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Researchers must assess similarities and differences in colour
from an animal’s eye view when investigating hypotheses in
ecology, evolution and behaviour. Nervous systems generate
colour perceptions by comparing the responses of different
spectral classes of photoreceptor through colour opponent
mechanisms, and the performance of these mechanisms is
limited by photoreceptor noise. Accordingly, the receptor noise
limited (RNL) colour distance model of Vorobyev and Osorio
(Vorobyev & Osorio 1998 Proc. R. Soc. Lond. B 265, 351–358
(doi:10.1098/rspb.1998.0302)) generates predictions about the
discriminability of colours that agree with behavioural data,
and consequently it has found wide application in studies
of animal colour vision. Vorobyev and Osorio (1998) provide
equations to calculate RNL colour distances for animals with
di-, tri- and tetrachromatic vision, which is adequate for many
species. However, researchers may sometimes wish to compute
RNL colour distances for potentially more complex colour
visual systems. Thus, we derive a simple, single formula for the
computation of RNL distance between two measurements of
colour, equivalent to the published di-, tri- and tetrachromatic
equations of Vorobyev and Osorio (1998), and valid for
colour visual systems with any number of types of noisy
photoreceptors. This formula will allow the easy application of
this important colour visual model across the fields of ecology,
evolution and behaviour.
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1. Background
Colour sensations are constructed by nervous systems via comparisons of the responses of different
spectral classes of photoreceptor [1]. Across taxa there is considerable variation in the number of spectral
classes of photoreceptor in the retina, and in the wavelengths of light to which these different spectral
classes respond most strongly [1–3]. Consequently, animal colour sensations can differ substantially to
our own, yet it is essential in many fields of enquiry to evaluate similarities and differences in colour
from an animal’s eye view.

The responses of an animal’s photoreceptors to a particular stimulus can be computed, given
the reflectance spectrum of that stimulus and its background, the spectral sensitivity functions of the
animal’s photoreceptors, and the spectrum of illuminant light [1,4,5]. The calculated responses of
the relevant classes of photoreceptor can then be used to determine the position of the stimulus within
that animal’s colour space [1,6–9]. Often of interest is the question of whether particular colour loci can be
discriminated from one another, and key to this issue is the idea that the performance of colour opponent
mechanisms is limited by photoreceptor noise [4,10,11]. The receptor noise limited (RNL) model allows
the discriminability of colours to be assessed in a way that accounts for photoreceptor noise [4,10,11] and
consequently is among the most influential and well-used tools in studies involving animal colour vision.

The original publication of the RNL model provides equations allowing colour distances to be
determined for di-, tri- and tetrachromatic visual systems [4]. Most animals with the capability of
colour vision do indeed appear to be functionally di-, tri- or tetrachromatic, and theoretical analyses
also suggest that such visual systems are adequate for extracting the information available in natural
spectra. However, many organisms have photoreceptor machinery that could mediate more complex
colour vision, even if the mechanisms employed for a particular behavioural task can be shown to
be di-, tri- or tetrachromatic. For example in butterflies, screening pigments produce a wide variety
of spectral types of receptor that varies among families, species and even sexes, with the extreme so
far discovered being 15 spectral types of photoreceptor in Graphium sarpedon [12,13]. In spite of the
potential for greater complexity, foraging in Papilio xuthus relies on a tetrachromatic mechanism [14], and
oviposition behaviours in Papilio aegeus, Pieris brassicae, and Pieris rapae are adequately explained by tri-
or tetrachromatic mechanisms [15,16]. Dragonflies have an extraordinary diversity of opsin genes whose
expression varies with life stage and eye region, with more than 10 visual opsins expressed in the adult
eye of some species [17], and their involvement in colour-driven behaviour is currently unknown; and
the 12 spectral receptor classes serving colour vision in mantis shrimp operate as an unusual scanning
colour recognition system unlike any other known colour visual mechanism [18]. For such organisms,
the experimenter may wish to test the plausibility of any possible n-chromatic visual mechanism if
the photoreceptors involved in a particular behavioural act are unknown or in doubt (c.f. [14,19]).

In other study species, visual mechanisms have the potential to be more complex than has been
assumed, necessitating analysis of n-chromatic visual mechanisms. For example, in true flies five spectral
classes of receptor are present through the majority of the retina [20,21]. Although it has often been
assumed that colour discrimination relies only on the four classes of long visual fibre [21,22], evidence
from Drosophila shows that the short visual fibres, previously assumed to serve achromatic functions only,
contribute to colour discrimination [23]. Among the Tabanidae and Dolichopodidae, differently coloured
lenses in different regions of the compound eye shift the sensitivities of photoreceptors within their
ommatidia [24–27], raising the possibility that still more functional classes of receptor may exist. Outside
of the insects, the double cones of fishes, reptiles, and birds are also assumed to serve achromatic tasks
only, but there is evidence from blackbar triggerfish that they can contribute to colour discrimination in
that species [28]. Thus, there may be a need for experimenters on such systems to consider n-chromatic
visual mechanisms during their investigations.

In order to apply the RNL model to colour visual systems hypothesized to involve greater than four
photoreceptors, experimenters have had to derive the relevant RNL model equations (such as those
provided for pentachromatic and hexachromatic colour visual systems by [19]). Thus, to simplify the
application of the RNL model to colour visual systems of any dimensionality, we derive a single equation
that can be used to compute RNL colour distances for n-chromatic visual systems.

2. Basic assumptions
We begin with the fact that for any animal with the capability, colour stimuli are described
by photoreceptor responses. The quantum catch of a photoreceptor, q, is computed
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by

qi = ri

∫
λ

Si(λ)Is(λ) dλ, (2.1)

where qi is the quantum catch of receptor i, Si(λ) is its spectral sensitivity function and Is(λ) is the
spectrum of light entering the eye from a stimulus of interest, s. λ is the wavelength and ri is the range
sensitivity factor, through which photoreceptor responses are adjusted to the spectrum of light entering
the eye from the visual background, Ib:

ri = 1∫
λ Si(λ)Ib(λ) dλ

. (2.2)

The process of phototransduction leads to a non-linear relationship between quantum catch, qi, and
photoreceptor response, fi [1,5,9]. The RNL model can be applied to linearly or non-linearly transformed
photoreceptor responses and the two are equivalent for stimuli that are close to a reference [4,10,11].

We will assume that there are N receptors and that the output of receptor i has random noise with
variance e2

i [4]. We follow the notation of Vorobyev et al. [11] and the usual assumptions [4] that:

1. for a visual system with N receptor channels, colour is encoded by N − 1 opponent mechanisms
and the achromatic signal is discarded;

2. opponent mechanisms give zero signal for stimuli that differ from background in intensity only;
and

3. thresholds are set by receptor noise, and not by opponent mechanisms.

The response of the N receptors to a stimulus can be represented by a column vector f where
f = ( f1, f2, . . . , fN)T. (Superscript T indicates ‘transpose’.) Similarly, the output of the (N − 1) opponent
mechanisms can be represented by a column vector x with (N − 1) components. It is also assumed
[4,10,11] that x depends linearly on f . Hence the relationship between the two vectors can be written
mathematically as

x = Ff , (2.3)

where F is an (N − 1) × N matrix with constant components.
As pointed out by Vorobyev & Osorio [4], assumption 2 imposes a constraint on the form of the

matrix F. They show (their equation A8) that the sum of the components in each row of F must be zero.
They consequently choose F to be the matrix which defines each xi by

xi = fi − fi+1 (2.4)

for i = 1, . . . (N − 1). As we wish to generalize the expressions published by Vorobyev & Osorio [4], we
will follow their choice. No scaling factor is required in this equation as the colour distance is invariant
under changes of the scale of each xi (see below).

Equation (2.4) implies that the outputs of the opponent mechanisms depend only on the differences
between the outputs of the photoreceptors. It can be shown generally that any matrix F satisfying
equation A8 in [4], and thus assumption 2, must have this property. What equation (2.4) does not do, is
uniquely define the opponent mechanism outputs. Any linear combination of the differences ( fi − fj) is a
possible choice of an opponent mechanism output satisfying assumption 2 and that choice will not affect
the colour distance �S defined by Vorobyev & Osorio [4]. It is in this limited sense that the statement
in assumption 3, that thresholds are not set by opponent mechanisms, is valid.

3. The Mahalanobis distance
We need to have a measure of the difference between the responses to two different stimuli. Let two
responses be f and g with corresponding vectors x and y after the opponent mechanisms. Let �f =
( f − g) and �x = (x − y). Vorobyev & Osorio [4] suggested that in the N − 1 dimension space of x vectors,
the distance between the two stimuli could be defined by �S where the square of �S is given by

(�S)2 = �xTR−1�x. (3.1)

Here R−1 is the inverse of R, the variance-covariance matrix of the variables xi.

The distance defined in equation (3.1) is known to statisticians as the Mahalanobis distance [29]
after the Indian statistician who first used it. Note that although �S is referred to as a distance, it is
actually a pure number as it is the ratio of the ‘distance’ between the two stimuli to the generalized
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standard deviation of the distribution. It gives the equivalent, in any number of dimensions, of the one-
dimensional statement that two data points are �S standard deviations apart. Since it is a number, it has
the property of ‘scale invariance’ which means that each xi can be rescaled without changing �S. It is also
invariant under rotations of the axes in the space of the vectors x. This gives us the freedom to choose
the opponent mechanisms’ outputs in the manner mentioned in the previous section.

It should be noted that in the calculation of the variance-covariance matrix R, knowledge of the values
of the means of the fi or xi are not required. While it is frequently stated that the variances of a distribution
are independent of the position of the mean, in the RNL model this is a direct consequence of the implicit
assumption that the variance of the noise, e2

i , is independent of the quantum catch of receptor i. Hence
the variances of the noise are independent of the means of the receptor outputs fi and the variances
and covariances of the xi are independent of their means also.

Following a suggestion from a referee (whom we thank) we define, along with Vorobyev & Osorio
[4], δxi and δfi by δxi = xi − 〈xi〉 and δfi = fi − 〈 fi〉. Then Rij = 〈δxiδxj〉, e2

i = 〈(δfi)2〉 and, since the fi are
independent, their covariances, 〈δfiδfj〉 with i �= j, are all zero.

Thus the diagonal terms of the matrix are

Rii = 〈(δxi)
2〉 = 〈(δfi − δfi+1)2〉 = 〈(δfi)

2 − 2δfiδfi+1 + (δfi+1)2〉 = e2
i + e2

i+1 (3.2)

and the only non-zero, off-diagonal terms are

Ri,i+1 = Ri+1,i = 〈δxiδxi+1〉 = 〈(δfi − δfi+1)(δfi+1 − δfi+2)〉 = −e2
i+1. (3.3)

In all the above expressions, the brackets 〈· · · 〉 indicate averaging over the weighted values of the
variable inside the brackets or both the variables if there are two.

To simplify the mathematical expressions below, from this point on we will write vi for e2
i . We will

return to the usual notation in the final expression.
The matrix R is a symmetric, tridiagonal matrix:

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 + v2 −v2 0
−v2 v2 + v3 −v3

0 −v3 v3 + v4

· · ·
0 0
0 0
0 0

...
. . .

...
0 0 0
0 0 0

· · · vN−2 + vN−1 −vN−1
−vN−1 vN−1 + vN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.4)

The components of inverses of tridiagonal matrices are known to satisfy simple relationships [30].
The components of the inverse of the above matrix are given by

R−1
ii = 1

θN−1
θi−1∅i+1 i = 1, 2, . . . N − 1 (3.5)

and

R−1
i,j = R−1

j,i = 1
θN−1

vi+1 . . . vjθi−1∅j+1 i = 1, 2, . . . N − 2, j = 2, . . . N − 1, i < j. (3.6)

In these expressions the θ i and ∅i are functions of the vi that satisfy known recurrence relations.
The θ i satisfy the recurrence relation

θi = (vi + vi+1)θi−1 − v2
i θi−2 (3.7)

for i = 2, . . . N − 1 with initial values θ0 = 1 and θ1 = v1 + v2.
Similarly the ∅i satisfy

∅i = (vi + vi+1)∅i+1 − v2
i+1∅i+2 (3.8)

for i = N − 2, . . . 1 with initial values ∅N = 1 and ∅N−1 = vN−1 + vN .
From equation (3.7), we have

θi − vi+1θi−1 = vi(θi−1 − viθi−2). (3.9)

The term in brackets on the right side of the equation is the same as the expression on the left side
with i replaced by i − 1. Repeated substitution of the bracketed term in terms of the next lower value of i
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gives eventually

θi − vi+1θi−1 = vivi−1 . . . v2(θ1 − v2θ0) = vivi−1 . . . v1 (3.10)

or

θi = vi+1θi−1 + vivi−1 . . . v1. (3.11)

Using θ0 = 1 and θ1 = v1 + v2 we have θ2 = v3(v1 + v2) + v2v1 and

θ3 = v4(v3v1 + v3v2 + v2v1) + v3v2v1. (3.12)

It is clear that θ i is the sum of all possible products of v1, v2, . . . vi+1 with just one v missing. It can be
written concisely as

θi = v1v2 . . . .vi+1

i+1∑
k=1

1
vk

. (3.13)

Note that the determinant of R−1 is θN−1 where

θN−1 = v1v2 . . . .vN

N∑
k=1

1
vk

. (3.14)

A similar reduction can be made for ∅i. The variances involved are vi to vN giving

∅i = vivi+1 . . . .vN

N∑
k=i

1
vk

. (3.15)

When these expressions are entered into equations (3.5) and (3.6) the products of the vi cancel, giving

R−1
ii = (

∑i
k=1(1/vk))(

∑N
k=i+1 (1/vk))∑N

k=1(1/vk)
(3.16)

and

R−1
i,j = R−1

j,i =
(
∑i

k=1(1/ vk))(
∑N

k=j+1 (1/vk))∑N
k=1(1/vk)

i < j. (3.17)

In terms of these components, since �xi = (�fi − �fi+1), equation (3.1) is

(�S)2 =
N−1∑
i=1

R−1
ii (�fi − �fi+1)2 + 2

N−1∑
j=2

j−1∑
i=1

R−1
i,j (�fi − �fi+1)(�fj − �fj+1). (3.18)

4. Simplification
Vorobyev & Osorio [4] demonstrated for trichromatic and tetrachromatic vision that much simpler
expressions could be obtained if (�S)2 is expressed in terms of all the ½N(N − 1) squared differences
(�fi − �fj)2. We will assume this is possible for any N and we will show that the result is a very simple
formula.

Let

(�S)2 = 1∑N
k=1(1/vk)

N−1∑
i=1

N∑
j=i+1

Ci,j(�fi − �fj)
2. (4.1)

We can calculate the Ci,j by comparing the coefficients of �f 2
i and of �fi�fj in the two expressions

(3.18) and (4.1). We can take any values of i and j we choose as (�S)2 does not depend on which receptor
is labelled i and which is j. For simplicity choose i = 1. In equation (3.18) the coefficient of �f 2

1 is R−1
11

where

R−1
11 = (

∑1
k=1(1/ vk))(

∑N
k=2 (1/vk))∑N

k=1(1/vk)
= (1/v1)(

∑N
k=2 (1/vk))∑N

k=1(1/vk)
, (4.2)

while the coefficient of �f 2
1 in (4.1) is (1/

∑N
k=1(1/vk))

∑N
j=2 C1,j. The two terms are equal if C1,j = 1/v1vj.

Similarly with i = 1 and j = 2 the coefficient of �f1�f2 in equation (3.18) is 2(R−1
1,2 − R−1

1,1 ).
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R−1

1,1 is given by equation (4.2) and

R−1
1,2 = (

∑1
k=1(1/ vk))(

∑N
k=3 (1/vk))∑N

k=1(1/vk)
= (1/v1)(ΣN

k=3 (1/vk))

ΣN
k=1(1/vk)

. (4.3)

Hence

2(R−1
1,2 − R−1

1,1) = −2(1/v1)(1/v2)∑N
k=1(1/vk)

, (4.4)

which agrees with the coefficient of �f1�f2 in equation (4.1) if C1,2 = 1/v1v2 . So the two expressions for
(�S)2 are identical if Ci,j = 1/vivj. Consequently, we have that the square of the Mahalanobis distance
between f and g for N receptors with (N − 1) opponent mechanisms is simply

(�S) 2 = 1∑N
k=1(1/e2

k)

N−1∑
i=1

N∑
j=i+1

(�fi − �fj)
2

e2
i e2

j

. (4.5)

We have replaced vi by e2
i in this result.

This equation agrees with the results published by Vorobyev & Osorio [4] for dichromatic,
trichromatic and tetrachromatic vision. To demonstrate this we will consider the trichromatic case as
an example.

When N = 3 equation (4.5) is

(�S)2 = 1

(1/e2
1 + 1/e2

2 + 1/e2
3)

(
(�f1 − �f2)2

e2
1e2

2
+ (�f1 − �f3)2

e2
1e2

3
+ (�f2 − �f3)2

e2
2e2

3

)
. (4.6)

Multiplying both brackets by e2
1e2

2e2
3 gives

(�S)2 = 1

(e2
2e2

3 + e2
1e2

3 + e2
1e2

2)
(e2

3(�f1 − �f2)2 + e2
2(�f1 − �f3)2 + e2

1(�f2 − �f3)2). (4.7)

Apart from reordering this is the same formula as given in [4].

5. Conclusion
Equation (4.5) gives (�S)2 for any number of receptor types. It can be simply stated as (�fi − �fj)2/e2

i e2
j

summed over all pairs of receptors divided by 1/e2
i summed over all receptors. This equation allows the

calculation of RNL colour distances for n-chromatic visual systems, facilitating the easy application of
this model to investigate colour discrimination in organisms with complex visual systems and unknown
chromatic mechanisms (c.f. [14,19]).

A key premise of the RNL model is that the discriminability of colour stimuli is set by receptor
noise and not opponent mechanisms (assumption 3), and as such the way in which receptor responses
are combined within opponent mechanisms (the matrix F in equation (2.3)) does not determine the
discriminability of colour signals (e.g. [11]). However, we point out that the form of equation (4.5)
depends critically on equation (2.4), which itself is determined by assumption 2. Hence in the RNL
model, opponent mechanisms are not completely unspecified because their choice is restricted by
assumption 2.
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