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Cancer cells undergo many different alterations during their transformation,

including genetic and epigenetic events. The controlled division of healthy

cells can be impaired through the downregulation of tumour suppressor

genes. Here, we provide an update of the mechanisms in which epigenetically

altered coding and non-coding tumour suppressor genes are implicated.

We will highlight the importance of epigenetics in the different molecular

pathways that lead to enhanced and unlimited capacity of division, genomic

instability, metabolic shift, acquisition of mesenchymal features that lead to

metastasis, and tumour plasticity. We will briefly describe these pathways,

focusing especially on genes whose epigenetic inactivation through DNA

methylation has been recently described, as well as on those that are well estab-

lished as being epigenetically silenced in cancer. A brief perspective of current

clinical therapeutic approaches that can revert epigenetic inactivation of

non-coding tumour suppressor genes will also be given.
1. Introduction
Cell division is the molecular mechanism that allows us to grow, adapt and

recover from stress. Essentially, it is a controlled process that keeps us alive.

Tumour cells are the result of distortion of these mechanisms. They can grow

faster and adapt better, living at our expense. They are an improved version of

ourselves [1]. Cancer cells result from a set of aberrant alterations of DNA that

lead to uncontrolled cell division. For many years the nature of these alterations

has been studied. In 1969, Todaro and co-workers demonstrated that the admin-

istration of viral DNA and RNA had the ability to generate tumours [2,3]. This

finding led to the discovery of the oncogenes, in other words, genes involved in

growth and proliferation, which when deregulated contribute to malignant trans-

formation. Two years later, Knudson identified another type of cancer-related

gene through his retinoblastoma cancer studies, the tumour suppressor genes

[4]. The function of this class of gene was none other than counteracting onco-

genes, inhibiting growth in the absence of stimuli. A decade later, cancer

studies met epigenetics. Epigenetics was first defined by Waddington in 1939

as ‘the causal interactions between genes and their products, which bring the phe-

notype into being’ [5]. Later the term was used to describe the occurrence of

heritable changes in gene expression for which the DNA sequence is not altered

[6]. One of the ways in which epigenetics is manifested is through DNA methyl-

ation. It was during the 1980s that a decrease in overall methylation levels was

reported in the genomes of tumour cells [7]. This discovery was accompanied

by the finding of oncogene activation through hypomethylation [8]. Paradoxi-

cally, a few years later hypermethylation and silencing of tumour suppressor

genes were observed [9]. Another level of epigenetic regulation is the influence
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Figure 1. Covalent mechanisms of epigenetic regulation. DNA is bound to histone proteins forming the nucleosomes. Nucleosome compaction depends on histone
tail modification, which is regulated by histone writers, readers and erasers. DNA methylation in CpG dinucleotides is regulated by different enzymes. DNMT1 and
DNMT3a mediate the 50mC synthesis. TET proteins catalyse DNA demethylation.
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of non-coding genes on protein expression regulation. In

relation to gene silencing, microRNAs and ncRNAs may act

as effectors, decreasing mRNA and protein levels of their

target genes, but they can also undergo epigenetic regulation

by other mechanisms such as DNA promoter methylation.

This review will focus on how epigenetic alterations

contribute to the silencing of tumour suppressor coding and

non-coding genes with particular emphasis on recent discov-

eries. Molecular changes that are involved in carcinogenesis,

such as aberrant division, immortality, genomic instability,

metastasis, metabolic reprogramming and tumour plasti-

city will be analysed, highlighting genes silenced through

epigenetic mechanisms.
2. Molecular epigenetics mechanisms
Various types of epigenetic mechanisms have been defined. The

first group of these consist of covalent modifications of chroma-

tin, affecting DNA and histones (figure 1). In mammals, DNA

methylation occurs predominantly at the 50 position of cytosine

forming cytosine guanine dinucleotides (CpG). This modifi-

cation is carried out by DNA methyltransferases (DNMTs),

enzymes that use S-adenosylmethionine (SAM) as methyl

group donor. In humans, DNMT1 is responsible for de novo
methylation, whereas DNMT3a and DNMT3b are more

related with methylation maintenance [10]. Demethylation can

be carried out through 10–11-translocation proteins (TET).

These enzymes can convert 5-methylcytosine (5mC) into

5-hydroxymethylcytosine (5hmC). The abundance of this

hydroxylated nucleotide in promoter regions of genes seems to

correlate with their active expression, while 5mC is generally

related to transcription repression. 5hmC is finally converted

back into cytosine by the action of TETs and other enzymes

through the successive modification of the 5-residue, concluding
the demethylation reaction [11]. DNA is not naked in the

nucleus; it is associated with histones. Histones are grouped

together to form octamers around which DNA is wrapped. His-

tones have an intrinsically unfolded domain, known as a histone

tail, which can be highly modified. These modifications influence

chromatin compaction, and may affect the binding affinity of

different proteins and complexes for chromatin. According to

histone marks, three groups of proteins are defined. Writers are

proteins responsible for histone marks deposition while erasers

act by removing these marks. Readers recognize these marks,

and upon mark recognition they recruit various proteins with

different functions that depend on chromatin context. The

nature and position of the mark determines its role [12]. Thus,

the same modification in one position may play an activating

role, such as trimethylation in lysine 4 of histone 3 (H3K4Me3),

but in another position may mediate a repressive action, such

as trimethylation of lysine 9 of histone 3 (H3K9Me). On the

other hand, modification of the same position with different

tags may give rise to opposite effects: whereas tH3K9Me pro-

motes repression, acetylation in the same position activates

transcription. Beyond covalent modifications there are other epi-

genetic mechanisms to be considered. Among them there is the

replacement of histones, such as macroH2A or H2AX [13,14];

ATP-dependent chromatin remodelling complexes, which are

involved in nucleosome positioning; and non-coding RNAs

(ncRNAS). ncRNAs participate in gene expression regulation

in several ways. They can activate gene expression by forming

DNA–RNA complexes, such as R-loops, but more often they

interfere in mRNA translation by blocking ribosome binding

or promoting mRNA degradation [15].
3. Aberrant division
The most prominent feature of tumour cells is their uncontrolled

division. This ability comes from the deregulation of genes
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responsible for cell-cycle control, as well as genes related to

signal transduction pathways involved in detecting external

stimuli such as nutrients or mitogens. While alterations in

cell-cycle genes often result in a lack of checkpoints, changes

in transduction pathways eventually lead to pervasive activation

of them in a stimulus-independent manner. The cell cycle is

broadly controlled by cyclin-dependent kinases (CDKs). These

enzymes catalyse phosphorylation reactions of different

substrates in association with their regulatory subunits, the

cyclin proteins, which increase CDK activity and contribute to

target recognition. A well-programmed fluctuation of cyclin

expression entails progression through different phases on the

cell cycle. Contrary to what one might think, the critical step in

cancer cells is neither the S-phase nor mitosis itself, but rather

G0/G1 transition, when a cell decides its fate. During this

phase, CDK4/6 control G0/G1 transition, and are activated

by D cyclins (D1, D2, D3) [16]. Moreover, CDK activity is con-

trolled by CDK inhibitors (CDKIs), which are also regulated

by external stimuli. For instance, p15INK4B/CDKN2B inhibits

CDK4/6 activity induced by TGF-b [17]. Thus, CDK4/6 inhi-

bition, either by the lack of cyclins or by the activation of

CDKIs, will result in a cessation of cellular proliferation. Cyclin

expression is dependent on extracellular signal pathways that

are often altered in cancer, such as Wnt/b-Catenin, RANK

receptor, Shh/Patched or tyrosine kinase receptors. p16INK4A/

CDKN2A and p15INK4B/CDKN2B, which are CDKIs for

CDK4/6, are downregulated in several types of cancer [18]. In

some, such as lymphoma, gastric cancer, head and neck squa-

mous cell carcinoma (HNSC), liver and oesophageal cancers

[18–22], p16INK4A/CDKN2A downregulation is caused by pro-

moter hypermethylation, but it can also be due to histone

deacetylase (HDAC) activity [23]. Retinoblastoma protein

(pRB) is the master regulator of G0/G1 to S transition, translating

cyclin fluctuations into transcription factor activation. pRB is

hypophoshorylated during early G1 phase by CDK4/6 and

hyperphosphorylated during late G1 by E-CDK2 complex.

Low levels of phosphorylation allow pRB binding with E2F tran-

scription factors, whereas pRB hyperphosphorylation liberates

E2Fs from pRB control, enabling cell-cycle progression. pRB,

which is encoded by RB1 gene, is one of the most commonly

mutated genes in cancer [24]. Apart from genetic mutations,

epigenetic silencing has also been observed. Cells without func-

tional pRB are not able to maintain themselves in G0/G1, and

so undergo aberrant division [25,26]. miR-124a, miR-129 and

miR-137 are downregulated through promoter hypermethyla-

tion on colorectal cancer (CRC) and breast cancer cell lines.

These microRNAs target CDK6, so their silencing promotes

CDK6 activation, which triggers increased phosphorylation of

pRb by promoting cell-cycle progression [27–29].

Receptor tyrosine kinases (RTKs) provide one way by

which cells sense their environment. Their ligand binding acti-

vation promotes conformational changes in their cytoplasmic

domain releasing signals into the cytoplasm. MET is a RTK

which is targeted by miR-1-1 and miR-34a microRNAs. All of

them are downregulated through promoter hypermethylation

resulting in MET activation in some cancers [30,31]. IGF-1R is

another RTK that is also regulated by miR-214 [32] and miR-
345 [33], which in turn are aberrantly methylated in cancer

[34]. FGFR expression is negatively controlled by miR-9 family,

but these microRNAs are frequently silenced by promoter

hypermethylation in cancer [35]. Post-translational modifi-

cations of RTKs recruit a number of proteins that can activate

RAS, promoting its GDP release and preferential GTP binding.
RAS can activate the mitogen-activated protein kinase (MAPK)

pathway by interacting with B-RAF, a MAPK pathway effector.

B-RAF activates PERK, which in turn catalyses ERK phos-

phorylation. The MAPK pathway activates cytoplasmic and

nuclear proteins involved in activating Jun and Fos transcrip-

tion factors, as well as protein synthesis activation that

contributes to cyclin D1 expression. Constitutive activation of

the MAPK pathway is often observed in cancer cells due to epi-

genetic alterations of MAPK-related genes as well as mutations.

For example, PTPRR, which dephosphorylates ERK, is methyl-

ated in cervical cancer [36]. DUSP1 and MKP1 are phosphatases

which also target ERK, promoting MAPK pathway inacti-

vation. The promoter regions of the DUSP1 and MKP1 genes

have been found hypermethylated in oral squamous cell carci-

noma and breast cancer, respectively [37,38]. RAS is directly

regulated by Let-7a [39], a microRNA which is downregulated

in different cancers such as head and neck cancer (HNC)

through promoter hypermethylation [40].

The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is

also a RAS-dependent pathway. PI3K activation depends on its

interaction with the GTP-bound form of RAS. Phosphatidyl-

inositol (PI) is a component of the plasma membrane which

can have a regulatory role that depends on its post-translational

changes. After its phosphorylation by different kinases, such as

PDK1, phosphatidylinositol-(4,5)-bisphosphate (PIP2) can be

phosphorylated by PI3K, generating phosphatidylinositol-

(3,4,5)-triphosphate (PIP3), which is recognized by AKT/

PKB. PDK1 is targeted by miR-375, which is downregulated

by promoter hypermethylation [41]. Active AKT/PKB contrib-

utes to cell proliferation by p21/CDKN1A, Tsc2 and GSK3-b

inhibition [42]. The critical step for AKT/PKB activation

is PIP3 formation. Alternatively, PIP2 can be cleaved by

phospholipase C (PLC), generating diaciylglycerol (DAG)

and inositol-(1,4,5)-triphosphate (IP3). PLCD1 has been found

silenced in breast and gastric cancers by promoter hypermethy-

lation [43]. It can be considered a tumour suppressor gene, as its

activity reduces AKT/PKB activation and decreases PIP2

levels, which are related to metastatic events [43–45]. There is

another family of proteins which interact with RAS, the Ras-

association domain family (RASSF). These proteins interact

with the activated form of RAS, often playing a different role

in tumourigenesis, because they behave as tumour suppressors

in contrast with PI3K or B-RAF. RASSF1 is the most famous

member of this family. Its promoter has been found methylated

in more than 30 tumour types [46,47]. RASSF1 activation pro-

motes cyclin D1 downregulation by its interaction with

p120E4F, which in turn interacts with p14ARF, pRB and p53 [48].

Apart from RTKs, the Wnt/b-Catenin signalling pathway

is another canonical pathway altered through promoter hyper-

methylation in cancer cells. In the absence of Wnt signalling,

b-Catenin is degraded by the GSK3-b, Axin and APC destruc-

tion complex. GSK3-b phosphorylates b-Catenin leading to its

degradation by the proteasome. When Wnt interacts with

Frizzled, Disheveled (DSH) is released and displaces GSK3-b,

promoting b-Catenin activation. This protein is then translo-

cated to the nucleus, where it binds Lef/TCF, promoting

transcription of its target genes including MYC and CNND1
(cyclin D1), both considered proto-oncogenes due to their

capacity to enhance cell growth and cell proliferation [49]. Epi-

genetic alterations of this pathway generate high b-Catenin

levels. Secreted frizzled related proteins (SFRP1, SFRP2,

SFRP3), which are Frizzled competitors for Wnt, are silenced

by promoter hypermethylation in different cancers, including
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hepatocellular carcinoma (HCC), lung adenocarcinoma, oeso-

phageal squamous cell carcinoma (ESCC) and CRC [49–52].

NDRG2 and WIF-1, other Wnt regulators, are inactiva-

ted in pancreatic cancer and ESCC, respectively [53,54]. It is

important to mention that some Wnt ligands cannot activate

b-Catenin, and so act as Wnt/b-Catenin antagonists, examples

of which include WNT5a and WNT7a, both of which are com-

monly silenced in CRC, pancreatic and lung cancer [55,56].

APC is frequently mutated in CRC, but it is also inactivated

by promoter hypermethylation in colon, breast and pancreatic

cancer [57–59]. NKD2, DACT2 and CXXC4 inhibit DSH. How-

ever, during tumourigenesis they are silenced by promoter

hypermethylation [60,61]. ROR2 is a Wnt5a receptor of Frizzled

independent pathway, which inhibits the canonical Wnt/

b-Catenin pathway. This transmembrane protein is also

downregulated in CRC though promoter hypermethylation [62].

Cancer cells often show myc activation through different

mechanisms, such as myc amplification, but its activity can

also be indirectly regulated through epigenetic events [63].

In acute myeloid leukaemia (AML), promoter hypermethyla-

tion of NUDT16, an RNA decapping enzyme, triggers an

increase in c-myc half-life mRNA, contributing to its acti-

vation [64]. Extensive literature highlights the importance of

epigenetic silencing events in tumour suppressor genes

involved in cell-cycle control and mitogenic pathways.
4. Immortality
Tumour cells are considered immortal because they avoid cell

death mechanisms that normally occur to avoid uncontrolled

cell growth. This capacity can be given by telomerase activation

through epigenetic deregulation or by the inhibition of path-

ways related to cell death. Tumour cells are subjected to

different stress conditions, both extrinsic, such as oxygen and

nutrient deprivation or death signals, and intrinsic, including

DNA damage or ROS stress. These situations lead normal

cells to die either by apoptosis or by other mechanisms. There-

fore, tumour cells find ways to prevent cell death through

inhibition of key genes involved in this programme. The crucial

role of epigenetics in this reprogramming was observed by

Kaminskyy et al. [65]. When they inhibited DNMTs and

HDACs, apoptosis was reactivated. p53 is considered the

master regulator of programmed cell death. Its activation,

which is related to DNA damage or hypoxia, is highly regu-

lated. One of these regulators is mouse double minute 2

(Mdm2), an E3-ubiquitin ligase which recognizes and mediates

p53 degradation via the proteasome. Mdm2 transcription is

upregulated by p53, generating a negative feedback, in order

to avoid excessive p53 activity after its activation. Mdm2 acti-

vation depends on Akt/PKB phosphorylation, thereby

connecting survival signals with the p53 regulation. Mdm2 is

also regulated by p14/ARF, an E2F target gene that is often

silenced in cancer through DNA hypermethylation of its pro-

moter [66–68]. Thus, p53 deregulation can be explained in

some cancers with p53 wild-type copies. When p53 is activated

it promotes the transcription of growth arrest genes, such as

p21/CDKN1A, a CDK inhibitor; 14-3-3 s, which sequesters

B-CDC2; and Reprimo, which promotes G2 arrest. 14-3-3 s is

silenced in a broad range of cancer types including nasophar-

yngeal carcinoma and breast cancer through promoter

hypermethylation [69–71]. Meanwhile, Reprimo is also

silenced by the same mechanism [72]. These epigenetic
alterations allow cell-cycle progression in spite of p53 acti-

vation. TP53TG1 is a long-non-coding RNA which is

regulated by p53. This RNA contributes to the DNA damage

response (DDR) through its interaction with YBX1 preventing

its nuclear localization. TP53TG1 is often downregulated

through promoter hypermethylation, which triggers a poor

outcome in gastrointestinal cancer patients [73].

If the stimulus that activates p53 ceases, for instance DNA

damage is repaired or survival signals bind membrane recep-

tors, p53 levels decrease, promoting cell-cycle progression.

However, if the DNA damage cannot be repaired or if there

is a sustained lack of nutrients, cells can enter into apoptosis.

In this case p53 promotes the transcriptional activation of

Bcl-2 superfamily genes. Within this heterogeneous family

there are antiapoptotic proteins, such as Bcl-L1 and Bcl-2

itself as well as proapoptotic genes, including BAX and

Only-bh3 family proteins [74]. Proapoptotic proteins partici-

pate in the formation of mitochondrial channels, contributing

to cytochrome C release. Some proapoptotic proteins including

BAX, BIM, Bid, HRK and PUMA are silenced in cancer [75,76].

microRNA-7, which targets the antiapoptotic Bcl-2, is also

downregulated in lung cancer cells [77]. Whereas most of

them are silenced through DNA promoter hypermethylation,

Bid inhibition is driven by SIN3a/ HDAC1/2 corepressor com-

plex [78]. Once cytochrome C is released it multimerizes with

Apaf-1 and caspase 9, generating the apoptosome. Apaf-1 inhi-

bition through DNA promoter hypermethylation allows

apoptosis bypass in renal carcinomas [79]. Besides the intrinsic

pathway, there is a p53-independent pathway, the extrinsic

apoptosis pathway, that is activated by cytokines. When FAS

receptor recognizes Fas ligand, or tumour necrosis factor-

related apoptosis-inducing ligand (TRAIL) binds its receptor

DR4 (death receptor), the apoptosis programme is initiated.

Subsequently, the death-induced signalling complex (DISC)

is formed by recruitment of FADD (Fas-interacting DD), pro-

Casp8 and proCasp10 proteins. ProCasps are then activated

and switch on the intrinsic pathway either through Bid acti-

vation by cleavage or through activating executioner

caspases (Casp3,6,7). After its activation, Bid migrates to mito-

chondria where channels are opened and cytochrome C is

released, becoming part of the apoptosome. During tumouri-

genesis death signals that can activate this pathway remain

active, but the inactivation of the transduction proteins is a

common feature among cancers. The DR4 receptor is inhibited

by DNA methylation of its promoter region in different cancers

[80,81]. Concerning Fas receptor, its regulation by DNA

methylation is controversial. Butler et al. [82] described that

Fas promoter hypermethylation did not explain Fas downregu-

lation in CRC. Three years later, Petak et al. [83] demonstrated

that methylation of the enhancer region leads to Fas downregu-

lation in this type of cancer. In addition, Fas has been found

methylated in bladder and oesophageal cancer [84,85]. Surpris-

ingly, its promoter methylation status did not correlate with

its expression in colorectal RKO cells, but its expression did cor-

relate with the methylation status of the enhancer region.

FADD and Casp8 were also downregulated by promoter

hypermethylation [81,85].

TMS1/ASC is a bipartite protein that plays a role in apop-

tosis and in the NF-kB pathway. It may serve as an adaptor

for Casp8 and Casp10 caspases or it can interfere with IKK

complex formation, contributing to apoptosis by activating

the caspase cascade as well as blocking antiapoptotic and

proliferative gene expression. The TMS1/ASC promoter



rsob.royalsocietypublishing.org
Open

Biol.7:17

5
was described to be hypermethylated in several cancer sub-

types [86,87]. HACE1 is a protein which mediates TNFR1

activation, promoting apoptosis or necroptosis activation.

Necroptosis is another form of programmed cell death that

triggers membrane rupture and inflammation without the

need for caspase activation. HACE1 has been found methyl-

ated in HCC [88]. RIPK3 is also involved in this pathway,

which in turn is also silenced through DNA promoter hyper-

methylation [89]. Epigenetic alterations related to the roles of

p53 in mobilizing components of DNA repair machinery and

inhibiting angiogenesis will be described in detail below in

the Genomic instability and Tumour plasticity sections,

respectively.

Overall, avoiding cell death is a key step for tumourigen-

esis, where epigenetic dysregulation plays an essential role,

from p53 regulation to apoptosis and necroptosis effectors.
0152
5. Genomic instability
In general, during cancer progression DNA methylation levels

decrease. In some cancers, mutations in DNMTs and TET2

have been reported [90–92], but this is not a common feature.

In most cases, the mechanisms that cause this phenomenon are

unknown and do not seem to depend on any single pathway.

Global DNA demethylation promotes genomic instability by

various mechanisms. Eden et al. [93] demonstrated that mitotic

recombination, which can lead to gene translocations and

fusions, was increased in DNMT3a- and DNMT3b-deficient

cells. In addition, DNA demethylation allows retrotransposon

transcription, such as long interspaced nuclear elements

(LINEs). LINE-1 transcription is activated after DNA demethy-

lation, leading to the insertion of these elements into other

genomic locations. During tumourigenesis, LINE-1 transcripts

can cause gene disruption and can also function as alternative

splicing sites, as novel promoters or as polyadenylation signals

in a retrotransposition-independent manner [94]. LINE-1

internal bidirectional promoters can generate LINE-1 chimeric

transcripts (LCTs) containing parts of genomic sequences sur-

rounding the LINE-1 locus. Cruickshanks et al. [95] discovered

that LCT13, a 300 kb LINE-1, was upregulated in cancer and

contributed to TFPI-2 downregulation as an antisense gene,

demonstrating an epigenetic inactivation caused by a LINE

element.

DNA repair genes show a dual role during cancer pro-

gression. Its inactivation via mutations or epigenetic silencing

promotes accumulation of repair errors, increasing tumour het-

erogeneity and provoking alterations which may confer

different advantages to cancer cells [96]. Furthermore, a lack

of DNA damage sensors or an efficient response to them can

promote faster cell division and avoidance of apoptosis [97].

However, this damaged DNA becomes more fragile, so stimuli

such as oxidative damage or certain drugs can be lethal for

tumour cells, giving rise to its use as a therapeutic target [98].

The DDR begins with the recognition of damaged DNA by

different sensors, which may recruit different mediators

depending on the nature of the DNA damage detected. As

well as activating DNA repair mechanisms, these mediators

also participate in cell-cycle arrest, prioritizing DNA repair

before replication or mitosis; if DNA damage cannot be

removed, chronic DDR signalling may trigger cell death by

apoptosis or cellular senescence. In humans, these DNA

damage sensors are ataxia telangiectasia-mutated (ATM) and
ataxia telangiectasia and Rad3-related protein (ATR), which

interact with double strand break (DSB) lesions [99]. On the

other hand, following DNA lesions that generate ssDNA, repli-

cative protein A (RPA) interacts with the DNA, positioning

ATR interacting protein (ATRIP) close to the site of damage.

ATM has been found hypermethylated in breast cancer [100],

even before the appearance of palpable lesions [66]. The two

best-studied ATM/ATR targets are CHK1 and CHK2, which

stop cell-cycle progression by reducing CDK activity through

different mechanisms. CHK2 has been found hypermethylated

in gliomas [101]. ATM/ATR also catalyses Ser139-gH2AX

phosphorylation, located around DSB sites, promoting the

recruitment of DDR factors.

DNA repair machinery is specific for each type of altera-

tion. For example, direct DNA repair (DR) enzymes, base

excision repair (BER), nuclear excision repair (NER) or mis-

match repair (MMR) mechanisms are triggered when single

nucleotide base damage occurs; by contrast, recombination

repair mechanisms (non-homologous end joining (NHEJ) or

homologous directed recombination (HDR)) are active when

DSBs are induced. Deficiencies in DNA repair enzymes can

be caused by somatic mutation, but are much more frequently

caused by epigenetic alterations that reduce or silence their

expression.

MGMT is an enzyme that directly repairs O-6-methylgua-

nines. If it is inactive, unrepaired guanine will match with

adenine instead of cytosine, giving rise to genomic instability.

The MGMT promoter is often hypermethylated in oesopha-

geal cancer and CRC [22,102], but its methylation status is

especially taken into account in glioblastomas [103,104]

because it is used as temozolomide response biomarker.

BER is a process which consists of the detection and correc-

tion of damaged bases in the DNA. This pathway is initiated

by a number of glycosylases (e.g. Ogg1, MDB4, NEIL1),

which differentially recognize and remove each aberrant

base, generating an AP site (apurinic/apyrimidinic site).

Ogg1 is a glycosylase that recognizes 8-oxoguanosine, being

reported as inactivated by promoter DNA hypermethylation

in breast cancer [105]. MBD4 recognizes thymidines or uracils

produced by hydrolysis of cytosines in CpG sites, and it is

methylated in CRC and ovarian cancer [106]. NEIL1 recogni-

zes and removes oxidized pyrimidines. This gene is also

methylated in certain types of cancer, such as HNC [107]. An

AP endonuclease then cleaves the AP site, generating a

single-strand break that can be processed by either a short-

patch ( just a nucleotide) or a long patch (from 5 to 10 nt).

Finally, DNA replication machinery synthesis followed by

XRCC1-ligase IIIa ligation ends the BER process.

NER is a similar process, which recognizes bulky DNA

lesions produced by mutagens or UV irradiation. NER can be

initiated by global genome NER (GG-NER) or transcription-

coupled NER (TC-NER) on the transcribed strands of active

genes [108]. In GG-NER, DNA lesions are mainly recognized

by XPC-hRAD23B-CETN2. After recognition, this complex

degrades the DNA surrounding the lesion and recruits TFIIH.

By contrast, TC-NER is activated when RNA polymerase II

(RNAPII) is blocked by bulky adducts. Different factors includ-

ing CSA, CSB and XAB2 interact with blocked RNAPII,

promoting its backtracking and recruitment of TFIIH, the con-

vergent step between GG-NER and TC-NER [108]. XPC and

RAD23B are epigenetically silenced in cancer through DNA

promoter hypermethylation in lung and multiple myeloma,

respectively [109,110]. After recognition, TFIIH complex
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proteins XPB and XPD unwind the DNA to create a 20- to 30-nt

bubble. This event allows the recruitment of XPA, RPA, XPG

and ERCC1–ERCC4/XPF. XPA binds the 50 side of the

bubble and RPA interacts with the complementary ssDNA

that does not have the lesion. Next, ERCC1–ERCC4/XPF cuts

the 50 injured strand, and after patch synthesis by DNA replica-

tion machinery, XPG cuts the 30 strand. Epigenetic silencing of

ERCC1 has been described in HNC through DNA promoter

hypermethylation [111]. Finally, XRCC1-ligase IIIa seals the

DNA [108].

DNA MMR machinery is responsible for replacing

mismatched Watson–Crick nucleotides. Mismatches are recog-

nized by the MutS heterodimer, which can consist of either

MSH2–MSH6 (MutSa) or MSH2–MSH3 (MutSb). MutS is

then stabilized by the MutL heterodimer, which in turn can be

made of MLH1–PMS2 (MutLa), MLH1–PMS1 (MutLb) or

MLH1–MLH3 (MutLg) [112]. The MutS–MutL complex

recruits different proteins that can generate an incision closer

to the DNA injury and carry out the removal of the damaged

strand. The DNA replicative machinery then resynthesizes the

damaged strand anew. Genes involved in MMR are often altered

in hereditary non-polyposis CRC syndrome (Lynch syndrome).

For instance, MLH1 inactivation by promoter hypermethylation

is a common alteration in this pathology [113].

HDR normally is found inactivated in cancer cells. When

DNA damage occurs, H2A is replaced by gH2AX in the nucleo-

somes near to the DNA lesion. After gH2AX phosphorylation

by ATM, MDC1 is recruited. MDC1 promotes RNF168/RNF8

binding and MRN complex interaction, formed by MRE11-

RAD50-NBS1. The MRN complex stimulates the kinase activity

of ATM [114] and participates in 50 ! 30 resection.

BRCA1 participates in HDR through RNF168/RNF8, a pair

of E3-ubiquitin ligases that modify proteins at DSB sites. Next,

BRCA1 mediates the 50 ! 30 resection. After 50 ! 30 resection

by BRCA1, BRCA2 loads RAD-51 onto ssDNA, a necessary

step for invading the homologous double helix. The homolo-

gous DNA is used as a template for damaged DNA strand

resynthesis [115]. RAD51 is downregulated in renal cell carci-

noma by histone methylation [116]. However, RAD51 seems

to be overexpressed in many different types of cancer.

RAD51 has five paralogues, which play essential roles in the

HDR pathway [117]. Of these, RAD51B and XRCC3 are down-

regulated by DNA promoter hypermethylation in different

cancer types, including HNSC, lung and cervix [118].

RNF168/RNF8 mediates BRCA1 or 53BP1 binding. BRCA1 is

a key regulator of the HDR pathway and several mutations

and epigenetic silencing events have been reported, especially

in breast and ovarian cancers [119]. This inactivation leads to

53BP1 binding to DSB sites, activating NHEJ to the detriment

of HDR [120]. BRCA1 can also be deregulated by epigenetic

alterations of its partners, such as SRBC for which inactivation

by promoter methylation has been described in CRC [121]. It

has been also reported that some HDR-related helicases are

silenced in different types of cancers, such as WRN, which is

often methylated in cervical cancer [122]. DNA hypermethyl-

ation is also present on the SLFN11 promoter in different

types of cancer [123]. SLFN11 is a putative helicase that inter-

acts with DHX9, another BRCA1 interactor, and it has been

postulated that SLFN11 destabilizes the DHX9 complex, thus

impairing complete damage repair [124].

The alternative process to HDR following a DSB is NHEJ,

which is more common during G1 phase. When a DNA

lesion occurs, BRCA1 and 53BP1 compete for binding to the
damage site. If 53BP1 interacts with phosphorylated gH2AX

or with the MRN complex, BRCA1-mediated resection is

blocked, and NHEJ starts [125]. The Ku70/Ku80 heterodimer

can bind DSB ends (non-resected ends). After its binding,

these proteins recruit XRCC4, which may serve as scaffold

for DNA end processing enzymes, such as ligase IV, WRN or

a DNA polymerase [126]. Ku70/Ku80 also recruits DNA-

PKcs, which can also process the damaged region. Ku80 and

DNA-PKc (also called XRCC5 and XRCC7, respectively)

have been found hypermethylated in glioma [127].

These data prompt us to think that DNA repair system

inhibition is a double-edged sword for cancer cells, increasing

their division rate and mutation accumulation but sensitizing

them to certain types of damage inflicted by UV, ionizing

radiation and chemotherapeutic agents.
6. Metastasis
Cancer cells can develop several strategies to adapt themselves

to new environments. Epithelial-to-mesenchymal transition

(EMT) is one of the most dramatic changes, whereby epithelial

cells obtain mesenchymal features. These cells are poorly differ-

entiated, and they can detach from the primary tumour,

migrate through the stromal environment and reach the blood-

stream. The reversibility of this process allows transformed cells

to undergo mesenchymal-to-epithelial transition, and then con-

tinue proliferating at distant localizations. Carmona et al. [128]

demonstrated common DNA methylation switches in MDCK

and MDA-MB-468 associated with EMT phenotype acquisition

after TGF-b treatment, supporting the importance of epigenetic

alterations during this process. TGF-b activates several path-

ways, promoting the expression of transcription factors (TFs)

that direct cell reprogramming, including FOXOC1, TWIST

and SNAIL [129]. Activation of these TFs positively correlates

with the expression of vimentin, fibronectin and N-cadherin,

all well-known mesenchymal markers. On the other hand,

aberrant epigenetic silencing of TFs such as SOX1, KLF4,

HIC1 and DACH1 through promoter hypermethylation has

been reported in HCC, lung, gastric and urothelial cancer

[130–133]. HOXA10, another epithelial-related TF, is silenced

in breast cancer by CTCF insulator binding [134]. Several pub-

lications report that EMT reprogramming promotes epigenetic

silencing of cell junction-related genes such as ITGA5, CDH11,

CADM1 and OLFM4 [135–138]. Ectopic expression of these

silenced genes decreased cell migration potential, highlighting

their role in the EMT process. Post-translational modifications

of membrane proteins may also contribute to cell adhesion.

B3GNT7 is an O-glycosyltransferase that in CRC is downregu-

lated by epigenetic silencing, and as in the cases listed above, its

recovery decreases cells migration and invasion ability [139].

However, EMT is not a linear process and many different mech-

anisms are involved in its regulation. Thus, whereas ITGA2 is

inhibited in some breast cancers by miR-373 effect, miR-373
silencing has been observed in lung cancer [140,141]. CDH1 is

a cadherin protein involved in cell–cell adhesion. ZEB1 and

ZEB2 are two transcriptional repressors of CDH1. These

genes are regulated by miR-200 microRNA family. Normal

expression of miR-200 may maintain CDH1 expression, but

aberrant promoter hypermethylation of miR-200 results in a

CDH1 downregulation, which triggers cell migration [142]. In

addition to cell detachment, another important step for cell

invasion is extracellular matrix degradation, with activation
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of proteases being a common feature in invasive front cells

[143]. Epigenetic silencing of protease inhibitor proteins has

also been reported. For instance, SPINT2 is often silenced

in gastric cancer, ESCC and melanoma by DNA promoter

hypermethylation [144–146]. MMP-9 is a well-characterized

metalloprotease, which is overexpressed in different cancers.

Its higher activity may be partially explained by RECK or

KISS1 silencing due to promoter hypermethylation. Whereas

RECK is an extracellular protein with a metalloprotease inhibi-

tor domain [147], KISS1 seems to be involved in interfering with

NF-kB-mediated MMP-9 transcriptional activation [148]. miR-
145 targets MMP-11, and has been reported to be inactivated

in different cancer malignancies. miR-145 ectopic expression

suppressed cell invasion and migration in renal cell carcinoma

[149]. mTOR, a molecular sensor of cellular status that is also

involved in metastasis, integrates several signals including

PI3K/AKT, Wnt/b-Catenin, Ras pathways and AMP/ATP

ratio. Its activation is mainly produced by TSC1/TSC2 inhi-

bition. mTOR can generate two different complexes,

mTORC1 and mTORC2. mTORC1 is related to MMP-2 and

MMP-9 activation, contributing to the invasiveness of cancer

cells. mTORC1 is also related to anabolism, participating in

protein synthesis and inhibiting autophagy. mTORC2 also

seems to promote cell motility through activation of focal

adhesion kinase (FAK) and Rho GTPases [150]. TSC1/TSC2,

which partially contributes to mTOR regulation, is epigeneti-

cally silenced by metastasis associated 1 family, member 2

(MTA2) in association with EZH2, a component of polycomb

repressor complex 2 [151]. PIP2 is a metabolite produced in

the PI3K/AKT pathway, and plays an important role in cell

motility. PIP2 participates in actin reorganization, becoming

an interaction point for actin binding proteins. Actin reorganiz-

ation is a necessary step for migration/invasion. PIP2 is

hydrolysed by PLCD, a tumour suppressor gene methylated

in cancer. MMP-7, another protease, also seems to be down-

regulated by PLCD, thereby decreasing its activity [43].

miR-345, which is downregulated in non-small cell lung

cancer through promoter hypermethylation [152], targets

IRF1, a downstream factor of mTOR/AKT signalling involved

in the EMT process [153]. Taken together, these data demon-

strate the importance of epigenetic marks during EMT in

modifying not only transcription factors but also cell adhesion

and invasion genes.
7. Metabolic reprogramming
Metabolic reprogramming is one of the most universal features

of cell transformation. Cancer cells tend to enhance glucose

uptake through HIF1a stabilization, promoting a GLUT1

increase. In some cancers, HIF1a stabilization may be promo-

ted by VHL promoter hypermethylation [154]. Paradoxically,

this increase in glucose uptake is not translated into a huge

increase at ATP levels, but instead the additional glucose is

mostly metabolized by glycolysis. This phenomenon, known

as the Warburg effect, is defined as the anaerobic use of glucose

regardless of the presence of oxygen, conferring enormous

advantages to cancer cells. Glycolysis results in lactate

production, causing acidification of the extracellular space

and activation of proteases involved in cell migration/invasion

[155]. Enzymatic shift by alternative splicing of PKM gene

between isoforms PKM1 or PKM2 promotes metabolite

accumulation, activating the pentose phosphate pathway
(PPP) [156]. This pathway produces NADPH, an essential

metabolite for glutathione and fatty acid synthesis, required

for ROS protection and cell growth, respectively. The PPP

also synthesizes ribonucleotides that are necessary for cell div-

ision [157]. Epigenetic silencing of certain genes may generate a

glucose uptake increase. Lopez-Serra et al. [158] demonstrated

that DERL3 targets GLUT1 in colorectal cells, leading to its pro-

teasomal degradation. Ectopic DERL3 expression partially

reverted the Warburg effect in HCT116 cells, decreasing the lac-

tate production and increasing O2 consumption, as well as

decreasing metastasis in mice [158]. Tricarboxylic acid cycle

is an anaplerotic mitochondrial pathway mainly involved in

obtaining energy from acetyl-CoA. a-Ketoglutarate, a metab-

olite of this pathway, is necessary for TET and histone

demethylase (HDM) activity. Mutations of the IDH1 and

IDH2 enzymes (isocitrate dehydrogenases) and epigenetic

inactivation of glutaminase (GS) can decrease a-ketoglutarate

levels, promoting aberrant methylation marks on the epigen-

ome [159–162]. Glucose uptake also increases serine glycine

one-carbon metabolism (SGOC) pathway activity, connected

by 3-phosphoglycerate dehydrogenase (PHGDH). This com-

plex network connects the folate and methionine cycles.

Folate is necessary for amino acid and nucleotide synthesis.

Inhibition of this pathway, which is upregulated in cancer,

has been used as a therapeutic strategy for several years due

to its role in cell division [163]. Moreover, the methionine

cycle is involved in SAM synthesis. SAM is a necessary sub-

strate for DNMTs and histone methyltransferases (HMTs).

Thus, this metabolite encompasses epigenetic modifications

that are often related to gene silencing and metabolism. In

some cancers, SAM synthesis is decreased by epigenetic silen-

cing of SGOC genes. MAT1 and MTHFR protein levels are

decreased in early pre-neoplastic rat livers by miR-22 and

miR-29b alterations and histone modifications, promoting a

decrease in SAM synthesis, suggesting a rate-limiting substrate

for epigenome maintenance [164]. The Met cycle is also con-

nected with cysteine transsulfuration pathway. Two enzymes

of this pathway, cystathionine beta synthase (CBS) and cysteine

dioxygenase type 1 (CDO1), are often silenced by epigene-

tic inactivation in gastric and breast cancer, respectively

[165,166]. Transsulfuration pathway products glutathione

and taurine are redox controllers. These epigenetic altera-

tions may lead to a decrease in redox-controlling molecules,

facilitating tumourigenesis. Besides glutathione synthesis

deregulation, antioxidant enzymes such as superoxide dismu-

tase 2 (SOD2) and glutathione peroxidase (GP3) are frequently

inactivated by promoter hypermethylation in lung and renal

cancer, respectively [167,168]. Reviewed data suggest that epi-

genetic inactivation contributes to metabolic reprogramming,

tumour progression through mutation accumulation by ROS,

and dysregulation of epigenetic marks by rate-limiting sub-

strates such as SAM and a-ketoglutarate. All of these

metabolic alterations, acquired through epigenetic alterations,

confer a selective advantage on cancer cells.
8. Tumour plasticity
The Sonic Hedgehog (Shh) pathway is aberrantly activated in

different cancer types. This pathway can affect both tumour

cells and stromal cells [169]. Within the tumour, it is important

to highlight its importance in cancer stem cells (CSCs) [170]. It

has been demonstrated that the Shh pathway is necessary for
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Table 1. Coding and non-coding genes silenced in cancer.

gene epigenetically inactivated involved in reference

14-3-3 s promoter hypermethylation immortality [70,71]

Apaf-1 promoter hypermethylation immortality [79]

APC promoter hypermethylation aberrant division [57]

ATM promoter hypermethylation genomic instability [100]

BAX promoter hypermethylation immortality [75]

BIM HDAC activity immortality [78]

BRCA1 promoter hypermethylation genomic instability [119]

CADM1 promoter hypermethylation metastasis [137]

Casp 8 promoter hypermethylation immortality [81]

CBS promoter hypermethylation metabolism and stress [165]

CDH11 promoter hypermethylation metastasis [136]

CDO1 promoter hypermethylation metabolism and stress [166]

CHK2 promoter hypermethylation genomic instability [101]

CXXC4 promoter hypermethylation aberrant division [61]

DACH1 promoter hypermethylation metastasis [133]

DACT2 promoter hypermethylation aberrant division [61]

DERL3 promoter hypermethylation metabolism and stress [158]

DNA-PKc promoter hypermethylation genomic instability [127]

DR4 promoter hypermethylation immortality [80]

DUSP1 promoter hypermethylation aberrant division [37]

ERCC1 promoter hypermethylation genomic instability [111]

FADD promoter hypermethylation immortality [85]

FASR promoter hypermethylation immortality [83]

GP3 promoter hypermethylation metabolism and stress [168]

GS promoter hypermethylation metabolism and stress [161]

HACE1 promoter hypermethylation immortality [88]

HHIP promoter hypermethylation tumour plasticity [61]

HIC1 promoter hypermethylation metastasis [132]

HOXA10 CTCF binding metastasis [134]

ITGA2 miR-373 metastasis [140]

ITGA5 promoter hypermethylation metastasis [135]

KISS1 promoter hypermethylation metastasis [148]

KLF4 promoter hypermethylation metastasis [131]

Ku80 promoter hypermethylation genomic instability [127]

Let-7a promoter hypermethylation aberrant division, tumour plasticity [39,176]

MAT1 histone modification, miR metabolism and stress [164]

MBD4 promoter hypermethylation genomic instability [106]

MGMT promoter hypermethylation genomic instability [22]

miR-124a promoter hypermethylation aberrant division [27]

miR-129 promoter hypermethylation aberrant division [28]

miR-137 promoter hypermethylation aberrant division [29]

miR-145 promoter hypermethylation metastasis [149]

miR-200 promoter hypermethylation metastasis [142]

miR-214 promoter hypermethylation aberrant division [32]

miR-345 promoter hypermethylation aberrant division [33]

miR-34a promoter hypermethylation aberrant division [31]

(Continued.)
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Table 1. (Continued.)

gene epigenetically inactivated involved in reference

miR-373 promoter hypermethylation metastasis [141]

miR-375 promoter hypermethylation aberrant division [41]

miR-7 promoter hypermethylation immortality [77]

miR-9 promoter hypermethylation aberrant division [35]

miR1-1 promoter hypermethylation aberrant division [30]

MLH1 promoter hypermethylation genomic instability [113]

MTHFR histone modification, miR metabolism and stress [164]

NDRG2 promoter hypermethylation aberrant division [53]

NEIL1 promoter hypermethylation genomic instability [107]

NKD2 promoter hypermethylation aberrant division [60]

Notch L promoter hypermethylation tumour plasticity [177]

NotchR promoter hypermethylation tumour plasticity [177]

NUDT16 promoter hypermethylation aberrant division [64]

OGG1 promoter hypermethylation genomic instability [105]

OLFM4 promoter hypermethylation metastasis [138]

P14/ARF promoter hypermethylation immortality [66]

P15INK4b/CDKN2B promoter hypermethylation aberrant division [18]

P16INK4a/CDKN2A promoter hypermethylation, HDAC activity aberrant division [18,23]

PLCD1 promoter hypermethylation aberrant division [43]

PTCD promoter hypermethylation tumour plasticity [172]

PTPRR promoter hypermethylation aberrant division [36]

RAD23B promoter hypemethylation genomic instability [110]

RAD51 histone methylation genomic instability [116]

RAD51B promoter hypermethylation genomic instability [118]

RASSF1 promoter hypermethylation aberrant division [46]

RB1 promoter hypermethylation aberrant division [24]

RECK promoter hypermethylation metastasis [147]

Reprimo promoter hypermethylation immortality [72]

RIPK3 promoter hypermethylation immortality [89]

ROR2 promoter hypermethylation aberrant division [62]

SFRP1 promoter hypermethylation aberrant division [50]

SFRP2 promoter hypermethylation aberrant division [51]

SFRP3 promoter hypermethylation aberrant division [52]

SLFN11 promoter hypermethylation genomic instability [123]

SOD2 promoter hypermethylation metabolism and stress [167]

SOX1 promoter hypermethylation metastasis [130]

SPINT2 promoter hypermethylation metastasis [146]

SRBC promoter hypermethylation genomic instability [121]

TFPI-2 LCT activation genomic instability [95]

TMS1/ASC promoter hypermethylation immortality [86,87]

TP53TG1 promoter hypermethylation immortality [73]

TSC1/TSC2 MTA2/EZH2 metastasis [151]

VHL promoter hypermethylation metabolism and stress [154]

WIF1 promoter hypermethylation aberrant division [54]

WNT5A promoter hypermethylation aberrant division [55]

(Continued.)
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Table 1. (Continued.)

gene epigenetically inactivated involved in reference

WNT7A promoter hypermethylation aberrant division [56]

WRN promoter hypermethylation genomic instability [122]

XPC promoter hypermethylation genomic instability [109]

XRCC3 promoter hypermethylation genomic instability [118]

ZIC1 promoter hypermethylation tumour plasticity [61]

ZIC4 promoter hypermethylation tumour plasticity [61]
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renewal of CSCs [171]. In normal conditions, Shh ligand binds

Patched (PTCD) transmembrane protein, allowing Smoothened

(SMO) activation. HHIP is a Shh ligand antagonist that has been

found silenced through promoter hypermethylation in HNSC

[61]. PTCD can be epigenetically inactivated in cancer, promot-

ing an Shh ligand-independent activity [172]. When SMO is

activated, it inhibits GLI destruction complex, allowing its

nucleus translocation. GLI activates the transcription of target

genes involved in self renewal and EMT, such as SNAIL

[173]. ZIC1 and ZIC4 are GLI antagonists, and they are

also inhibited through promoter hypermethylation [61]. High-

mobility-group proteins comprise a family of chromatin

associated proteins that are involved in maintaining stem cell-

like properties in CSCs. HMG2A is a member of this family,

and has been associated with Wnt pathway activation [174]

and EMT progression [175]. Overexpression of this gene

in cancer cells in comparison with normal tissue can be

partially explained because Let-7a, a microRNA that targets

HMG2A, undergoes downregulation through promoter hyper-

methylation [176]. The Notch pathway is involved in cell–cell

communication. Although its role in cancer is controversial

due to its dual oncogenic and tumour suppressor properties,

it has been demonstrated that epigenetics is involved in its regu-

lation. Notch receptors recognize a number of ligands. This

binding promotes migration of Notch intracellular domain

into the nucleus and modification of gene expression. Four

Notch receptors and five receptor ligands have been discovered.

All receptors and four of the five ligands have been found

methylated in different types of cancer [177].
9. Tumour suppressor genes epigenetic
recovery in the fight against cancer

Cancer is not a single disease. There is no master alteration

common to all cancer types. Epigenetic alterations may

confer a selective advantage upon tumour cells, due to their

potential reversibility. Many studies have been focused on

cancer treatment by reversing these epigenetic events. DNA

methylation inhibiting drugs were the first anti-epigenetic

treatment, tested in leukaemias [178]. 50-Aza-20-deoxycytidine

and decitabine are hypomethylating agents which can recover

epigenetically silenced genes [179]. Alterations in histone

modifications have also been therapeutic targets. Vorinostat

was the first HDACi approved for clinical use, and several

are currently undergoing clinical trials [180]. There also are pre-

clinical trials with HATi, especially focused on Tip60 inhibition

[181]. HMTs and HDMs have also been considered potential

small molecule targets, including DOT1L, a HMT that has
been inhibited by different drugs in MLL (mixed lineage leu-

kaemia) [182], and LSD1, which is a HDM studied as a target

in AML [182]. Besides targeting writers and erasers, inhibition

of readers is also an area of ongoing investigation. Several

bromodomain inhibitors have been developed, especially

against the BET family [183].

The major limitation of these treatments is their lack of

specificity. Blocking the enzymes responsible for depositing,

reading or removing epigenetic marks entails global genomic

effects with counterproductive side effects. For instance, a

hypomethylating agent could reactivate a hypermethylated

tumour suppressor gene but may also promote the expression

of an oncogene at the same time. In the near future, this limit-

ation may be overcome by CRISPR-mediated epigenetic

editing, allowing site-specific epigenetic modification. Indeed

there are some interesting results in basic research, although

they are still far from the clinic [184]. Despite the lack of wide-

spread use of epigenetic drugs in cancer therapy, epigenetics

has other clinical applications. DNA methylation, due its stab-

ility in comparison with mRNA, is used as a biomarker for

diagnosis [185], cancer monitoring [186], cancer prediction

[187], cancer prognosis [188] and treatment response [189].
10. Concluding remarks
‘To defeat your enemy, you must know your enemy’ [190]. This

proverb, which derives from The Art of War by Sun-tzu, is appli-

cable to one of the most important challenges of this century: to

understand cancer at the molecular level. Since epigenetics was

first described, many studies have contributed to decipher its

implications in tumour transformation, particularly with

regard to how the genes that are responsible for keeping cells

under control are silenced. Tumour cells progressively acquire

perturbations that allow them to divide without control, to

adapt themselves to unfavourable conditions and even to

abandon their niche and colonize other tissues (summarized

in figure 2).

In this review, we have provided a global update on this

knowledge, highlighting those coding and non-coding

tumour suppressor genes whose epigenetic inactivation gives

rise to proliferative advantages (listed in table 1), by rewiring the

most important pathways by which cancer cells perpetuates

themselves.
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Horsthemke B. 1989 Epigenetic changes may
contribute to the formation and spontaneous
regression of retinoblastoma. Hum. Genet. 83,
155 – 158. (doi:10.1007/BF00286709)

10. Poh WJ, Wee CPP, Gao Z. 2016 DNA
methyltransferase activity assays: advances and
challenges. Theranostics 6, 369 – 391. (doi:10.7150/
thno.13438)

11. Huang Y, Rao A. 2014 Connections between TET
proteins and aberrant DNA modification in cancer.
Trends Genet. 30, 464 – 474. (doi:10.1016/j.tig.2014.
07.005)
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Hall J. 2007 The molecular causes of low ATM
protein expression in breast carcinoma; promoter
methylation and levels of the catalytic subunit of
DNA-dependent protein kinase. Histopathology 51,
63 – 69. (doi:10.1111/j.1365-2559.2007.02726.x)

101. Wang H et al. 2010 Chk2 down-regulation by
promoter hypermethylation in human bulk gliomas.
Life Sci. 86, 185 – 191. (doi:10.1016/j.lfs.2009.11.023)
102. Sartore-Bianchi A et al. 2017 Digital PCR assessment
of MGMT promoter methylation coupled with
reduced protein expression optimises prediction of
response to alkylating agents in metastatic
colorectal cancer patients. Eur. J. Cancer 71, 43 – 50.
(doi:10.1016/j.ejca.2016.10.032)

103. Brigliadori G, Foca F, Dall’Agata M, Rengucci C,
Melegari E, Cerasoli S, Amadori D, Calistri D, Faedi
M. 2016 Defining the cutoff value of MGMT gene
promoter methylation and its predictive capacity in
glioblastoma. J. Neurooncol. 128, 333 – 339.
(doi:10.1007/s11060-016-2116-y)

104. Yoon RG, Kim HS, Paik W, Shim WH, Kim SJ, Kim
JH. 2017 Different diagnostic values of imaging
parameters to predict pseudoprogression in
glioblastoma subgroups stratified by MGMT
promoter methylation. Eur. Radiol. 27, 255 – 266.
(doi:10.1007/s00330-016-4346-y)

105. Singh KP, Treas J, Tyagi T, Gao W. 2012 DNA
demethylation by 5-aza-2-deoxycytidine treatment
abrogates 17 beta-estradiol-induced cell growth and
restores expression of DNA repair genes in human
breast cancer cells. Cancer Lett. 316, 62 – 69.
(doi:10.1016/j.canlet.2011.10.022)

106. Howard JH et al. 2009 Epigenetic downregulation of
the DNA repair gene MED1/MBD4 in colorectal and
ovarian cancer. Cancer Biol. Ther. 8, 94 – 100.
(doi:10.4161/cbt.8.1.7469)

107. Chaisaingmongkol J et al. 2012 Epigenetic screen of
human DNA repair genes identifies aberrant
promoter methylation of NEIL1 in head and
neck squamous cell carcinoma. Oncogene 31,
5108 – 5116. (doi:10.1038/onc.2011.660)
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