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Abstract

Human gut microbiota is an important determinant for health and disease, and recent studies
emphasize the numerous factors shaping its diversity. Here we performed a genome-wide
association study (GWAS) of the gut microbiota using two cohorts from northern Germany
totaling 1,812 individuals. Comprehensively controlling for diet and non-genetic parameters, we
identify genome-wide significant associations for overall microbial variation and individual taxa at
multiple genetic loci, including the VDR gene (encoding vitamin D receptor). We observe
significant shifts in the microbiota of Va7~ mice relative to control mice and correlations
between the microbiota and serum measurements of selected bile and fatty acids in humans,
including known ligands and downstream metabolites of VDR. Genome-wide significant (P< 5 x
1078) associations at multiple additional loci identify other important points of host-microbe
intersection, notably several disease susceptibility genes and sterol metabolism pathway
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components. Non-genetic and genetic factors each account for approximately 10% of the variation
in gut microbiota, whereby individual effects are relatively small.

Microbes inhabiting the human intestine mediate key metabolic, physiological and immune
functionsl2, and perturbations of this ecosystem can profoundly influence health and
disease®4. As disease states can also impose secondary changes to the gut microbiota, a
fundamental understanding of the forces determining gut micro-bial composition in healthy
individuals is essential for deciphering the nature of disease states and developing
therapeutic strategies. Assemblage of the gut community begins at birth®8, and, once
established, compositional features are resilient to perturbations’-8. The composition of the
gut microbiota is highly variable among adults®10, although family members tend to harbor
more similar communities than unrelated individuals!1-12. Both genetic and environmental
determinants may underlie this similarity among familial microbiomes. Diet is one of the
major environmental drivers for microbial community structurel314, and other known
factors include age and geography1:15 as well as the intake of medication?®.

There is increasing support for a host genetic component shaping and/or structuring
between-individual variability in the gut microbiota. Using 416 twin pairs, Goodrich et a/12
showed that monozygotic twins display greater overall similarity in their microbial
communities than dizygotic twins and identified microbial taxa that were affected by host
genetic variation. Influence of single candidate genes on the composition of the microbiome
is also suggested by studies of the human gut mucosa (FUTZ, ref. 17) or in mouse models
(Nod2, ref. 18). A recent study using available Human Microbiome Project (HMP) metagen-
omic sequencing datal® assessed associations between genome-wide genetic variation in
humans and the microbiome and identified an association between the LCT gene and the
abundance of bacteria in the Bifidobacterium genus. However, a small sample size (7= 93)
and lack of thorough correction for known confounding factors (such as diet) represent
drawbacks of this study. Here we report the results from a well-powered systematic host
GWAS of the fecal microbiome in two independent but geographically matched cohorts
totaling 1,812 individuals of European ancestry. A dense genomic marker set comprising a
total of 6,344,846 genotyped and imputed SNPs and extensive metadata were included in the
analyses, which enabled us to study the influence of host genotype, alongside dietary and
other environmental factors, on between-individual variability in the gut microbiome.

RESULTS

Establishing covariables for the genetic analysis

Fecal samples were obtained from two independent cohorts of 914 individuals (PopGen20)
and 1,115 individuals (Food-Chain Plus; FoCus?1), both recruited at the University Hospital
Schleswig-Holstein in the city area of Kiel, Germany, through the local Biobank PopGenZ0.
For each of the 2,029 samples, high-quality 16S rRNA gene sequence data (minimum of
10,000 reads/sample) were generated, yielding a total of 38 and 374 identified phyla and
genera, respectively. The two cohorts exhibited similar taxon abundance at high
(Supplementary Fig. 1) and low (Supplementary Fig. 2) taxo-nomic levels, although small
differences in B diversity (Bray—Curtis) were present between the cohorts (/2 = 0.026; P=1
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x 1073), which were due to differences in age, body mass index (BMI) and sex ratio
(Supplementary Table 1). A subset of 1,812 of the 2,029 individuals had available SNP array
data in addition to the 16S rRNA data. Unless otherwise noted, results are presented for the
combined cohort of 1,812 individuals, that is, PopGen and FoCus (results for individual
cohorts are provided in Supplementary Figs. 1-3, Supplementary Table 1 and the
Supplementary Note).

Variables previously reported to influence the gut microbiota, including age, sex, BMI11:12
and smoking status?2, all displayed significant correlations with variability in the
microbiome (P < 0.05; Fig. 1, Supplementary Fig. 4 and Supplementary Table 1). In terms
of the percentage of variation explained (as determined through principal-coordinate
analysis (PCoA) applied to Bray—Curtis dissimilarity (BC), a B-diversity measure that
reflects between-individual variability), age accounted for the greatest amount (4.74%) in
the combined cohort, followed by BMI, smoking and sex (3.79%, 2.14% and 1.79%,
respectively; Fig. 1).

Moreover, using available food frequency data, we performed a systematic analysis of long-
term diet and nutrients with respect to the microbiome. Using either the major food groups
(for example, vegetables) or nutrients (for example, dietary protein content; Fig. 1,
Supplementary Fig. 4 and Supplementary Table 1), we quantified the contribution to
observed variability in the microbiome (PCoA applied to BC). We found that eight of the
nine major nutrients and 12 of the 17 food groups displayed significant correlations in at
least one cohort (Supplementary Table 1), and overall diet was significantly associated with
the landscape of the human gut microbiome and explained 5.79% of the variation in BC
(Fig. 1). Addition of the other significant covariates (age, sex, BMI and smoking status; £ <
0.05) resulted in a total of 8.87% of the variation in BC explained (Supplementary Fig. 3).
Given their detectable influence on between-individual variability, dietary variables, that is,
water, alcohol and ‘total energy’ (as the best proxy for other co-linear nutrients with Pearson
r>0.5), were included as covariates in the subsequent host SNP versus microbiome
association analyses.

Host genetic loci influence microbial f diversity

Between-individual variability is measured by p-diversity indices, which represent overall
differences between microbial communities in the population and are driven by variation
among multiple taxa. To identify individual loci contributing to Bdiversity, we employed a
multidimensional ANOVA approach, for which significance thresholds were determined for
distinct classes of minor allele frequency (MAF) by performing >2 x 107 permutations to
simulate the largest possible effect size (percentage variation in B diversity explained) that
can occur by chance (for details, see the Online Methods). After stringent filtering based on
effect sizes in the cohorts separately as well as in combination (Online Methods), this
analysis showed 42 loci to be associated with @ diversity (P< 5 x 1078; Fig. 2 and Table 1),
each of which contributed from 0.65 to 0.97% of the variation in community structure
(measured by BC) and additively explained 10.43% in the combined cohort (Fig. 2). Of
these loci, 21 could be successfully replicated in a smaller, independent cohort composed of
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obese individuals (FoCus obesity, /7= 371), recruited from the same geographic area (Online
Methods and Supplementary Table 2).

Interestingly, variants in the VDR gene (encoding vitamin D receptor) were among the 42
significant loci and accounted for 0.75% of the variation in the combined cohort (Fig. 3).
VDR encodes a nuclear transcription factor, which through heterodimerization with the
retinoid X receptor (RXR) exerts a range of physiological effects with many known
exogenous and endogenous ligands. Besides vitamin D, both microbial (for example,
secondary bile acids) and dietary (for example, fatty acids) metabolites act via the VDR-
RXR heterodimer23.24, To further explore this association, we analyzed gut microbiota data
from a published V@'~ mouse model2®, confirming that loss of Varin mice substantially
affects B diversity (42% variation in BC explained in this controlled setting; Supplementary
Fig. 5). Detailed exploration of parallels between human and mouse microbiota also showed
that VDR consistently influences individual bacterial taxa such as Parabacteroides (Fig.
3c,d; additional taxa are shown in Supplementary Fig. 6). Incidentally, in another data set,
we observed upregulation of VDR in the colonic biopsies of patients with acute
inflammation, Crohn’s disease or ulcerative colitis as compared to healthy controls,
accompanied by much lower abundance of Parabacteroides, thereby further supporting such
interaction (Supplementary Fig. 7 and Supplementary Note). Of note, enrichment analysis of
genetic loci significantly associated with individual taxa (Table 2) showed vitamin D
response as the fourth most significantly associated gene set (Table 3).

The gut microbiome is essential for bile acid metabolism, and bile acids act as both key
VDR ligands and regulators of VDR expression23:24.26_|n addition, polyunsaturated fatty
acids act as ligands for RXR, the heterodimeric partner of VDR, and were shown to compete
for ligand binding to VDR23, We therefore performed targeted measurement of bile acids
and w3 and w6 polyunsaturated fatty acids in human serum in a subset of the PopGen cohort
(n=551). We found significant correlations between several bile acids and g diversity (BC),
including taurochenodeoxycholic acid (TCDCA; 2.2% variation explained) and
glycochenodeoxycholic acid (GCDCA,; 1.4% variation explained; Supplementary Fig. 8 and
Supplementary Table 3). Bile acids also significantly associated with individual bacterial
taxa, including the secondary bile acids lithocholic acid (LCA; a known VDR ligand) and
deoxycholic acid (DCA,; Supplementary Table 3), both of which are produced by the gut
microbiota?4. In addition, genomic analysis showed that Parabacteroides bacteria contain
pathways involved in secondary bile acid metabolism (Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway pdi00121) and could thus indeed be associated with bile acid
profiles, a hypothesis that is further supported by positive correlations between
Parabacteroides abundance and LCA concentration (Supplementary Table 3). Furthermore,
functional profiling of the gut microbiome via shotgun metagenomic analysis in a subset of
the PopGen cohort (n = 122) also showed differences in bile acid—related gene pathways
with respect to VDR genotype (Supplementary Fig. 9). Finally, the above-mentioned data
from colonic biopsies also suggested that the interplay between VDR and Parabacteroides
involves two genes associated with bile acid metabolism (CYP27A1, encoding cytochrome
P450 family 27 subfamily A member 1, and NR5A2, encoding nuclear receptor subfamily 5
group A member 2; Supplementary Fig. 7), with interactions lost in the context of intestinal
inflammation (Supplementary Fig. 7). Together, these findings provide evidence that the gut
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microbiota significantly contributes to human bile acid profiles, as previously reported in
mice?’. For fatty acids (false discovery rate (FDR) < 0.05), we detected significant
correlations between the gut microbiota and 7 of 15 polyunsaturated fatty acids, including
arachidonic acid (an w6 fatty acid that is capable of binding VDR), which correlated with
diversity (1.22% variation explained) and several specific taxa (Supplementary Table 4). Of
note, two additional genome-wide significant associations with the gut microbiota are
critically involved in bile acid (HNF4A; Table 2) and arachidonic acid (PLA2G3, Table 1)
homeostasis?82. Finally, several loci identified in this study, in addition to VDR, were
significantly correlated with bile acid profiles, as shown by regression analysis
(Supplementary Table 5).

Many other interesting findings are found among the 42 significant loci (Table 1), in
particular the POMC (proopiomelanocortin) gene (rs72853661, < 5 x 1078 Fig. 3e). As an
extremely functionally diverse protein, POMC participates in multiple physiological
processes ranging from antimicrobial activity to appetite regulation (Supplementary Table
6). Furthermore, this locus located upstream of the POMC gene is the largest we discovered
(78 SNPs over 54.8 kb; Fig. 3e) and contains multiple SNPs that regulate the expression of
POMC in multiple human tissues, as determined by expression quantitative trait locus
(eQTL) studies (GTEXx database). The associated SNP rs66589178 in particular is predicted
to be a VDR binding site (RegulomeDB), and the TRAP analysis tool predicted an almost
200-fold difference in affinity for VDR between the two alleles (Supplementary Fig. 10).
Other findings include the H7R1E (serotonin receptor) and GR/DI (glutamate ionotropic
receptor) genes, which are potential components of the gut-brain axis3°, and genetic
variation near CLECI6A (rs12931878, P< 5 x 1078), a gene associated with multiple
autoimmune and inflammatory disorders involving alterations to gut microbiota
(Supplementary Table 6). A number of other regions are implicated in disease susceptibility
as previously reported by case-control GWAS and can be found in Table 1 and
Supplementary Tables 6 and 7 (for example, BANKI close to SCL39A8).

Finally, a targeted analysis was performed for the human leukocyte antigen (HLA) complex
on chromosome 6. The HLA complex shapes the immune repertoire and may influence gut
microbiome composition3L. Because SNPs do not capture the extreme polymorphism of the
classical HLA genes, we imputed HLA alleles using SNP2HLA (Online Methods) and
implemented a constrained ordination approach. This approach showed significant
association of alleles at HLA-B (HLA-B*52:01) and HLA-C (HLA-C*12:02) in both
cohorts (P< 0.05; Supplementary Fig. 11 and Supplementary Table 8). The associated
alleles have been implicated in risk for ulcerative colitis in multiple ancestry groups32:33 and
in Takayasu arteritis34.

Genetic associations with individual bacterial traits

To detect associations between genetic variants and specific bacterial traits, we first curated
the microbiome data and removed rare bacteria by defining a ‘core measurable microbiota’
(ref. 35) (Supplementary Fig. 12 and Supplementary Table 9), which included 40 operational
taxonomic units (OTUs) and 58 taxa ranging from the genus to the phylum level, and
employed a generalized linear model (GLM) framework incorporating a negative binomial
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(negbin) distribution. Accordingly, we identified 54 significant associations involving 40 loci
and 22 bacterial traits (meta-analysis 2< 5 x 1078 and single-cohort 2< 5 x 1074; Table 2).
Of the 22 bacterial traits, the largest number belonged to Firmicutes (7= 10), followed by
Proteobacteria (7= 7), Bacteroidetes (7= 3) and Actinobacteria (n7= 2), at the phylum level.
To identify the nearest and neighboring genes for each locus, we annotated the identified
SNPs using DEPICT36 (Table 3).

Among the 54 robust associations, the SL C2A9 gene was associated with unclassified
Porphyromonadaceae (rs7656342, meta-analysis 2= 2.8 x 1079 (Supplementary Fig. 13).
The SLC2A9 gene encodes a member of the glucose transporter family, which is important
for maintaining glucose homeostasis®’. Furthermore, a number of long intergenic noncoding
RNAs were among the 54 associations, including association of L/NC01192with
Lactobacillales (rs62295801, meta-analysis 2= 5.32 x 10710) (Supplementary Fig. 13). Of
note, gene set enrichment analysis detected associations for L/NC01192 with ‘response to
vitamin A’ and for SLC2A9with both ‘response to vitamin D’ and ‘increased liver
cholesterol level” (Table 3).

Next, we evaluated whether the genetic signal for B diversity is influenced by the abundance
of individual bacterial taxa. Indeed, 37 loci that correlated with B diversity also correlated
with the abundance of several core measurable microbiota taxa and OTUs (P< 0.01), albeit
not at the genome-wide significance level (Supplementary Fig. 14). Conversely, the loci
identified in association analyses for individual taxa explained a proportion of the variation
in B diversity (six loci with £< 0.05, effect size of 0.29-0.49%) but did not reach our
conservative significance threshold of < 5 x 1078 (Table 2). Thus, in conclusion, we found
that genetic variants correlating with microbiome structure could be either strongly
associated with an individual taxon or simultaneously associated with multiple taxa, with
each association having a small effect size.

Enrichment analysis of gene sets and tissues

To further assess the functional relevance of the 54 identified associations between genetic
variants and specific bacterial traits, we used DEPICT36 to perform both gene set and tissue
enrichment analyses (Table 3). DEPICT prioritizes genes in associated regions on the basis
of functional relationships and linkage disequilibrium (LD) structure. Of interest, ‘response
to vitamin D’ (original gene set ID G0:0033280, A= 8.8 x 107°) was the fourth most
enriched term. Enrichment of response to vitamins in general was also observed, including
‘response to vitamin A’, another fat-soluble vitamin binding to the retinoic acid receptor
(RAR) and involved in bile acid homeostasis38-39. The gene set for ‘response to vitamin D’
includes SLC22A13, SLCZAY9, COL22A1, ABCA13and KRTAPS-1 (Table 2). The VDR
gene locus itself, however, is not included, as the enrichment analysis was limited to loci
associated with single bacterial taxa, and the association with Parabacteroides (Fig. 3c) did
not reach the genome-wide significance threshold. Further, the term “increased liver
cholesterol level” was among the top enriched gene sets (original gene set ID MP:0010027,
P=1.7 x 1074 and corresponds to one of the functions of the POMC gene locus identified
in the above analysis. Among the bacterial taxa associated with ‘increased liver cholesterol
level” were Gammaproteobacteria, Bacilli, unclassified Porphyromonadaceae and an OTU
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belonging to Enterobacteriaceae. Furthermore, in a frans-eQTL analysis of the SNPs
associated with B diversity or single bacterial taxa (Supplementary Tables 6 and 7), FDFT1,
which encodes the first specific enzyme in cholesterol synthesis, was among the top hits,
further emphasizing the fact that several hits converge onto the sterol pathway.

In the tissue enrichment analysis, the top 20 results with £< 0.05 (Table 3) showed the
Medical Subject Heading (MeSH) terms “digestive system’ (10 occurrences), ‘nervous
system’ (3 occurrences) and ‘cells’ (3 occurrences) as most significant. The best associated
subcategories for ‘digestive system’ were ‘intestinal mucosa’ and ‘mucous membrane’,
whereas the subcategories for “cells’ included ‘mono-cyte macrophage precursor cells’,
‘epithelial cells’ and ‘hepatocytes’. In sum, the tissue enrichment analysis relates microbial-
associated host loci with gastrointestinal and immune-related tissues and cells, thus
supporting the functional relevance of the identified loci.

DISCUSSION

We herein present a comprehensive analysis of genome-wide host—microbiota associations.
We adhered to rigorous standards by including a large number of samples (1,812 SNP array—
16S rRNA microbiome data set pairs) and considering important known and herein
identified confounders of variation in the gut microbiome. As geography is a major factor
contributing to microbiome composition!1:13, we used cohorts recruited from the same
country and corrected for population stratification/ancestry in our genetic data set. We
discovered genome-wide significant associations between gut microbial characteristics and
the VDR gene, in addition to a large number of other host genetic factors, and eventually
quantified the total contribution of host genetic loci to B diversity as 10.43%. The non-
genetic factors examined (age, sex, BMI, smoking status and dietary patterns) explain 8.87%
of the observed variation in the gut microbiome.

As shown in Supplementary Figure 15, the associations at the VDR locus with gut microbial
community composition provide compelling follow-up to the finding by Makishima er a/.24
that secondary bile acids (bile acids transformed by gut microbial metabolism, that is, LCA,
glycine-conjugated LCA and 3-keto-LCA from 7a-dehydroxylated primary CDCA) serve as
ligands for VDR. Validation of a relationship between VDR alterations and the gut
microbiota in the V@~ mouse model? substantiates these observations. Results from gene
set enrichment analysis and the observation that the bile acid profile in serum associates with
variation in the gut microbiome further support this finding. The underlying mechanisms for
the observed association between gut microbial profiles and the serum bile acid pool warrant
further elaboration. The possibility that VDR-mediated signaling serves as a key mediator in
the gut-liver signaling axis and microbial co-metabolism, as previously shown for FXR
(farnesoid X receptor2’), motivates substantial new research directions. Although the lack of
an association at the FXR locus (Supplementary Fig. 16) does not signify the lack of FXR
involvement in microbial bile acid co-regulation?3 (for example, functional variation may
simply not be present in our cohort), the VDR associations detected in the present study add
another important player to this relationship.
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Insight on interactions between the microbiome and bile acid homeostasis are mostly based
on mouse studies2”4041 for which the transfer of interpretations into the human setting may
be considerably biased given the large differences in bile acid profiles between mice and
humans. Additional data presented in Supplementary Tables 6 and 7 show cross-validation
for a subset of the genes detected in the human analysis, including VDR, whereby
differential expression in germ-free and conventionally raised mice further supports the roles
of these genes in interacting with and/or maintaining the homeostasis of the gut microbiome.
Such overlap between distantly related mammalian hosts provides strong support for our
discoveries and, hence, the internal validity of our experiment. Genetic associations at the
VDR locus were also detected in human inflammatory bowel disease and liver disease*2:43,
for which the underlying mechanisms were proposed to be a perturbation of key aspects of
host— microbe interactions?4. The multidimensional relationship of key factors involved in
VDR signaling (bile acids and w6 fatty acids in particular) and the gut microbiota is even
supported by genetic associations at functionally related loci (HNF4A and PLAZ2G3).

The POMC locus gives rise to a number of proopiomelanocortin-derived peptides involved
in various physiological processes, including blood sugar regulation, inflammation and
energy intake*®, and association of SNP rs66589178, potentially affecting a VDR binding
site (Supplementary Fig. 10), is an additional interesting circumstantial observation for the
VDR finding. On the basis of their broad influence on bacterial community structure
(contribution to B diversity as measured by BC) in our cohorts, VDR and POMC (among
other genes) could be major regulators of the gut microbiome. Given that VDR and POMC
are further associated with numerous important phenotypes (Supplementary Tables 6 and 7),
our results provide a strong indication for genetic associations across phenotypes, including
BMI, Crohn’s disease and the intestinal microbiome. However, further dedicated studies are
still needed to link these pleiotropic signaling pathways and their associated biology*6.
Finally, understanding the functional consequences of the genetic variants discovered in this
study will also require in-depth exploration, as the functional consequences of the lead SNPs
remain unknown (for example, VDR lead SNP rs7974353).

Genome-wide screening for host genetic associations with gut microbiome composition has
mostly been performed in mice, for which environmental factors and genetic background are
easy to control. Thus, to further validate our findings, we compared our results to previously
published QTL studies for the mouse gut microbiome. We found that mouse homologs of
numerous GWAS hits in our study are contained in the confidence intervals of mouse QTLs
(Fig. 2b). One such overlap even involves association with an identical trait— between the
SLC9AZ2 gene and genus Blautia—in addition to traits at higher taxonomic levels (class or
phylum). In addition, among all GWAS performed for human traits as determined by the
National Human Genome Research Institute (NHGRI) GWAS Catalog, most loci and genes
discovered in our study were previously associated with various traits, including diseases for
which there is growing evidence of microbiome involvement in disease etiology (for
example, inflammatory bowel disease, obesity and type 2 diabetes; Supplementary Tables 6
and 7). Furthermore, specific associations of genes observed in previous studies (for
instance, FUTZ2, NODZ2and LCT) could be replicated in our data set, but with less
contribution in terms of influencing overall microbial variation (Supplementary Figs. 16 and
17).
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In summary, we identify several genetic and non-genetic factors that determine the
composition of the human gut microbiome. We show that genetic variation at the VDR locus
significantly influences micro-bial co-metabolism and the gut-liver axis. Multiple other
findings highlight key aspects of the intersections of host physiology with the gut
microbiota, including a number of disease susceptibility genes in complex human diseases
and the gut-brain axis. Key non-genetic covariable parameters, including diet, cumulatively
have a similar magnitude of influence on the microbiome as host genetics, highlighting the
importance of controlling for these confounders. Our study also indicates that the effect of
individual genes is small and emphasizes the need for adequate statistical power and large
sample sizes in future assessments. Following a similar logic to that provided by the
outcomes of GWAS, the underlying biology of our observations may far exceed the
statistical estimates and is likely to provide a critical framework for future studies of host—
microbe interactions in humans.

METHODS

Methods and any associated references are available in the online version of the paper.

ONLINE METHODS

Study subjects and sample collection

Two population-based cohorts from Schleswig-Holstein (Germany) were included in the
study. Nine hundred and fourteen individuals from the PopGen cohort and 1,115 individuals
from the FoCus (Food Chain Plus) cohort were included. These two study cohorts were
recruited independently from each other, and the maximum number of individuals available
was included to increase statistical power for various analyses. All samples, as well as
corresponding information on phenotype and dietary behavior, were obtained from the
PopGen biobank (Schleswig-Holstein, Germany)20. Study participants collected fecal
samples at home in standard fecal tubes. Samples were shipped immediately at room
temperature or brought to the collection center by the participants. Upon arrival into the
study center (within 24 h), samples were stored at =80 °C until processing. Written,
informed consent was obtained from all study participants, and all protocols were approved
by the institutional ethical review committee in adherence with the Declaration of Helsinki
Principles; investigators were blinded to sample identities. Sequence data for the 16S rRNA
gene, genotype, nutritional and phenotype data used for the herein described study have
been made available to other scientists through PopGen’s biobank general data transfer
agreement. A summary of the phenotypes used in this paper is given in Supplementary Table
1.

Genotyping data

Samples of the PopGen and FoCus cohorts were geno-typed on different genotyping arrays.
The PopGen samples were typed on the Affymetrix 6.0, Affymetrix Axiom, Illumina 550Kk,
custom Hlumina Immunochip and Illumina Metabochip arrays with sample sizes before
quality control ranging from 678 to 1,218 and a variant coverage of 196,524 to 934,968
variants. The FoCus samples were typed on the custom lllumina Immunochip and the Omni
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Express Exome, with 1,024 and 1,713 samples overall before quality control and a variant
coverage of 195,732 to 964,193 variants. For each cohort, genotype data for each array were
quality controlled separately and then merged and imputed. In total, 17,017,474 single-
nucleotide variants (SNVs) were included for the PopGen cohort and 17,340,550 SNVs were
included for the FoCus cohort. Consequently, stringent quality filtering was performed for
all genotyping data, with details provided in the accompanying Supplementary Note.

Sequencing and processing of bacterial 16S rRNA sequences

Bacterial genomic DNA was extracted using the QlAamp DNA Stool Mini kit from Qiagen
on a QlAcube system. For all samples, the V1-V2 region of the 16S rRNA gene was
sequenced on the MiSeq platform, using the 27F-338R primer pair and dual MID indexing
(8 nt each on the forward and reverse primers) as described by Kozich et a/51. Sequencing
was performed with MiSeq Reagent Kit v2. After sequencing, MiSeq fastq files were
derived from base calls for read 1 and 2 (R1 and R2), as well as both indices (11 and 12),
using the Bcl2fastq module in CASAVA 1.8.2. Stringent demultiplexing was carried out by
allowing no mismatches in either index sequence (instead of the default of one mismatch
allowed by MiSeq). Forward and reverse reads were merged with FLASH software (v1.2)°2,
and quality filtering was subsequently performed with the fastx toolkit, excluding sequences
with >5% nucleotides with quality score <30. Chimeras in sequences were removed using
UCHIME (v6.0)%3. After randomly selecting 10,000 reads for each sample, taxonomical
classification and compositional matrices for each taxonomical level were carried out using
the RDP classifier>* with the latest reference database (RDP14), where classifications with
low confidence at the genus level (<0.8) were organized in an arbitrary taxon of ‘unclassified
family’. Species-level OTUs (97% similarity) were created using the UPARSE routine®>.

Bile acid and fatty acid measurements on human serum samples

Serum bile acid and polyunsaturated fatty acid composition in plasma was analyzed for 551
PopGen samples by HPLC-MS/MS as recently described6:57, Five bile acids (cholic acid
(CA), chenodeoxycholic acid (CDCA), lithocholic acid (LCA), deoxycholic acid (DCA) and
ursodeoxycholic acid (UDCA)), including their taurinated (T) and glycinated (G)
conjugates, were measured, as well as the following fatty acids: C18:2n-6 (linoleic acid),
C18:3n-3 (a-linolenic acid), C18:3n-6 (y-linolenic acid), C18:4n-3 (stearidonic acid),
C20:2n-6 (eicosadienoic acid), C20:3n-6 (dihomo-y-linolenic acid), C20:4n-3
(eicosatetraenoic acid), C20:4n-6 (arachidonic acid), C20:5n-3 (eicosapentaenoic acid),
C21:5n-3 (heneicosapentaenoic acid), C22:2n-6 (docosadienoic acid), C22:4n-6 (adrenic
acid), C22:5n-3 (docosapentaenoic acid), C22:5n-6 (docosapentaenoic acid), C22:6n-3
(docosahexaenoic acid).

Statistical analysis

Correlation between microbiome and metadata—In both cohorts, p-diversity
measures based on genus-level composition were generated using the “vegdist’ function
(Bray—Curtis and Jaccard dissimilarities). Community ordination was performed using
PCoA based on the calculated dissimilarities using the ‘capscale’ function in ‘vegan’ (v2.3).
The “envfit’ function in ‘vegan’ was used to correlate either categorical data, for which it
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performs multidimensional ANOVA on the ordination, or continuous variables, for which
the function tests linear correlations between a given variable and the coordinates of
microbial communities. This test does not assume a normal distribution, as the significance
value is determined by a permutation test.

We considered a range of reported confounding variables that could shape the human gut
microbiome: age, sex, BMI, smoking and major nutritional components or food groups
derived from diet patterns; similarly, the association analysis was performed for bile acid
profiles and fatty acid composition. Dietary patterns were collected via a validated, self-
administered, 112-item food frequency questionnaire established for German
populations®8:59, All participants were given the option of completing the questionnaire
preferably as a web-based version and, optionally, on paper. Information on macro-and
micronutrient intake was obtained by using the German Food Code and Nutrient Database
(v11.3) and provided by the Department of Epidemiology of the German Institute of Human
Nutrition Potsdam-Rehbruecke. Before association analysis, all individuals who took
antibiotics less than 6 weeks before stool collection were excluded to remove the possible
influences of antibiotic medication. The effect size and significance of the mentioned
variables were estimated using ‘envfit’, and the variables with significant effects (£ < 0.05)
were further used in the GWAS analysis as covariates (water, alcohol and all other highly
correlated nutritional variables, which were collectively joined under the umbrella “total
energy’). The combined effect of host metadata was estimated further using the ‘bioenv’
function in the ‘vegan’ package, which calculates the maximum Pearson correlation of
microbial variation (Bray—Curtis dissimilarity) and combined dissimilarity in the selected
subset of metadata (denoted by Gower distances). To reduce random errors in low-
abundance taxa, the analysis focused on the ‘core measurable microbiota’, which was
determined using technical replicates according to Benson et a/.3%. Only taxa with an
average of >40 reads per sample (and thus with less error introduced by random processes)
were included (Supplementary Fig. 12).

Association of individual bacterial traits with human genetic variation—To
identify human genetic variation associated with the abundance of individual gut bacteria, a
statistical test for each combination of SNP and taxon was performed. The abundance of
bacteria in the human gut is characterized by an increasing number of zeros at lower
taxonomic levels, a right-skewed distribution often with a long tail and only positive values.
Thus, a model assuming a normal distribution of dependent variables could not be fitted to
our data. The GLM with a negative binomial (negbin) distribution and log link was selected
for the statistical analysis as the best-fitting model across all bacteria. The hurdle model with
a negbin distribution showed increasingly good fit with increasing numbers of zeros. The
GLM negbin model was therefore selected as a consistent model across all bacteria, while
the analysis of species (97% similarity threshold OTUs) was supported with the hurdle
model®0.

Our identified ‘core measurable microbiota’ (ref. 35) consists of 64 taxa across five levels
(phylum, class, order, family and genus) and 42 species-level OTUs. Taxa with >90% of

their counts within the first 5% of the range of counts or with >90% of above-zero counts
within the first 5% of the above-zero range were excluded, as they performed poorly with
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the selected model(s). Forty OTUs and 58 taxa were used for association study with human
SNPs. The analyses were preformed on both cohorts separately (986 samples in FoCus and
826 samples in PopGen). In the analyses, outliers defined as 5 s.d. were removed and genetic
variants not overlapping in FoCus and PopGen were discarded, while variants with MAF
>0.05 and IMPUTEZ2 INFO criteria >0.8 were included. No population stratification was
observed between the two cohorts (Agc = 1.00; Supplementary Fig. 18) b1, The covariates
BMI, age, sex, genetic principal components 1-3 and nutritional variables alcohol, water and
‘total energy’ intake were used. The analyses were performed using R Project version 3.2
and the GLM.nb function in ‘MASS’ package version 7.3 for the GLM negbin and the
hurdle function in package ‘pscl’ (v1.4).

A meta-analysis of GLM negbin hits across the two cohorts was performed using PLINK
(v1.9 64-bit)®2, with the command “--meta-analysis +qt”, including information on g
coefficients and standard errors. Clumping was performed using PLINK v1.9 with the “--
clump” command on SNPs meeting the following filtering criteria: meta-study fixed-effect P
value < 5 x 1078, single-cohort Pvalue < 5 x 107, the same S value sign (same direction of
association) and AIC (model fit parameter) < 50,000. Clumps with at least two SNPs for
which at least one SNP was genotyped were selected. For each selected clump, the SNP with
the lowest meta-analysis 2 value was selected as the tag SNP, and for bacteria containing
zero counts the hurdle model was applied as described above. All hits were confirmed to be
supported by the count or zero part of the hurdle model with £< 0.05 in both studies.

Genetic variation correlated with overall community differences—We also
performed analyses aimed at identifying genetic variation that might not necessarily
associate with individual bacterial taxa with genome-wide significance but might rather
correlate with overall community differences (P diversity). We performed a simulation and
treated genotype at each locus as categorical variables (the distribution of each genotype
follows Hardy—Weinberg equilibrium). We measured the genotype association using the
‘envfit’ function in the ‘vegan’ R package (v2.3). This approach calculates the community
differences associated with three different genotypes, by comparing the difference in the
centroids of each group relative to the total variation, on the basis of the main axes of the
PCoA. By shuffling the simulated genotype >2 x 107 times, we effectively obtained a large
enough null distribution of effect size. This was performed for six categories of MAF to
represent loci with MAFs of 5%, 10%, 20%, 30%, 40% and 50% (whereas in case of a real
SNP, it is compared to the category with the closest MAF value; Supplementary Fig. 19),
and if a certain locus displays greater effect sizes than the simulated maximum they are
extremely unlikely to be observed by chance (P< 5 x 1078) and can be considered to be
genome-wide significant. We have filtered SNPs in a similar fashion as the taxa associations
mentioned above.

The additive effect of the significant loci from this analysis was then determined using
redundancy analysis based on genus-level composition (‘rda’ in the ‘vegan’ package) and
the ‘ordiR2step’ function in the ‘vegan’ package, which optimizes the order of loci in a
linear model and sums up the variation of the ordination explained by each additional locus.
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HLA analyses were conducted on the respective HLA haplotypes within each locus, coded
as carrier or non-carrier for each specific allele. We performed distance-based redundancy
analysis after correction for host characteristics (see description of association analysis for
factors). These models were then tested using a permutative ANOVA approach (5,000
permutations) as implemented in the ‘vegan’ function “anova.cca’, and the coefficients of
determination were extracted via ‘RsquareAd;j’.

Annotation and enrichment

DEPICT?36 was used to annotate and perform tissue and gene set enrichment analyses among
the significant single-bacteria associations. DEPICT was used with the following settings: (i)
association_pvalue_cutoff: 1 x 1072, (ii) nr_repititions: 20, and (iii) nr_permutations: 500;
all available analysis steps were performed. For genotype data, we used
1000_genomes_project_phase3 CEU/ALL.chr_merged.phase3_sha-
peit2_mvncall_integrated_v5.2 0130502.genotypes; for the collection file, we specified
1d0.5_collection_depict_150315.txt.gz and for the reconstituted gene sets file we specified
GPL570-GPL96-GPL1261-GPL1355TermGeneZScores-
MGI_MF_CC_RT_IW_BP_KEGG_z_z.binary.

Analysis of association between bile acids and lead SNPs identified in this study

To identify bile acids associated with lead SNPs identified to be associated with the
microbiome in this study, a generalized linear model with an inverse Gaussian distribution
and log link was applied. As a supporting model, a two-part model was used comprising a
GLM with binomial distribution and logit link for zero versus nonzero values, and a linear
regression on log-transformed concentrations plus a constant (¢ = 1) for nonzero values. For
both models, outliers with bile acid levels more than 5 s.d. from the mean were excluded and
the covariates age, sex, BMI, vitamin K, alcohol, bile acid batch number and PC1-3 were
included. The analysis included 520 samples.

Cis- and trans-eQTL analysis on human data

For SNPs identified as associated with B diversity and/or single bacterial traits, a ¢/s- and
trans-eQTL analysis was performed using data on 2,360 individuals. The analysis design and
recourse are described in detail in previous studies®3:64. In summary, cis-eQTL analysis was
performed on SNP—probe pairs for cases where the distance was less than 1 Mb. To consider
the effects of SNPs in LD with a disease-associated SNP (trait-SNP), a conditioned analysis
was performed by first adjusting the probe expression level for the effect of the strongest
associated local SNPs (eSNP) and then repeating the eQTL analysis. Likewise, the Pvalue
for the local best SNP was calculated with conditioning on the trait SNP. To control for
FDR, sample labels were permuted 100 times to obtain a P-value distribution. Expression
probes with a significant association (FDR < 5%, two-way conditional analysis for ¢/s-eQTL
analysis) to a trait SNP are given in Supplementary Tables 6 and 7.

Analysis of gut microbiome data from Vdr-knockout mice

Gut microbiome data from Jin et a/2° include fecal samples from three wild-type and five
Vdr-knockout mice for which the VV4-V6 region of the 16S rRNA gene was sequenced on
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the 454 GS-FLX platform. Quality filtering, removal of chimeras and classification were
performed according to the same procedure described in the previous section. Statistical
tests for the effect of Vargenotype on the microbiome were carried out with the “envfit’
function in ‘vegan’ as described for the analysis for human SNPs. Comparison of specific
taxa was carried out by the Wilcoxon test. Results are shown in Supplementary Figures 5
and 6.

Analysis of association of bile acids and fatty acids with the microbiome

To identify bacteria associated with the concentration of measured bile acids, including total
LCA (the sum of LCA, G.LCA and T.LCA) and total BA (sum of all 15 bile acids), a
generalized linear model with an inverse Gaussian distribution and log link was applied,
excluding outliers more than 5 s.d. from the mean for bacteria and bile acids, adding a
constant (¢ = 1) to bile acid concentration and including the covariates age, sex, BMI, total
energy intake, water, alcohol and bile acid batch number (7= 569). To identify bacteria
associated with w3 and w6 fatty acids, a linear regression model was applied with a square
root transformation of fatty acids, excluding outliers with values more than 5 s.d. from the
mean for bacteria and including the covariates age, sex, BMI, total energy intake, water and
alcohol. Two samples with negative concentrations found for C22.2n.6 were excluded,
leaving 567 samples in the fatty acid analysis. Benjamini-Hochberg corrected P values were
calculated for each dependent variable to determine significance (Supplementary Table 4).

Shotgun metagenomic analysis

For a subset of 197 individuals, the same DNA extracts used in 16S rRNA gene sequencing
were subjected to shotgun metagenomic sequencing. Samples were prepared following the
protocol for the Illumina Nextera DNA Library Preparation kit and sequenced on the HiSeq
Platform as 2 x 125 bp paired-end reads. Nextera adaptor sequences were trimmed using
Trimmomatic (v0.32)55. Quality control of the sequencing reads was performed with sickle
(v1.330), and parameters were set to a sliding-window quality threshold of 20 and a
minimum length of 60 after quality trimming. DeconSeq®8 was run to identify and remove
human reads from the sequencing file, using the hg19 human genome sequence as the
reference database. If one of the reads belonging to a read pair was removed at any of the
quality control steps, the respective paired read was discarded as well. Samples that passed
quality control, with no diagnosed IBD, IBS or diabetes and with genetic data (n = 122),
were analyzed using HUMANN2 with default settings except ‘~bt2_ps sensitive’ for the
analysis of pathway and gene family abundance. Tables were normalized to relative
abundance using ‘humann2_renorm_table —units relab’. Gene families including the term
‘bile acid’ were selected, and four pathways relevant for bile acid metabolism were selected
(bile acid degradation, iso-bile acid biosynthesis | + 11, bile acid biosynthesis, neutral
pathway and glycocholate metabolism (bacteria)). Association with VDR genotype
(rs7974353) was evaluated using GLM with an inverse Gaussian distribution, the covariates
BMI, age, sex, alcohol, water and total energy intake and removal of outliers more than 5
s.d. from the mean and a constant (¢ = 1) added to abundance followed by multiplication by
1x 106,
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Replication in the FoCus obesity cohort

SNPs found to be significantly associated with B diversity in this study were consequently
replicated in an additional FoCus obesity cohort (7= 371). The FoCus obesity cohort was
recruited from the Obesity Outpatient Centre at the University Hospital in Kiel, which offers
both non-surgical and surgical obesity therapies. Similar phenotype and genotyping profiles
were obtained for the FoCus control cohort. The recruitment of the FoCus obesity cohort
was approved by the local Ethics Committee (A156/03), and each patient gave their
informed consent. To replicate associations of lead SNPs with B diversity, the effect size of
each SNP was calculated with ‘envfit’, and consequent P values were calculated on the basis
of the same empirical null distributions described above; successful replications are defined
as having P < 0.05/42 (in total, 42 SNPs were included in the test).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of variation in the gut microbiota and significantly associated non-genetic

parameters

(a) PCoA of the combined cohort using BC. Arrows represent increases in the eight most
abundant genera (arrow length is proportional to mean abundance; scale bar); 7= 1,812.
Samples are colored according to cohort. MDS1 and MDS2 are the two major axes from
PCoA. (b) Correlation of age, BMI and smoking status with microbiota. For age and BMI,
green arrows denote effect size (variation in p diversity explained; scale bar). Differences in
smoking status are depicted as two circles with different centroids, with the dashed lines
containing 50% of the samples for each group (for visualization). (c) Correlation of major
nutrients with microbiota, with red arrows denoting effect size (variation in B diversity
explained; scale bar). As most individual nutrients are co-linear with total energy, all arrows,
save for the one for total energy, show the increase in standardized nutrient values

(calculated by nutrient/total energy).
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Figure 2. Individual and combined effects of significant loci and overview of all significant loci
identified in this study

(a) Effect sizes (variation in 8 diversity explained) for the 42 significant loci (lead SNPs) are
shown in decreasing order (left axis), and additive effects (Online Methods) are shown by
the dashed line (right axis). (b) Chromosomes on the right side of the plot show the
chromosomal position of genes significantly associated with p diversity (black) or an
individual taxon (blue). The inner circle includes genes whose mouse homologs were
implicated in one or more previously published mouse QTL studies3>47-50(supplementary
tables 6 and 7), denoted by a link to the corresponding mouse chromosome and appearing in
the same color as the human chromosome on which the gene is located. For genes located in
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the outer circle, either there is no mouse homolog or the mouse homolog does not fall within
a QTL.
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Figure 3. VDR and POMC as examples of genes associated with p diversity
(a) LocusZoom plot of adjusted effect size (for each SNP, the actual effect size is divided by

the significance threshold adjusted according to MAF category, represented by the dashed
line; Online Methods) at the VDR locus, where two SNPs passed the significance threshold
for association with B diversity (P< 5 x 1078 for association with overall microbiome
variation, measured by BC). (b) Association between genotypes at the lead SNP (rs7974353)
and p diversity (BC). Microbiome data are shown in a PCoA plot; the dashed lines contain
50% of the samples for each group (for visualization) and show differences in the centroids
for each genotype group; 7= 1,812. (c) Meta-analysis in humans shows Parabacteroides to
be the most significant taxon correlated with VDR using a GLM (Online Methods). The x
axis shows the percentage of nonzero values for each genotype at rs7974353, and boxes and
bars summarize 50% and 95% confidence intervals, respectively, for nonzero values; n=
1,812. (d) Knockout of V@2 in mice also leads to changes in Parabacteroides abundance.
Error bars, 5-95% confidence intervals (n7= 3 wild-type (WT) mice and n=5 knockout
mice; supplementary Fig. 6 and supplementary Note). (€) LocusZoom plot for adjusted
effect size in the region upstream of POMC, where 78 SNPs passed the significance
threshold. (f) Association between the genotypes of the lead SNP at POMC (rs72853661)
and B diversity (BC). Microbiome data are shown in a PCoA plot; the dashed lines contain
50% of the samples for each group (for visualization) and show differences in the centroids
for each genotype group; 7=1,812.
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