could include ring-oxi-
dized or other non-functional metabolites of the pyridine 
nucleotides [25] with hydrolysis removing them from the 
functional pyridine nucleotide pools to prevent toxicity. 
Another possibility arises from the finding that the E. coli 
NudC NADH pyrophosphohydrolase [26] removes NMN 
from NAD+-capped small regulatory RNAs much more 
efficiently than it hydrolyzes NADH [27, 28]. Regulatory 
micro-RNAs have been detected in mitochondria [29] 
but there is currently no evidence that they are capped by 
NAD+. Thus, although a role for Nudt13 in mitochondrial 
pyridine nucleotide metabolism seems the most likely by 
analogy with AtNUDX19, a true understanding will require 
a full phenotypic analysis of a deletion mutant, including 
measurements of pyridine nucleotide levels.

Assuming that mitochondrial NADH and/or NADPH 
are the relevant substrates for Nudt13, what might its 
role be? The NAD(P)+/NAD(P)H ratios are important 
regulators of the redox state of the cell and of numer-
ous enzymic activities and signalling processes and may 
act as redox sensors for transcriptional control [30–32]. 
In particular, mitochondrial NADPH is required for the 
reduction of oxidised glutathione and for thioredoxin 
regeneration while NADH can be used for the generation 
of reactive oxygen species from the electron transport 
chain. How cellular responses to oxidative stress might 
be affected by Nudt13 activity will depend on how it is 
regulated in response to physiological signals. Induc-
tion or activation would favor NAD(P)H hydrolysis and 
an increase in NAD(P)+/NAD(P)H ratios while repres-
sion or inhibition would have the opposite effect. Such 
a ratio change could occur independently of redox reac-
tions and could be a transient reponse as NADH at least 
can be regenerated from NMNH and ATP by the mito-
chondrial enzyme NMNAT3 [16]. Its influence could 
also extend to the cytosol as result of the NADH and 
NADPH shuttles that can transfer reducing equivalents 

across the mitochondrial membrane [32, 33]. That the 
human NUDT13 gene is subject to regulation has been 
shown by the direct correlation of its expression with 
that of the proposed tumor suppressors MFSD4 and 
occludin (OCLN) and the inverse correlation with that 
of the metastasis-promoting bone morphogenetic pro-
tein 2 (BMP2) in several gastric cancer cell lines [33]. 
Increased OCLN and decreased BMP2 expression inhibit 
the epithelial-mesenchymal transition (EMT), an impor-
tant stage in tumor cell invasion of tissues. This study 
suggests that both the uncharacterized MFSD4 and 
NUDT13 may have a role in the regulation of the EMT. 
Increased NADPH oxidase activity has been associated 
with induction of the EMT [34, 35] so it would be inter-
esting to establish whether up-regulation of NUDT13 can 
reduce the supply of cytosolic NADPH.

Other Nudix hydrolases known to be located in mam-
malian mitochondria are the NUDT9 ADP-ribose hydro-
lase [36, 37] and a portion of the NUDT1 (MTH1) 
8-oxo-dGTPase [38] while Arabidopsis has confirmed 
mitochondrial Nudix hydrolases that are active towards 
coenzyme A derivatives (AtNUDX15) and long-chain dia-
denosine polyphosphates (AtNUDX13) [11, 39]. Recent 
studies have focussed on the possible role of NUDT9 and 
the cytosolic NUDT5 in the catabolism of mitochondrial 
NAD+ and its metabolites [40–42] while many other stud-
ies have addressed the dynamic regulation of pyridine 
nucleotides and energy homeostasis in this organelle [43, 
44]. The essential role of NAD(P)+ and nudix proteins in 
DNA damage repair, ageing and neurodegeneration linked 
to mitochondrial homeostasis is now also well recognized 
[45, 46]. However, none of these studies has considered the 
possible role of Nudt13 in these processes, most probably 
because details of its activity are not present in the primary 
literature. Thus, the simple characterization presented here 
should now serve to draw attention to this protein and lead 
to its consideration in future analyses of pyridine nucleo-
tide metabolism and function in the mitochondria and other 
cellular compartments.
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