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Abstract

Human gut microbiota is an important determinant for health and disease, and recent studies 

emphasize the numerous factors shaping its diversity. Here we performed a genome-wide 

association study (GWAS) of the gut microbiota using two cohorts from northern Germany 

totaling 1,812 individuals. Comprehensively controlling for diet and non-genetic parameters, we 

identify genome-wide significant associations for overall microbial variation and individual taxa at 

multiple genetic loci, including the VDR gene (encoding vitamin D receptor). We observe 

significant shifts in the microbiota of Vdr−/− mice relative to control mice and correlations 

between the microbiota and serum measurements of selected bile and fatty acids in humans, 

including known ligands and downstream metabolites of VDR. Genome-wide significant (P < 5 × 

10−8) associations at multiple additional loci identify other important points of host–microbe 

intersection, notably several disease susceptibility genes and sterol metabolism pathway 
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components. Non-genetic and genetic factors each account for approximately 10% of the variation 

in gut microbiota, whereby individual effects are relatively small.

Microbes inhabiting the human intestine mediate key metabolic, physiological and immune 

functions1,2, and perturbations of this ecosystem can profoundly influence health and 

disease3,4. As disease states can also impose secondary changes to the gut microbiota, a 

fundamental understanding of the forces determining gut micro-bial composition in healthy 

individuals is essential for deciphering the nature of disease states and developing 

therapeutic strategies. Assemblage of the gut community begins at birth5,6, and, once 

established, compositional features are resilient to perturbations7,8. The composition of the 

gut microbiota is highly variable among adults9,10, although family members tend to harbor 

more similar communities than unrelated individuals11,12. Both genetic and environmental 

determinants may underlie this similarity among familial microbiomes. Diet is one of the 

major environmental drivers for microbial community structure13,14, and other known 

factors include age and geography11,15 as well as the intake of medication16.

There is increasing support for a host genetic component shaping and/or structuring 

between-individual variability in the gut microbiota. Using 416 twin pairs, Goodrich et al.12 

showed that monozygotic twins display greater overall similarity in their microbial 

communities than dizygotic twins and identified microbial taxa that were affected by host 

genetic variation. Influence of single candidate genes on the composition of the microbiome 

is also suggested by studies of the human gut mucosa (FUT2; ref. 17) or in mouse models 

(Nod2; ref. 18). A recent study using available Human Microbiome Project (HMP) metagen-

omic sequencing data19 assessed associations between genome-wide genetic variation in 

humans and the microbiome and identified an association between the LCT gene and the 

abundance of bacteria in the Bifidobacterium genus. However, a small sample size (n = 93) 

and lack of thorough correction for known confounding factors (such as diet) represent 

drawbacks of this study. Here we report the results from a well-powered systematic host 

GWAS of the fecal microbiome in two independent but geographically matched cohorts 

totaling 1,812 individuals of European ancestry. A dense genomic marker set comprising a 

total of 6,344,846 genotyped and imputed SNPs and extensive metadata were included in the 

analyses, which enabled us to study the influence of host genotype, alongside dietary and 

other environmental factors, on between-individual variability in the gut microbiome.

RESULTS

Establishing covariables for the genetic analysis

Fecal samples were obtained from two independent cohorts of 914 individuals (PopGen20) 

and 1,115 individuals (Food-Chain Plus; FoCus21), both recruited at the University Hospital 

Schleswig-Holstein in the city area of Kiel, Germany, through the local Biobank PopGen20. 

For each of the 2,029 samples, high-quality 16S rRNA gene sequence data (minimum of 

10,000 reads/sample) were generated, yielding a total of 38 and 374 identified phyla and 

genera, respectively. The two cohorts exhibited similar taxon abundance at high 

(Supplementary Fig. 1) and low (Supplementary Fig. 2) taxo-nomic levels, although small 

differences in β diversity (Bray–Curtis) were present between the cohorts (r2 = 0.026; P = 1 
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× 10−3), which were due to differences in age, body mass index (BMI) and sex ratio 

(Supplementary Table 1). A subset of 1,812 of the 2,029 individuals had available SNP array 

data in addition to the 16S rRNA data. Unless otherwise noted, results are presented for the 

combined cohort of 1,812 individuals, that is, PopGen and FoCus (results for individual 

cohorts are provided in Supplementary Figs. 1–3, Supplementary Table 1 and the 

Supplementary Note).

Variables previously reported to influence the gut microbiota, including age, sex, BMI11,12 

and smoking status22, all displayed significant correlations with variability in the 

microbiome (P < 0.05; Fig. 1, Supplementary Fig. 4 and Supplementary Table 1). In terms 

of the percentage of variation explained (as determined through principal-coordinate 

analysis (PCoA) applied to Bray–Curtis dissimilarity (BC), a β-diversity measure that 

reflects between-individual variability), age accounted for the greatest amount (4.74%) in 

the combined cohort, followed by BMI, smoking and sex (3.79%, 2.14% and 1.79%, 

respectively; Fig. 1).

Moreover, using available food frequency data, we performed a systematic analysis of long-

term diet and nutrients with respect to the microbiome. Using either the major food groups 

(for example, vegetables) or nutrients (for example, dietary protein content; Fig. 1, 

Supplementary Fig. 4 and Supplementary Table 1), we quantified the contribution to 

observed variability in the microbiome (PCoA applied to BC). We found that eight of the 

nine major nutrients and 12 of the 17 food groups displayed significant correlations in at 

least one cohort (Supplementary Table 1), and overall diet was significantly associated with 

the landscape of the human gut microbiome and explained 5.79% of the variation in BC 

(Fig. 1). Addition of the other significant covariates (age, sex, BMI and smoking status; P < 

0.05) resulted in a total of 8.87% of the variation in BC explained (Supplementary Fig. 3). 

Given their detectable influence on between-individual variability, dietary variables, that is, 

water, alcohol and ‘total energy’ (as the best proxy for other co-linear nutrients with Pearson 

r > 0.5), were included as covariates in the subsequent host SNP versus microbiome 

association analyses.

Host genetic loci influence microbial β diversity

Between-individual variability is measured by β-diversity indices, which represent overall 

differences between microbial communities in the population and are driven by variation 

among multiple taxa. To identify individual loci contributing to βdiversity, we employed a 

multidimensional ANOVA approach, for which significance thresholds were determined for 

distinct classes of minor allele frequency (MAF) by performing >2 × 107 permutations to 

simulate the largest possible effect size (percentage variation in β diversity explained) that 

can occur by chance (for details, see the Online Methods). After stringent filtering based on 

effect sizes in the cohorts separately as well as in combination (Online Methods), this 

analysis showed 42 loci to be associated with β diversity (P < 5 × 10−8; Fig. 2 and Table 1), 

each of which contributed from 0.65 to 0.97% of the variation in community structure 

(measured by BC) and additively explained 10.43% in the combined cohort (Fig. 2). Of 

these loci, 21 could be successfully replicated in a smaller, independent cohort composed of 
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obese individuals (FoCus obesity, n = 371), recruited from the same geographic area (Online 

Methods and Supplementary Table 2).

Interestingly, variants in the VDR gene (encoding vitamin D receptor) were among the 42 

significant loci and accounted for 0.75% of the variation in the combined cohort (Fig. 3). 

VDR encodes a nuclear transcription factor, which through heterodimerization with the 

retinoid X receptor (RXR) exerts a range of physiological effects with many known 

exogenous and endogenous ligands. Besides vitamin D, both microbial (for example, 

secondary bile acids) and dietary (for example, fatty acids) metabolites act via the VDR–

RXR heterodimer23,24. To further explore this association, we analyzed gut microbiota data 

from a published Vdr−/− mouse model25, confirming that loss of Vdr in mice substantially 

affects β diversity (42% variation in BC explained in this controlled setting; Supplementary 

Fig. 5). Detailed exploration of parallels between human and mouse microbiota also showed 

that VDR consistently influences individual bacterial taxa such as Parabacteroides (Fig. 

3c,d; additional taxa are shown in Supplementary Fig. 6). Incidentally, in another data set, 

we observed upregulation of VDR in the colonic biopsies of patients with acute 

inflammation, Crohn’s disease or ulcerative colitis as compared to healthy controls, 

accompanied by much lower abundance of Parabacteroides, thereby further supporting such 

interaction (Supplementary Fig. 7 and Supplementary Note). Of note, enrichment analysis of 

genetic loci significantly associated with individual taxa (Table 2) showed vitamin D 

response as the fourth most significantly associated gene set (Table 3).

The gut microbiome is essential for bile acid metabolism, and bile acids act as both key 

VDR ligands and regulators of VDR expression23,24,26. In addition, polyunsaturated fatty 

acids act as ligands for RXR, the heterodimeric partner of VDR, and were shown to compete 

for ligand binding to VDR23. We therefore performed targeted measurement of bile acids 

and ω3 and ω6 polyunsaturated fatty acids in human serum in a subset of the PopGen cohort 

(n = 551). We found significant correlations between several bile acids and β diversity (BC), 

including taurochenodeoxycholic acid (TCDCA; 2.2% variation explained) and 

glycochenodeoxycholic acid (GCDCA; 1.4% variation explained; Supplementary Fig. 8 and 

Supplementary Table 3). Bile acids also significantly associated with individual bacterial 

taxa, including the secondary bile acids lithocholic acid (LCA; a known VDR ligand) and 

deoxycholic acid (DCA; Supplementary Table 3), both of which are produced by the gut 

microbiota24. In addition, genomic analysis showed that Parabacteroides bacteria contain 

pathways involved in secondary bile acid metabolism (Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway pdi00121) and could thus indeed be associated with bile acid 

profiles, a hypothesis that is further supported by positive correlations between 

Parabacteroides abundance and LCA concentration (Supplementary Table 3). Furthermore, 

functional profiling of the gut microbiome via shotgun metagenomic analysis in a subset of 

the PopGen cohort (n = 122) also showed differences in bile acid–related gene pathways 

with respect to VDR genotype (Supplementary Fig. 9). Finally, the above-mentioned data 

from colonic biopsies also suggested that the interplay between VDR and Parabacteroides 
involves two genes associated with bile acid metabolism (CYP27A1, encoding cytochrome 

P450 family 27 subfamily A member 1, and NR5A2, encoding nuclear receptor subfamily 5 

group A member 2; Supplementary Fig. 7), with interactions lost in the context of intestinal 

inflammation (Supplementary Fig. 7). Together, these findings provide evidence that the gut 
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microbiota significantly contributes to human bile acid profiles, as previously reported in 

mice27. For fatty acids (false discovery rate (FDR) < 0.05), we detected significant 

correlations between the gut microbiota and 7 of 15 polyunsaturated fatty acids, including 

arachidonic acid (an ω6 fatty acid that is capable of binding VDR), which correlated with β 
diversity (1.22% variation explained) and several specific taxa (Supplementary Table 4). Of 

note, two additional genome-wide significant associations with the gut microbiota are 

critically involved in bile acid (HNF4A; Table 2) and arachidonic acid (PLA2G3; Table 1) 

homeostasis28,29. Finally, several loci identified in this study, in addition to VDR, were 

significantly correlated with bile acid profiles, as shown by regression analysis 

(Supplementary Table 5).

Many other interesting findings are found among the 42 significant loci (Table 1), in 

particular the POMC (proopiomelanocortin) gene (rs72853661, P < 5 × 10−8; Fig. 3e). As an 

extremely functionally diverse protein, POMC participates in multiple physiological 

processes ranging from antimicrobial activity to appetite regulation (Supplementary Table 

6). Furthermore, this locus located upstream of the POMC gene is the largest we discovered 

(78 SNPs over 54.8 kb; Fig. 3e) and contains multiple SNPs that regulate the expression of 

POMC in multiple human tissues, as determined by expression quantitative trait locus 

(eQTL) studies (GTEx database). The associated SNP rs66589178 in particular is predicted 

to be a VDR binding site (RegulomeDB), and the TRAP analysis tool predicted an almost 

200-fold difference in affinity for VDR between the two alleles (Supplementary Fig. 10). 

Other findings include the HTR1E (serotonin receptor) and GRID1 (glutamate ionotropic 

receptor) genes, which are potential components of the gut–brain axis30, and genetic 

variation near CLEC16A (rs12931878, P < 5 × 10−8), a gene associated with multiple 

autoimmune and inflammatory disorders involving alterations to gut microbiota 

(Supplementary Table 6). A number of other regions are implicated in disease susceptibility 

as previously reported by case-control GWAS and can be found in Table 1 and 

Supplementary Tables 6 and 7 (for example, BANK1 close to SCL39A8).

Finally, a targeted analysis was performed for the human leukocyte antigen (HLA) complex 

on chromosome 6. The HLA complex shapes the immune repertoire and may influence gut 

microbiome composition31. Because SNPs do not capture the extreme polymorphism of the 

classical HLA genes, we imputed HLA alleles using SNP2HLA (Online Methods) and 

implemented a constrained ordination approach. This approach showed significant 

association of alleles at HLA-B (HLA-B*52:01) and HLA-C (HLA-C*12:02) in both 

cohorts (P < 0.05; Supplementary Fig. 11 and Supplementary Table 8). The associated 

alleles have been implicated in risk for ulcerative colitis in multiple ancestry groups32,33 and 

in Takayasu arteritis34.

Genetic associations with individual bacterial traits

To detect associations between genetic variants and specific bacterial traits, we first curated 

the microbiome data and removed rare bacteria by defining a ‘core measurable microbiota’ 

(ref. 35) (Supplementary Fig. 12 and Supplementary Table 9), which included 40 operational 

taxonomic units (OTUs) and 58 taxa ranging from the genus to the phylum level, and 

employed a generalized linear model (GLM) framework incorporating a negative binomial 
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(negbin) distribution. Accordingly, we identified 54 significant associations involving 40 loci 

and 22 bacterial traits (meta-analysis P < 5 × 10−8 and single-cohort P < 5 × 10−4; Table 2). 

Of the 22 bacterial traits, the largest number belonged to Firmicutes (n = 10), followed by 

Proteobacteria (n = 7), Bacteroidetes (n = 3) and Actinobacteria (n = 2), at the phylum level. 

To identify the nearest and neighboring genes for each locus, we annotated the identified 

SNPs using DEPICT36 (Table 3).

Among the 54 robust associations, the SLC2A9 gene was associated with unclassified 

Porphyromonadaceae (rs7656342, meta-analysis P = 2.8 × 10−9) (Supplementary Fig. 13). 

The SLC2A9 gene encodes a member of the glucose transporter family, which is important 

for maintaining glucose homeostasis37. Furthermore, a number of long intergenic noncoding 

RNAs were among the 54 associations, including association of LINC01192 with 

Lactobacillales (rs62295801, meta-analysis P = 5.32 × 10−10) (Supplementary Fig. 13). Of 

note, gene set enrichment analysis detected associations for LINC01192 with ‘response to 

vitamin A’ and for SLC2A9 with both ‘response to vitamin D’ and ‘increased liver 

cholesterol level’ (Table 3).

Next, we evaluated whether the genetic signal for β diversity is influenced by the abundance 

of individual bacterial taxa. Indeed, 37 loci that correlated with β diversity also correlated 

with the abundance of several core measurable microbiota taxa and OTUs (P < 0.01), albeit 

not at the genome-wide significance level (Supplementary Fig. 14). Conversely, the loci 

identified in association analyses for individual taxa explained a proportion of the variation 

in β diversity (six loci with P < 0.05, effect size of 0.29–0.49%) but did not reach our 

conservative significance threshold of P < 5 × 10−8 (Table 2). Thus, in conclusion, we found 

that genetic variants correlating with microbiome structure could be either strongly 

associated with an individual taxon or simultaneously associated with multiple taxa, with 

each association having a small effect size.

Enrichment analysis of gene sets and tissues

To further assess the functional relevance of the 54 identified associations between genetic 

variants and specific bacterial traits, we used DEPICT36 to perform both gene set and tissue 

enrichment analyses (Table 3). DEPICT prioritizes genes in associated regions on the basis 

of functional relationships and linkage disequilibrium (LD) structure. Of interest, ‘response 

to vitamin D’ (original gene set ID GO:0033280, P = 8.8 × 10−5) was the fourth most 

enriched term. Enrichment of response to vitamins in general was also observed, including 

‘response to vitamin A’, another fat-soluble vitamin binding to the retinoic acid receptor 

(RAR) and involved in bile acid homeostasis38,39. The gene set for ‘response to vitamin D’ 

includes SLC22A13, SLC2A9, COL22A1, ABCA13 and KRTAP8-1 (Table 2). The VDR 
gene locus itself, however, is not included, as the enrichment analysis was limited to loci 

associated with single bacterial taxa, and the association with Parabacteroides (Fig. 3c) did 

not reach the genome-wide significance threshold. Further, the term ‘increased liver 

cholesterol level’ was among the top enriched gene sets (original gene set ID MP:0010027, 

P = 1.7 × 10−4) and corresponds to one of the functions of the POMC gene locus identified 

in the above analysis. Among the bacterial taxa associated with ‘increased liver cholesterol 

level’ were Gammaproteobacteria, Bacilli, unclassified Porphyromonadaceae and an OTU 

Wang et al. Page 7

Nat Genet. Author manuscript; available in PMC 2017 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



belonging to Enterobacteriaceae. Furthermore, in a trans-eQTL analysis of the SNPs 

associated with β diversity or single bacterial taxa (Supplementary Tables 6 and 7), FDFT1, 

which encodes the first specific enzyme in cholesterol synthesis, was among the top hits, 

further emphasizing the fact that several hits converge onto the sterol pathway.

In the tissue enrichment analysis, the top 20 results with P < 0.05 (Table 3) showed the 

Medical Subject Heading (MeSH) terms ‘digestive system’ (10 occurrences), ‘nervous 

system’ (3 occurrences) and ‘cells’ (3 occurrences) as most significant. The best associated 

subcategories for ‘digestive system’ were ‘intestinal mucosa’ and ‘mucous membrane’, 

whereas the subcategories for ‘cells’ included ‘mono-cyte macrophage precursor cells’, 

‘epithelial cells’ and ‘hepatocytes’. In sum, the tissue enrichment analysis relates microbial-

associated host loci with gastrointestinal and immune-related tissues and cells, thus 

supporting the functional relevance of the identified loci.

DISCUSSION

We herein present a comprehensive analysis of genome-wide host–microbiota associations. 

We adhered to rigorous standards by including a large number of samples (1,812 SNP array–

16S rRNA microbiome data set pairs) and considering important known and herein 

identified confounders of variation in the gut microbiome. As geography is a major factor 

contributing to microbiome composition11,15, we used cohorts recruited from the same 

country and corrected for population stratification/ancestry in our genetic data set. We 

discovered genome-wide significant associations between gut microbial characteristics and 

the VDR gene, in addition to a large number of other host genetic factors, and eventually 

quantified the total contribution of host genetic loci to β diversity as 10.43%. The non-

genetic factors examined (age, sex, BMI, smoking status and dietary patterns) explain 8.87% 

of the observed variation in the gut microbiome.

As shown in Supplementary Figure 15, the associations at the VDR locus with gut microbial 

community composition provide compelling follow-up to the finding by Makishima et al.24 

that secondary bile acids (bile acids transformed by gut microbial metabolism, that is, LCA, 

glycine-conjugated LCA and 3-keto-LCA from 7α-dehydroxylated primary CDCA) serve as 

ligands for VDR. Validation of a relationship between VDR alterations and the gut 

microbiota in the Vdr−/− mouse model25 substantiates these observations. Results from gene 

set enrichment analysis and the observation that the bile acid profile in serum associates with 

variation in the gut microbiome further support this finding. The underlying mechanisms for 

the observed association between gut microbial profiles and the serum bile acid pool warrant 

further elaboration. The possibility that VDR-mediated signaling serves as a key mediator in 

the gut–liver signaling axis and microbial co-metabolism, as previously shown for FXR 
(farnesoid X receptor27), motivates substantial new research directions. Although the lack of 

an association at the FXR locus (Supplementary Fig. 16) does not signify the lack of FXR 

involvement in microbial bile acid co-regulation23 (for example, functional variation may 

simply not be present in our cohort), the VDR associations detected in the present study add 

another important player to this relationship.
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Insight on interactions between the microbiome and bile acid homeostasis are mostly based 

on mouse studies27,40,41, for which the transfer of interpretations into the human setting may 

be considerably biased given the large differences in bile acid profiles between mice and 

humans. Additional data presented in Supplementary Tables 6 and 7 show cross-validation 

for a subset of the genes detected in the human analysis, including VDR, whereby 

differential expression in germ-free and conventionally raised mice further supports the roles 

of these genes in interacting with and/or maintaining the homeostasis of the gut microbiome. 

Such overlap between distantly related mammalian hosts provides strong support for our 

discoveries and, hence, the internal validity of our experiment. Genetic associations at the 

VDR locus were also detected in human inflammatory bowel disease and liver disease42,43, 

for which the underlying mechanisms were proposed to be a perturbation of key aspects of 

host– microbe interactions44. The multidimensional relationship of key factors involved in 

VDR signaling (bile acids and ω6 fatty acids in particular) and the gut microbiota is even 

supported by genetic associations at functionally related loci (HNF4A and PLA2G3).

The POMC locus gives rise to a number of proopiomelanocortin-derived peptides involved 

in various physiological processes, including blood sugar regulation, inflammation and 

energy intake45, and association of SNP rs66589178, potentially affecting a VDR binding 

site (Supplementary Fig. 10), is an additional interesting circumstantial observation for the 

VDR finding. On the basis of their broad influence on bacterial community structure 

(contribution to β diversity as measured by BC) in our cohorts, VDR and POMC (among 

other genes) could be major regulators of the gut microbiome. Given that VDR and POMC 
are further associated with numerous important phenotypes (Supplementary Tables 6 and 7), 

our results provide a strong indication for genetic associations across phenotypes, including 

BMI, Crohn’s disease and the intestinal microbiome. However, further dedicated studies are 

still needed to link these pleiotropic signaling pathways and their associated biology46. 

Finally, understanding the functional consequences of the genetic variants discovered in this 

study will also require in-depth exploration, as the functional consequences of the lead SNPs 

remain unknown (for example, VDR lead SNP rs7974353).

Genome-wide screening for host genetic associations with gut microbiome composition has 

mostly been performed in mice, for which environmental factors and genetic background are 

easy to control. Thus, to further validate our findings, we compared our results to previously 

published QTL studies for the mouse gut microbiome. We found that mouse homologs of 

numerous GWAS hits in our study are contained in the confidence intervals of mouse QTLs 

(Fig. 2b). One such overlap even involves association with an identical trait— between the 

SLC9A2 gene and genus Blautia—in addition to traits at higher taxonomic levels (class or 

phylum). In addition, among all GWAS performed for human traits as determined by the 

National Human Genome Research Institute (NHGRI) GWAS Catalog, most loci and genes 

discovered in our study were previously associated with various traits, including diseases for 

which there is growing evidence of microbiome involvement in disease etiology (for 

example, inflammatory bowel disease, obesity and type 2 diabetes; Supplementary Tables 6 

and 7). Furthermore, specific associations of genes observed in previous studies (for 

instance, FUT2, NOD2 and LCT) could be replicated in our data set, but with less 

contribution in terms of influencing overall microbial variation (Supplementary Figs. 16 and 

17).
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In summary, we identify several genetic and non-genetic factors that determine the 

composition of the human gut microbiome. We show that genetic variation at the VDR locus 

significantly influences micro-bial co-metabolism and the gut–liver axis. Multiple other 

findings highlight key aspects of the intersections of host physiology with the gut 

microbiota, including a number of disease susceptibility genes in complex human diseases 

and the gut–brain axis. Key non-genetic covariable parameters, including diet, cumulatively 

have a similar magnitude of influence on the microbiome as host genetics, highlighting the 

importance of controlling for these confounders. Our study also indicates that the effect of 

individual genes is small and emphasizes the need for adequate statistical power and large 

sample sizes in future assessments. Following a similar logic to that provided by the 

outcomes of GWAS, the underlying biology of our observations may far exceed the 

statistical estimates and is likely to provide a critical framework for future studies of host–

microbe interactions in humans.

METHODS

Methods and any associated references are available in the online version of the paper.

ONLINE METHODS

Study subjects and sample collection

Two population-based cohorts from Schleswig-Holstein (Germany) were included in the 

study. Nine hundred and fourteen individuals from the PopGen cohort and 1,115 individuals 

from the FoCus (Food Chain Plus) cohort were included. These two study cohorts were 

recruited independently from each other, and the maximum number of individuals available 

was included to increase statistical power for various analyses. All samples, as well as 

corresponding information on phenotype and dietary behavior, were obtained from the 

PopGen biobank (Schleswig-Holstein, Germany)20. Study participants collected fecal 

samples at home in standard fecal tubes. Samples were shipped immediately at room 

temperature or brought to the collection center by the participants. Upon arrival into the 

study center (within 24 h), samples were stored at −80 °C until processing. Written, 

informed consent was obtained from all study participants, and all protocols were approved 

by the institutional ethical review committee in adherence with the Declaration of Helsinki 

Principles; investigators were blinded to sample identities. Sequence data for the 16S rRNA 

gene, genotype, nutritional and phenotype data used for the herein described study have 

been made available to other scientists through PopGen’s biobank general data transfer 

agreement. A summary of the phenotypes used in this paper is given in Supplementary Table 

1.

Genotyping data

Samples of the PopGen and FoCus cohorts were geno-typed on different genotyping arrays. 

The PopGen samples were typed on the Affymetrix 6.0, Affymetrix Axiom, Illumina 550k, 

custom Illumina Immunochip and Illumina Metabochip arrays with sample sizes before 

quality control ranging from 678 to 1,218 and a variant coverage of 196,524 to 934,968 

variants. The FoCus samples were typed on the custom Illumina Immunochip and the Omni 
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Express Exome, with 1,024 and 1,713 samples overall before quality control and a variant 

coverage of 195,732 to 964,193 variants. For each cohort, genotype data for each array were 

quality controlled separately and then merged and imputed. In total, 17,017,474 single-

nucleotide variants (SNVs) were included for the PopGen cohort and 17,340,550 SNVs were 

included for the FoCus cohort. Consequently, stringent quality filtering was performed for 

all genotyping data, with details provided in the accompanying Supplementary Note.

Sequencing and processing of bacterial 16S rRNA sequences

Bacterial genomic DNA was extracted using the QIAamp DNA Stool Mini kit from Qiagen 

on a QIAcube system. For all samples, the V1–V2 region of the 16S rRNA gene was 

sequenced on the MiSeq platform, using the 27F-338R primer pair and dual MID indexing 

(8 nt each on the forward and reverse primers) as described by Kozich et al.51. Sequencing 

was performed with MiSeq Reagent Kit v2. After sequencing, MiSeq fastq files were 

derived from base calls for read 1 and 2 (R1 and R2), as well as both indices (I1 and I2), 

using the Bcl2fastq module in CASAVA 1.8.2. Stringent demultiplexing was carried out by 

allowing no mismatches in either index sequence (instead of the default of one mismatch 

allowed by MiSeq). Forward and reverse reads were merged with FLASH software (v1.2)52, 

and quality filtering was subsequently performed with the fastx toolkit, excluding sequences 

with >5% nucleotides with quality score <30. Chimeras in sequences were removed using 

UCHIME (v6.0)53. After randomly selecting 10,000 reads for each sample, taxonomical 

classification and compositional matrices for each taxonomical level were carried out using 

the RDP classifier54 with the latest reference database (RDP14), where classifications with 

low confidence at the genus level (<0.8) were organized in an arbitrary taxon of ‘unclassified 

family’. Species-level OTUs (97% similarity) were created using the UPARSE routine55.

Bile acid and fatty acid measurements on human serum samples

Serum bile acid and polyunsaturated fatty acid composition in plasma was analyzed for 551 

PopGen samples by HPLC-MS/MS as recently described56,57. Five bile acids (cholic acid 

(CA), chenodeoxycholic acid (CDCA), lithocholic acid (LCA), deoxycholic acid (DCA) and 

ursodeoxycholic acid (UDCA)), including their taurinated (T) and glycinated (G) 

conjugates, were measured, as well as the following fatty acids: C18:2n-6 (linoleic acid), 

C18:3n-3 (α-linolenic acid), C18:3n-6 (γ-linolenic acid), C18:4n-3 (stearidonic acid), 

C20:2n-6 (eicosadienoic acid), C20:3n-6 (dihomo-γ-linolenic acid), C20:4n-3 

(eicosatetraenoic acid), C20:4n-6 (arachidonic acid), C20:5n-3 (eicosapentaenoic acid), 

C21:5n-3 (heneicosapentaenoic acid), C22:2n-6 (docosadienoic acid), C22:4n-6 (adrenic 

acid), C22:5n-3 (docosapentaenoic acid), C22:5n-6 (docosapentaenoic acid), C22:6n-3 

(docosahexaenoic acid).

Statistical analysis

Correlation between microbiome and metadata—In both cohorts, β-diversity 

measures based on genus-level composition were generated using the ‘vegdist’ function 

(Bray–Curtis and Jaccard dissimilarities). Community ordination was performed using 

PCoA based on the calculated dissimilarities using the ‘capscale’ function in ‘vegan’ (v2.3). 

The ‘envfit’ function in ‘vegan’ was used to correlate either categorical data, for which it 
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performs multidimensional ANOVA on the ordination, or continuous variables, for which 

the function tests linear correlations between a given variable and the coordinates of 

microbial communities. This test does not assume a normal distribution, as the significance 

value is determined by a permutation test.

We considered a range of reported confounding variables that could shape the human gut 

microbiome: age, sex, BMI, smoking and major nutritional components or food groups 

derived from diet patterns; similarly, the association analysis was performed for bile acid 

profiles and fatty acid composition. Dietary patterns were collected via a validated, self-

administered, 112-item food frequency questionnaire established for German 

populations58,59. All participants were given the option of completing the questionnaire 

preferably as a web-based version and, optionally, on paper. Information on macro-and 

micronutrient intake was obtained by using the German Food Code and Nutrient Database 

(vII.3) and provided by the Department of Epidemiology of the German Institute of Human 

Nutrition Potsdam-Rehbruecke. Before association analysis, all individuals who took 

antibiotics less than 6 weeks before stool collection were excluded to remove the possible 

influences of antibiotic medication. The effect size and significance of the mentioned 

variables were estimated using ‘envfit’, and the variables with significant effects (P < 0.05) 

were further used in the GWAS analysis as covariates (water, alcohol and all other highly 

correlated nutritional variables, which were collectively joined under the umbrella ‘total 

energy’). The combined effect of host metadata was estimated further using the ‘bioenv’ 

function in the ‘vegan’ package, which calculates the maximum Pearson correlation of 

microbial variation (Bray–Curtis dissimilarity) and combined dissimilarity in the selected 

subset of metadata (denoted by Gower distances). To reduce random errors in low-

abundance taxa, the analysis focused on the ‘core measurable microbiota’, which was 

determined using technical replicates according to Benson et al.35. Only taxa with an 

average of >40 reads per sample (and thus with less error introduced by random processes) 

were included (Supplementary Fig. 12).

Association of individual bacterial traits with human genetic variation—To 

identify human genetic variation associated with the abundance of individual gut bacteria, a 

statistical test for each combination of SNP and taxon was performed. The abundance of 

bacteria in the human gut is characterized by an increasing number of zeros at lower 

taxonomic levels, a right-skewed distribution often with a long tail and only positive values. 

Thus, a model assuming a normal distribution of dependent variables could not be fitted to 

our data. The GLM with a negative binomial (negbin) distribution and log link was selected 

for the statistical analysis as the best-fitting model across all bacteria. The hurdle model with 

a negbin distribution showed increasingly good fit with increasing numbers of zeros. The 

GLM negbin model was therefore selected as a consistent model across all bacteria, while 

the analysis of species (97% similarity threshold OTUs) was supported with the hurdle 

model60.

Our identified ‘core measurable microbiota’ (ref. 35) consists of 64 taxa across five levels 

(phylum, class, order, family and genus) and 42 species-level OTUs. Taxa with >90% of 

their counts within the first 5% of the range of counts or with >90% of above-zero counts 

within the first 5% of the above-zero range were excluded, as they performed poorly with 
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the selected model(s). Forty OTUs and 58 taxa were used for association study with human 

SNPs. The analyses were preformed on both cohorts separately (986 samples in FoCus and 

826 samples in PopGen). In the analyses, outliers defined as 5 s.d. were removed and genetic 

variants not overlapping in FoCus and PopGen were discarded, while variants with MAF 

>0.05 and IMPUTE2 INFO criteria >0.8 were included. No population stratification was 

observed between the two cohorts (λGC = 1.00; Supplementary Fig. 18) b61. The covariates 

BMI, age, sex, genetic principal components 1–3 and nutritional variables alcohol, water and 

‘total energy’ intake were used. The analyses were performed using R Project version 3.2 

and the GLM.nb function in ‘MASS’ package version 7.3 for the GLM negbin and the 

hurdle function in package ‘pscl’ (v1.4).

A meta-analysis of GLM negbin hits across the two cohorts was performed using PLINK 

(v1.9 64-bit)62, with the command “--meta-analysis +qt”, including information on β 
coefficients and standard errors. Clumping was performed using PLINK v1.9 with the “--

clump” command on SNPs meeting the following filtering criteria: meta-study fixed-effect P 
value < 5 × 10−8, single-cohort P value < 5 × 10−4, the same β value sign (same direction of 

association) and AIC (model fit parameter) < 50,000. Clumps with at least two SNPs for 

which at least one SNP was genotyped were selected. For each selected clump, the SNP with 

the lowest meta-analysis P value was selected as the tag SNP, and for bacteria containing 

zero counts the hurdle model was applied as described above. All hits were confirmed to be 

supported by the count or zero part of the hurdle model with P < 0.05 in both studies.

Genetic variation correlated with overall community differences—We also 

performed analyses aimed at identifying genetic variation that might not necessarily 

associate with individual bacterial taxa with genome-wide significance but might rather 

correlate with overall community differences (β diversity). We performed a simulation and 

treated genotype at each locus as categorical variables (the distribution of each genotype 

follows Hardy–Weinberg equilibrium). We measured the genotype association using the 

‘envfit’ function in the ‘vegan’ R package (v2.3). This approach calculates the community 

differences associated with three different genotypes, by comparing the difference in the 

centroids of each group relative to the total variation, on the basis of the main axes of the 

PCoA. By shuffling the simulated genotype >2 × 107 times, we effectively obtained a large 

enough null distribution of effect size. This was performed for six categories of MAF to 

represent loci with MAFs of 5%, 10%, 20%, 30%, 40% and 50% (whereas in case of a real 

SNP, it is compared to the category with the closest MAF value; Supplementary Fig. 19), 

and if a certain locus displays greater effect sizes than the simulated maximum they are 

extremely unlikely to be observed by chance (P < 5 × 10−8) and can be considered to be 

genome-wide significant. We have filtered SNPs in a similar fashion as the taxa associations 

mentioned above.

The additive effect of the significant loci from this analysis was then determined using 

redundancy analysis based on genus-level composition (‘rda’ in the ‘vegan’ package) and 

the ‘ordiR2step’ function in the ‘vegan’ package, which optimizes the order of loci in a 

linear model and sums up the variation of the ordination explained by each additional locus.
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HLA analyses were conducted on the respective HLA haplotypes within each locus, coded 

as carrier or non-carrier for each specific allele. We performed distance-based redundancy 

analysis after correction for host characteristics (see description of association analysis for 

factors). These models were then tested using a permutative ANOVA approach (5,000 

permutations) as implemented in the ‘vegan’ function ‘anova.cca’, and the coefficients of 

determination were extracted via ‘RsquareAdj’.

Annotation and enrichment

DEPICT36 was used to annotate and perform tissue and gene set enrichment analyses among 

the significant single-bacteria associations. DEPICT was used with the following settings: (i) 

association_pvalue_cutoff: 1 × 10−5, (ii) nr_repititions: 20, and (iii) nr_permutations: 500; 

all available analysis steps were performed. For genotype data, we used 

1000_genomes_project_phase3_CEU/ALL.chr_merged.phase3_sha-

peit2_mvncall_integrated_v5.2 0130502.genotypes; for the collection file, we specified 

ld0.5_collection_depict_150315.txt.gz and for the reconstituted gene sets file we specified 

GPL570-GPL96-GPL1261-GPL1355TermGeneZScores-

MGI_MF_CC_RT_IW_BP_KEGG_z_z.binary.

Analysis of association between bile acids and lead SNPs identified in this study

To identify bile acids associated with lead SNPs identified to be associated with the 

microbiome in this study, a generalized linear model with an inverse Gaussian distribution 

and log link was applied. As a supporting model, a two-part model was used comprising a 

GLM with binomial distribution and logit link for zero versus nonzero values, and a linear 

regression on log-transformed concentrations plus a constant (c = 1) for nonzero values. For 

both models, outliers with bile acid levels more than 5 s.d. from the mean were excluded and 

the covariates age, sex, BMI, vitamin K, alcohol, bile acid batch number and PC1–3 were 

included. The analysis included 520 samples.

Cis- and trans-eQTL analysis on human data

For SNPs identified as associated with β diversity and/or single bacterial traits, a cis- and 

trans-eQTL analysis was performed using data on 2,360 individuals. The analysis design and 

recourse are described in detail in previous studies63,64. In summary, cis-eQTL analysis was 

performed on SNP–probe pairs for cases where the distance was less than 1 Mb. To consider 

the effects of SNPs in LD with a disease-associated SNP (trait–SNP), a conditioned analysis 

was performed by first adjusting the probe expression level for the effect of the strongest 

associated local SNPs (eSNP) and then repeating the eQTL analysis. Likewise, the P value 

for the local best SNP was calculated with conditioning on the trait SNP. To control for 

FDR, sample labels were permuted 100 times to obtain a P-value distribution. Expression 

probes with a significant association (FDR < 5%, two-way conditional analysis for cis-eQTL 

analysis) to a trait SNP are given in Supplementary Tables 6 and 7.

Analysis of gut microbiome data from Vdr-knockout mice

Gut microbiome data from Jin et al.25 include fecal samples from three wild-type and five 

Vdr-knockout mice for which the V4–V6 region of the 16S rRNA gene was sequenced on 
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the 454 GS-FLX platform. Quality filtering, removal of chimeras and classification were 

performed according to the same procedure described in the previous section. Statistical 

tests for the effect of Vdr genotype on the microbiome were carried out with the ‘envfit’ 

function in ‘vegan’ as described for the analysis for human SNPs. Comparison of specific 

taxa was carried out by the Wilcoxon test. Results are shown in Supplementary Figures 5 

and 6.

Analysis of association of bile acids and fatty acids with the microbiome

To identify bacteria associated with the concentration of measured bile acids, including total 

LCA (the sum of LCA, G.LCA and T.LCA) and total BA (sum of all 15 bile acids), a 

generalized linear model with an inverse Gaussian distribution and log link was applied, 

excluding outliers more than 5 s.d. from the mean for bacteria and bile acids, adding a 

constant (c = 1) to bile acid concentration and including the covariates age, sex, BMI, total 

energy intake, water, alcohol and bile acid batch number (n = 569). To identify bacteria 

associated with ω3 and ω6 fatty acids, a linear regression model was applied with a square 

root transformation of fatty acids, excluding outliers with values more than 5 s.d. from the 

mean for bacteria and including the covariates age, sex, BMI, total energy intake, water and 

alcohol. Two samples with negative concentrations found for C22.2n.6 were excluded, 

leaving 567 samples in the fatty acid analysis. Benjamini–Hochberg corrected P values were 

calculated for each dependent variable to determine significance (Supplementary Table 4).

Shotgun metagenomic analysis

For a subset of 197 individuals, the same DNA extracts used in 16S rRNA gene sequencing 

were subjected to shotgun metagenomic sequencing. Samples were prepared following the 

protocol for the Illumina Nextera DNA Library Preparation kit and sequenced on the HiSeq 

Platform as 2 × 125 bp paired-end reads. Nextera adaptor sequences were trimmed using 

Trimmomatic (v0.32)65. Quality control of the sequencing reads was performed with sickle 

(v1.330), and parameters were set to a sliding-window quality threshold of 20 and a 

minimum length of 60 after quality trimming. DeconSeq66 was run to identify and remove 

human reads from the sequencing file, using the hg19 human genome sequence as the 

reference database. If one of the reads belonging to a read pair was removed at any of the 

quality control steps, the respective paired read was discarded as well. Samples that passed 

quality control, with no diagnosed IBD, IBS or diabetes and with genetic data (n = 122), 

were analyzed using HUMAnN2 with default settings except ‘–bt2_ps sensitive’ for the 

analysis of pathway and gene family abundance. Tables were normalized to relative 

abundance using ‘humann2_renorm_table –units relab’. Gene families including the term 

‘bile acid’ were selected, and four pathways relevant for bile acid metabolism were selected 

(bile acid degradation, iso-bile acid biosynthesis I + II, bile acid biosynthesis, neutral 

pathway and glycocholate metabolism (bacteria)). Association with VDR genotype 

(rs7974353) was evaluated using GLM with an inverse Gaussian distribution, the covariates 

BMI, age, sex, alcohol, water and total energy intake and removal of outliers more than 5 

s.d. from the mean and a constant (c = 1) added to abundance followed by multiplication by 

1 × 106.
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Replication in the FoCus obesity cohort

SNPs found to be significantly associated with β diversity in this study were consequently 

replicated in an additional FoCus obesity cohort (n = 371). The FoCus obesity cohort was 

recruited from the Obesity Outpatient Centre at the University Hospital in Kiel, which offers 

both non-surgical and surgical obesity therapies. Similar phenotype and genotyping profiles 

were obtained for the FoCus control cohort. The recruitment of the FoCus obesity cohort 

was approved by the local Ethics Committee (A156/03), and each patient gave their 

informed consent. To replicate associations of lead SNPs with β diversity, the effect size of 

each SNP was calculated with ‘envfit’, and consequent P values were calculated on the basis 

of the same empirical null distributions described above; successful replications are defined 

as having P < 0.05/42 (in total, 42 SNPs were included in the test).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of variation in the gut microbiota and significantly associated non-genetic 
parameters
(a) PCoA of the combined cohort using BC. Arrows represent increases in the eight most 

abundant genera (arrow length is proportional to mean abundance; scale bar); n= 1,812. 

Samples are colored according to cohort. MDS1 and MDS2 are the two major axes from 

PCoA. (b) Correlation of age, BMI and smoking status with microbiota. For age and BMI, 

green arrows denote effect size (variation in β diversity explained; scale bar). Differences in 

smoking status are depicted as two circles with different centroids, with the dashed lines 

containing 50% of the samples for each group (for visualization). (c) Correlation of major 

nutrients with microbiota, with red arrows denoting effect size (variation in β diversity 

explained; scale bar). As most individual nutrients are co-linear with total energy, all arrows, 

save for the one for total energy, show the increase in standardized nutrient values 

(calculated by nutrient/total energy).
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Figure 2. Individual and combined effects of significant loci and overview of all significant loci 
identified in this study
(a) Effect sizes (variation in β diversity explained) for the 42 significant loci (lead SNPs) are 

shown in decreasing order (left axis), and additive effects (Online Methods) are shown by 

the dashed line (right axis). (b) Chromosomes on the right side of the plot show the 

chromosomal position of genes significantly associated with β diversity (black) or an 

individual taxon (blue). The inner circle includes genes whose mouse homologs were 

implicated in one or more previously published mouse QTL studies35,47–50(supplementary 

tables 6 and 7), denoted by a link to the corresponding mouse chromosome and appearing in 

the same color as the human chromosome on which the gene is located. For genes located in 
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the outer circle, either there is no mouse homolog or the mouse homolog does not fall within 

a QTL.
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Figure 3. VDR and POMC as examples of genes associated with β diversity
(a) LocusZoom plot of adjusted effect size (for each SNP, the actual effect size is divided by 

the significance threshold adjusted according to MAF category, represented by the dashed 

line; Online Methods) at the VDR locus, where two SNPs passed the significance threshold 

for association with β diversity (P < 5 × 10−8 for association with overall microbiome 

variation, measured by BC). (b) Association between genotypes at the lead SNP (rs7974353) 

and β diversity (BC). Microbiome data are shown in a PCoA plot; the dashed lines contain 

50% of the samples for each group (for visualization) and show differences in the centroids 

for each genotype group; n = 1,812. (c) Meta-analysis in humans shows Parabacteroides to 

be the most significant taxon correlated with VDR using a GLM (Online Methods). The x 
axis shows the percentage of nonzero values for each genotype at rs7974353, and boxes and 

bars summarize 50% and 95% confidence intervals, respectively, for nonzero values; n = 

1,812. (d) Knockout of Vdr25 in mice also leads to changes in Parabacteroides abundance. 

Error bars, 5–95% confidence intervals (n = 3 wild-type (WT) mice and n = 5 knockout 

mice; supplementary Fig. 6 and supplementary Note). (e) LocusZoom plot for adjusted 

effect size in the region upstream of POMC, where 78 SNPs passed the significance 

threshold. (f) Association between the genotypes of the lead SNP at POMC (rs72853661) 

and β diversity (BC). Microbiome data are shown in a PCoA plot; the dashed lines contain 

50% of the samples for each group (for visualization) and show differences in the centroids 

for each genotype group; n = 1,812.
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