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The monarch butterfly (Danaus plexippus) population in North
America has sharply declined over the last two decades.
Despite rising concern over the monarch butterfly’s status,
no comprehensive study of the factors driving this decline
has been conducted. Using partial least-squares regressions
and time-series analysis, we investigated climatic and habitat-
related factors influencing monarch population size from 1993
to 2014. Potential threats included climatic factors, habitat loss
(milkweed and overwinter forest), disease and agricultural
insecticide use (neonicotinoids). While climatic factors,
principally breeding season temperature, were important
determinants of annual variation in abundance, our results
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indicated strong negative relationships between population size and habitat loss variables, principally
glyphosate use, but also weaker negative effects from the loss of overwinter forest and breeding
season use of neonicotinoids. Further declines in population size because of glyphosate application
are not expected. Thus, if remaining threats to habitat are mitigated we expect climate-induced
stochastic variation of the eastern migratory population of monarch butterfly around a relatively
stationary population size.

1. Introduction
The population size of migratory monarch butterflies (Danaus plexippus) in eastern North America has
been highly variable over the last two decades but shows long-term declines based on annual monitoring
of their overwintering colonies in central Mexico; the population declined 84% between the winters of
1996–1997 and 2014–2015 and faces a risk of quasi-extinction of 11–57% in the next 20 years [1]. A similar
decline has been observed in the Western migratory population of monarch butterflies [2]. In response
to declines in monarchs and other pollinators, on June 2014, the administration of President Obama
issued a presidential memorandum calling for the restoration of pollinator and monarch habitat [3].
In August 2014, the US Fish and Wildlife Service (USFWS) was petitioned to list the monarch as a
threatened species [4]. The decline in monarch numbers is particularly concerning because the species
has a remarkably high societal and cultural value [5], and many educational [6], citizen science [7]
and conservation [8] programmes engage people with monarchs. To effectively conserve this imperiled
species, understanding the threats affecting annual abundance is important [9]. Here, we use partial
least-squares regression and time-series analysis to investigate potential factors influencing monarch
overwintering population size from 1993 to 2014.

Monarchs face a variety of threats potentially affecting their population size in Mexico. These threats
may operate at different times of the life cycle, affecting survival in winter, breeding and survival in
summer, and the success of migration between. A leading hypothesis for the decline of the eastern
monarch population is habitat loss across its range [10–15]. Habitat loss in the overwintering sites in
Mexico is primarily caused by climatic trends and illegal logging, although rates of logging have slowed
dramatically in recent years [11,13]. Milkweeds (mostly in the genus Asclepias) are essential host plants
for monarch larvae; therefore, loss of milkweed and nectar resources in the breeding grounds of the
Upper Midwestern US is another risk [12]. For example, milkweed abundance in Iowa declined 58%
from 1999 to 2010, due primarily to herbicide usage associated with increased planting of genetically
modified glyphosate-resistant corn and soybeans [12]. Agricultural conversion of habitat associated with
Conservation Reserve Program (CRP) lands also poses an ongoing threat [16]. Due primarily to the loss
of milkweed, monarch reproduction in the Midwest was estimated to have been reduced by 81% over
this time period [1].

Monarch population dynamics are influenced by climatic factors, including temperature and
precipitation during the overwintering, migration and breeding seasons [17–24]. Increasing climate
variability, extreme weather events and climate change may pose a threat for monarchs [17,19–21,25,26].
For example, predictions of northern range shifts of monarchs and their ecological niche during the
breeding season could lead to longer migration times and potentially reduced survival, or alternatively,
reduced range size if monarchs are unable to track changing conditions [19,20]. Winter storms have
caused high levels of mortality in overwintering colonies [25], and climate change may result in extensive
portions of overwintering habitat becoming unsuitable for monarchs [17] and oyamel fir (Abies religiosa)
trees (which harbour wintering monarchs) [26] within the next 40 years.

In addition to habitat loss and climate and weather factors, monarchs face a variety of other well-
documented threats. For example, the protozoan parasite Ophryocystis elektroscirrha (OE) can have high
rates of infection in monarch populations and can reduce survival, mass, flight speed, flight endurance
and lifespan [10,27,28]. Insecticide use is also of concern for monarch populations; recently, the use of
neonicotinoid insecticides has been implicated in delayed development times and smaller body sizes in
monarchs, and elevated mortality rates, reduced population persistence, behavioural changes and slower
development times in other pollinators [29–31]. Additionally, insecticides commonly used for mosquito
control kill monarch larvae and adults [32,33].

Existing models of monarch population dynamics have not comprehensively examined the role of
multiple factors driving the observed population decline. Previous investigations of monarch population
declines and threats to monarchs have focused on documenting population trends and extinction



3

rsos.royalsocietypublishing.org
R.Soc.opensci.4:170760

................................................
Table 1. Description of variables, with variable names, related to annual estimates of easternmonarch butterfly population size. Number
of years in which missing data were interpolated is provided per variable. Citations supporting the covariate are provided. Period 1: 1–10
May; Period 2: 11–20 May; Period 3: 21–30 May; Period 4: 31 May–9 June.

variable categories variable names definition citation missing

density dependence apva_1yr population size in the previous year [43] 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

survival closum, dinsum, thisum,
imisum

total regional neonicotinoid
(by chemical) applied
1994–2009 (kg)

[26,30,44] 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

totalneon total regional neonicotinoids (sum
of all chemicals) applied (kg)

[26,30,44] 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prop_Inf proportion of larvae infected with
protozoan parasite Ophryocystis
elektroscirrha (OE)

[10,27,28]; S. Altizer,
unpublished data

7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LDD regional number of days exceeding
lethal maximum temperature
threshold

[45]; L. Ries, pers.
comm.

0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NighttempF for South, mean night-time
temperature in the autumn
(1 Sept–30 Nov)

[46]; O.R. Taylor,
unpublished data

0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

total precipitation total precipitation for the
overwintering location
(13 Dec–31 Dec)

[15,21,22] 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mean, minimum and
maximumwind speed
and maximumwind
gust

wind conditions for the
overwintering location
(13 Dec–31 Dec)

[15,21,22] 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mean, minimum and
maximum temperature
and humidity

weather conditions for the
overwintering location
(13 Dec–31 Dec)

[15,21,22] 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

reproduction Prec for South, total annual
precipitation

[16,19,20,22,47] 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MeantempSp for South, mean temperature in
the spring (1 Mar–30 Apr)

[16,19,20,47] 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T70p(1–4)sum days greater than 21.1°C (greater
than 70°F) in Periods 1–4

[16–20]; O.R. Taylor,
unpublished data

1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tempp(1–4)avg temperature average in Periods 1–4 [16–20]; O.R. Taylor,
unpublished data

1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

drought standardized precipitation index
(1 June–30 Aug)

[16–20,48] 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MeanJ mean temperature in June [16–20] 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TminJu percentage of days less than 10th
percentile for minimum
temperatures in June

[16–20] 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TminJl percentage of days less than 10th
percentile for minimum
temperatures in July

[16–20] 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TminAug percentage of days less than 10th
percentile for minimum
temperatures in Aug

[16–20] 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Continued.)
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Table 1. (Continued.)

variable categories variable names definition citation missing

GDD regional number of days within the
suitable threshold for growth

[39,47,49] 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

habitat availability glysum total regional glyphosate applied
1993 to 2009 (kg); imputed
greater than 2009

[12,15,50,51] 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

glycum cumulative regional glyphosate
applied 1993 to 2009 (kg);
imputed greater than 2009

[12,15,50,51] 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC regional sum of dicamba
applied (kg)

expert opinion 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TwoD regional sum of 2,4-D applied (kg) expert opinion 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CRPsum available CRP in the region (ha) [40,50,52] 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ramirez.cumul and
Vidal.cumul

cumulative loss of overwintering
forest in central Mexico (ha)

[11,13,26] 2 and 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

risk [1,12,34], assessing potential impacts of climate on breeding [19–21,24], threats to the overwintering
habitat [17,35–37], the relationship between monarch population size and breeding habitat loss [10,38],
the effects of the loss of agricultural milkweed on monarch fecundity [39,40], and understanding
demographic relationships across generations within the migratory cycle [14,34,41,42].

We used partial least-squares regression models and time-series analysis to examine the influence of
multiple factors on monarch butterfly overwintering population size from 1993 to 2014 (table 1). Our list
of potential factors was informed by the published literature [10,13,15–31,37]. We examined potential
threats to the monarch population for which large-scale, range-wide data existed; this precluded
investigating some potential threats that had inadequate time-series data such as nectar availability in
breeding and migration.

2. Material and methods
We examined the role of multiple factors on monarch butterfly overwintering population sizes observed
annually in Mexico from 1993 to 2014 [44]. Population size data were based on the amount (ha) of
overwintering habitat occupied by eastern migratory monarchs when they congregate in the high-
elevation oyamel fir forests of central Mexico. Since the vast majority of the eastern migratory population
of monarchs alive at the end of each year is in these colonies, the area that they occupy is a proxy for the
total population size (assuming relatively constant density in their overwintering sites [53]). We used
estimates of monarch butterfly overwintering population size from a population viability analysis [1],
a Bayesian state-space model analysis that produced estimates of the population size from 1993 to
2014 while mathematically controlling for observation error. We assumed this time series of overwinter
abundance was generated by a general process:

dx = f (x, θ )dt + g(x, θ )dW, (2.1)

where x is the population state, f (x, θ ) describes deterministic aspects of the time series, and g(x, θ )dW
determines stochastic aspects of the system.

We included a list of potential threats and climatic factors informing these deterministic and stochastic
components from a review of the published literature and expert opinion elicited at the ‘Continental
scale monarch conservation planning’ working group meeting at the US Geological Survey’s John
Wesley Powell Center for Analysis and Synthesis and further refined by participants of the US Monarch
Conservation Science Partnership. For each of three regions, we examined more than two dozen principal
factors considered important in monarch population dynamics for which large-scale, range-wide data
existed (table 1).

We segregated the monarch life cycle into regions based on Oberhauser et al. [14] (figure 1). Our model
examined factors across the breeding region that included the southern USA, and the north central and
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north central

south

migration
habitat

Mexico
overwintering

north
east

Figure 1. Range of the eastern migratory population of monarch butterfly. Southern, north central, and northeastern regions are
occupied during breeding season.

northeast breeding areas; for non-climatic factors, the north central and northeast were summed into a
northern breeding region. Unfortunately, many of the data sources we gathered do not have ready-made
counterparts for southern Canada; we assumed data from these regions correlated with those of their
geographic counterpart in the USA. This assumption seems reasonable given that the vast majority of
northern-breeding butterflies breed in the American portion. We also examined climate and habitat loss
occurring in the Mexican overwintering area.

2.1. Habitat availability
We estimated habitat loss factors by breeding region including the southern USA and the North—
which included both the north central and the northeast breeding areas (figure 1). We summed the
north central and northeast as they encompass similar stages (generation numbers 2, 3 and 4) in the
monarch’s annual life cycle. Habitat loss included several proxies of milkweed and nectar resource
losses, including herbicide use (dicamba, 2,4-D, and glyphosate, which reduce milkweed densities
in agricultural fields [12,15]), and extent of beneficial habitat, Conservation Reserve Program (CRP)
land [52], which has declined in the last decade [16,52]. Our model included both annual glyphosate
(N-(phosphonomethyl)glycine) use from 1993 to 2014, and cumulative glyphosate use per region over
time [50]. Because agricultural fields were important sources of milkweed and monarchs in 2000 before
widespread adoption of glyphosate-resistant crops [54], this value is a proxy for monarch habitat
lost [55]. Total kilograms from 1993 to 2014 of two other commonly used herbicides were also included
(2,4-dichlorophenoxyacetic acid (hereafter 2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (hereafter
dicamba)), obtained from the US Geological Survey’s Pesticide National Synthesis Project [50]. 2,4-D
is one of the oldest, most widely used herbicides in the world, used commonly on lawns, cereal crops,
pastures and orchards. Dicamba, on the other hand, is often used in pastures, fence-rows and roadsides
to control brush, bracken and broadleaf weeds. Lastly, we used the total number of hectares of CRP land
from 1993 to 2014 [52].

We examined annual forest loss in the overwintering area [13,26] made available through use of high-
resolution aerial photography, multi-resolution satellite imagery, and field surveys. Both studies reported
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loss over several-year periods, which we annualized to create an annual time series. For the sake of our
analyses, we assumed for the Vidal et al. [13] time series that there was no forest loss prior to 2001; because
one study ended in 2012 [26] and the other in 2013 [13], we used interpolative methods to predict the
missing years to 2014 (see Missing data). These studies are similar in that they demonstrate cumulative
forest loss, but they differ in the reported total amount of forest loss; therefore, their separate use is a
matter of parametric uncertainty.

2.2. Reproduction
We obtained monthly total precipitation and temperature maxima and minima data for the conterminous
USA for each month between 1993 and 2014 from the PRISM dataset (4 km resolution, PRISM Climate
Group, Oregon State University, http://prism.oregonstate.edu) [48]. We estimated climate factors for
the southern, north central and northeast US breeding areas (figure 1) that our expert team hypothesized
were important for monarch migration and fecundity, or that had been identified in previous studies
[22–24]. Total precipitation and mean temperatures in the South from 1 March to 30 April were
included from 1993 to 2013. Drought intensity from 1993 to 2014 (as determined by the Standardized
Precipitation Index, which measures the number of standard deviations that cumulative precipitation
deviates positively or negatively from the mean [46] was used in the South (for the period 1 March to
31 May) and in the north central and northeast (1 June to 30 August) to coincide with the presence of
monarchs in these regions. For the north central and northeast, we also included mean temperatures
and total number of days greater than 21.1°C (greater than 70°F) for each 10-day period between 1 May
and 10 June from 1993 to 2014, mean temperatures in June from 1993 to 2014, and monthly extreme
cold events in June to August (measured as percentage of days below the 10 percentile for minimum
temperatures) from 1993 to 2012. In addition, we included mean night-time temperatures [46] from 1
September to 30 November for the South in autumn, from 1993 to 2014. Each of these factors are expected
to influence reproduction through reduction in host plant quality, delayed growth of larvae and potential
mismatching of host plant availability and monarch presence.

We included growing degree days (GDD) for monarchs from 1993 to 2014, which accumulate the
degrees that can contribute to development within a suitable temperature range (11.5°C to 36°C) [49,56].
An average of 352 GDD is needed for an egg to develop into an adult monarch [39,49]; daily GDD are
calculated using the mean of the day’s highest (less than 36°C) and lowest temperatures. The minimum
temperature required for growth (11.5°C) was subtracted from the mean value to estimate the daily GDD
value. We calculated GDD in the South from 22 March to 13 June for spring, and from 6 September to 21
November for autumn. For the north central and northeast region, we calculated GDD from 3 May to 12
September. Regional GDD estimates are based on mean accumulated GDD from a number of locations
within each region (51 sites in the South, 54 sites in the north central and 35 sites in the northeast).

2.3. Survival
We included the proportion of the eastern population of monarch butterfly infected with the protozoan
parasite OE from 1993 to 2012 in the overwintering and the autumn migratory population (data provided
by S. Altizer, Project Monarch Health). Infection by OE leads to reduced survival [27]; as such, infected
monarchs are less likely to complete migration [10,28]. We imputed the two years of missing values.

We also used total kilograms per hectare of several kinds of neonicotinoid insecticides used in
the southern USA, and the north central and the northeast breeding areas [57]. For neonicotinoids,
clothianidin was estimated from 2004 to 2008, dinotefuran was estimated from 2005 to 2009, imidacloprid
was estimated from 1994 to 2009, and thiamethoxam was estimated from 2000 to 2009; these four
chemicals were the most commonly used neonicotinoids during the period of study. Before the years
2004, 2005, 1994 and 2000, clothianidin, dinotefuran, imidacloprid and thiamethoxam, respectively, were
not widely used. We also measured total neonicotinoid use per region by summing the four different
varieties. We recognize the potential for delays in the effect of agricultural chemicals and their ability to
persist in the environment [29,58–60] but we dispensed with lagged effects for the sake of parsimony.
Because most mosquito control efforts occur in places with high human densities and most models
suggest that rural areas are more important to monarch production [32], we did not consider insecticides
mainly used to control mosquitoes and instead focused on those used to control agricultural pests.

Similar to growing degree days, lethal degree days (LDD), which count the degrees that are lethal or
have sublethal fitness effects for monarchs (≥38°C [45]), were assessed from 1993 to 2014 for the breeding

http://prism.oregonstate.edu
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regions. The highest daily temperature was recorded for days reaching the threshold of 38°C and then
37°C was subtracted.

We examined weather-related effects during the overwintering period with mean, mean minimum,
and mean maximum temperature (°C), humidity (%), and wind speed, maximum wind gust (m s−1), and
total precipitation (mm) for each year for 13–31 December, when monarch population size is assessed
by World Wildlife Fund-Mexico and their partners. Because there are considerable gaps (particularly
in the mid-1990s) in the temperature and precipitation data for the weather station nearest to the
Monarch Butterfly Biosphere Reserve (Toluca, Mexico), data were obtained from a numerical meso-scale
model [61].

2.4. Statistical analysis

2.4.1. Missing data

We used a data interpolating empirical orthogonal function [62,63] to interpolate missing data with the
sinkr package [64] in R [65]. The sinkr package interpolates missing values by decomposing the dataset
via singular value decomposition (factorization of the data matrix into two orthogonal matrices and a
diagonal matrix) until an optimal solution is found compared with a set of reference values (i.e. existing
data). After providing initial guesses to the missing data, each subsequent iteration involves treating
some of the known data as missing, inferring values for these known but treated-as-missing data, and
then calculating the root-mean-square error between the known and inferred value. When the root-mean-
square error is minimized, the interpolations for the missing data have been optimally identified relative
to the characteristics of the known data.

2.4.2. Variable reduction

Because there are many different factors potentially affecting long-term and annual changes in
monarch butterfly population size, and relatively few years of measured overwintering population data,
application of linear regression is problematic due to non-independence of environmental covariates,
lack of statistical power and the associated inability to differentiate effects of covariates without risk of
overfitting models [66]. To tackle this problem, we employed a data reduction technique, partial least-
squares regression [66–68] on our full dataset of variables (table 1), to reduce the dimensionality of
the covariate information and address the concern for multi-collinearity. Unlike principal components
analysis and other similar dimension reduction procedures, this approach is ‘y-aware’, extracting
latent components from the predictor variables that maximize covariance with the response (monarch
population size) [66]. Partial least-squares analyses have three simultaneous objectives: the best
explanation of the X-space (the set of environmental predictors), the best explanation of the Y-space
(the biological response) and, importantly, the greatest relationship between the X- and Y-space. We
used this y-aware dimension reduction to identify a subset of variables for use in subsequent time-
series analyses of annual population size. This shortened list consisted of the variables with the greatest
absolute loading (i.e. the largest correlation) on each component from the partial least-squares regression
results (loadings ≥ 0.15).

To determine model performance of these partial least-squares regressions, we calculated the
fitted R2. Additionally, we conducted a complete leave-one-out cross-validation and, for each model,
calculated the predicted residual error sum of squares (PRESS) and Q2, also known as the cross-
validated R2 [69]. The PRESS statistic is calculated as PRESS = Σn

i=1(yi − ŷi/i)2, where the notation
i/i indicates that the response is predicted by a model estimated when the i-th sample was left out
from the training set. The cross-validated R2 or Q2 is calculated as: R2

CV ≡ Q2 = 1 − (PRESS/TSS) =
1 − (Σn

i=1(yi − ŷi/i)2/Σn
i=1(yi − ȳ)2) (where TSS is the total sum of squares). Analyses were conducted in

R [65] with the plsdepot package [70].

2.4.3. Time-series analysis

We selected the most highly loaded variables (loadings >|0.15|) from the partial least-squares regression
components (i.e. 10 variables from each component). We further narrowed the set of variables by
selecting among the variable set those variables with r > 0.6. For instance, when variables for multiple
regions expressed high loadings and were highly correlated, we selected the variable for the north central
region because of its importance to breeding [14]. We selected the overwinter forest loss variable with the
higher loading. Using this reduced set of 11 variables, we then calculated time-series regressions [71,72].
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Annual overwinter population size was estimated with an autoregressive model [1] implying a density-
dependent relationship [43] between abundances in year t and t + 1. Thus, we modelled the time
series of estimated population size as a Gompertz model for log index with environmental factors as
covariates [47,73], with the general form:

Nt = α0 + β(Xt) + εt, (2.2)

where Nt is the natural log of population size in year t; α0 is a constant representing the intrinsic rate
of population growth; X is the design matrix including explanatory variables relating to abundance in
the previous year (Nt−1), habitat loss, parasite infection, insecticide exposure, and climate and weather
factors on population size in year t; β quantifies the effects of these variables on Nt; and εt is the random
error component representing unknown environmental variation and is normally distributed (white
noise) with zero mean and variance σ 2.

All time-series models were limited to ≤4 predictor variables due to the limited sample size of the
response variable. This combination of 11 predictor variables taken 4 at a time led to a model set of 330
models. Models were ranked according to their Bayesian information criterion (BIC), variable importance
was calculated based upon the sum of the model weights, and inferences were made from the best-
supported models (≤10 BIC units of the highest-ranking model). Model-averaged parameter estimates
were calculated from the best-subset of covariates with estimates shrunk toward 0 in accordance
with variable importance [74]. Models were assessed for residual temporal structure by plotting the
autocorrelation function and compared with BIC to general least-squares regression alternatives.

Lastly, the best-subset regressions suggested that glyphosate application was the most commonly
associated covariate with overwinter population size. A number of recent studies [12,15,22,38,51] link
the loss of milkweeds, the sole host plant of monarch butterflies, in Midwest corn and soybean fields
to the use of glyphosate. We used estimates of milkweed resource in the north central US provided
by Pleasants [51] in a structural equation model examining a cause–effect relationship among these
variables, written as:

log(overwinter population size) = δ · log(milkweed resource)

log(milkweed resource) = γ · log(cumulative glyphosate application).

This structural equation model was calculated with the lavaan package [75] in R; model fit was
assessed with the root-mean-square error of approximation index (RMSEAI), and the comparative fit
index (CFI). We used R v. 3.3.2 for all statistical analyses; our model code is available in the electronic
supplementary material, appendix B.

3. Results
Partial least-squares regression indicated that two components explained 91.1% of the variation in
overwinter population size. The Q2, or cross-validated R2, was 86.6%, suggestive of good predictive
ability. The first component explained nearly six times the variation in overwinter population size
compared with the second component (77.8% versus 13.3%). This first component loaded heavily on
slowly evolving covariates such as herbicide and insecticide application rates, population size in the
previous year and infection by OE (figure 2). The second component loaded on stochastically varying
variables related to climate, principally measures of temperature during June.

The direction and strength of the variable loadings indicated population size in the previous year
was a positively associated determinant of population size, as was total extent of Conservation Reserve
Program land in the North and South. Glyphosate use and neonicotinoid application in all regions,
and parasitism by OE, were negatively associated with population size. Glyphosate use, followed by
the amount of forest loss in the overwintering area and neonicotinoid use in the breeding period, had
the strongest negative loadings (or correlations with population size). Counterintuitively, dicamba and
2,4-D application in the northern regions was positively associated with population size (both herbicides
declined in use in the North at the time that monarchs were also in decline); however, in the South, the
use of these herbicides was negatively associated with population size (both herbicides increased in use
in the South over the period of study).

Stochastically varying climatic factors largely expressed strong loadings on the second component
(figure 2). Phenological patterns in climate appeared to influence population size; in general, earlier
warm temperatures (mean temperatures and number of days greater than 21.1°C from 1 to 20 May)
were negatively associated with population size, whereas later warm temperatures (31 May–9 June)
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Figure 2. Potential threats affecting the eastern migratory population of monarch butterfly across the annual cycle, as described by a
partial least-squares regression. Component 1 is the first component and Component 2 is the second component of the partial least-
squares regression. Variable names are provided in table 1. To increase ease of display, only variables with loadings> |0.15| on at least
one of the components are shown; circle size depicts relative magnitude of loading.

in the northern regions were positively associated. As expected, growing degree days were positively
associated with population size, as were warmer temperatures in the month of June in the north central
and northeast region. Curiously, population size declined as the minimum temperature in summer
months increased in the north central regions. Drought in all regions (as characterized by the second
component) had a deleterious effect on population size.

Correlation among covariates shared across regions was generally high for the slowly evolving
covariates (e.g. cumulative glyphosate application in the North and South was correlated r = 0.999).
Thus, regression models were constructed with covariates from a single region, the north central. The
best subset of reduced-variable models, comprising a cumulative sum of model weights equal to 0.94
and none with more than three covariates, comprised nine models (table 2). Eight of nine models
included cumulative glyphosate application; the top model also included the number of days in Period
1 with temperature greater than 21.1°C (greater than 70°F) and minimum temperature in August. These
three variables each had variable importance measures of greater than 0.91; the other variables in
the best subset had variable importance measures less than 0.04. None of the best subset of models
included dicamba or total neonicotinoid application. Further, each of the models but one in the best
subset possessed a slowly evolving covariate (e.g. glyphosate, overwinter forest loss) explaining trend,
obviating need for the previous year’s abundance or an autoregressive correlation structure.
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squares regression and a reduced-variable linear regression, compared to observed population size.

The best time-series regression model, explaining 93% of the variation in overwinter population size,
had a model weight of 0.919, nearly six times the weight of all other models combined. Cumulative
glyphosate application was strongly negatively associated with overwinter population size (figure 3a;
electronic supplementary material, appendix C). Both the number of days with temperature greater
than 21.1°C (figure 3b) and minimum temperature in August (figure 3c) were moderately negatively
associated with overwinter population size. The best reduced-variable model explained patterns in
overwinter population size (r = 0.96) as well as the partial least-squares regression (r = 0.95) (figure 4).

The structural equation model fit the data well (χ2
1 = 0.019, p = 0.89; RMSEAI less than 0.0001,

CFI = 1.00), supporting a negative causal relationship of glyphosate application on milkweed resource
(standardized γ = −0.178, s.e. = 0.033, p < 0.0001, R2 = 0.913), and a strong positive causal relationship of
milkweed resource on overwinter population size (δ = 1.784, s.e. = 0.229, p < 0.0001, R2 = 0.770) (figure 5).

4. Discussion
A better understanding of major drivers of monarch population dynamics can inform the multitude of
ongoing conservation efforts invested in this species. We found that the long-term drivers of population
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size in the eastern migratory population of monarch butterflies are slowly evolving factors relating to
changes in habitat amount and quality. Annual stochastic changes in population size principally reflect
changes in climatic conditions early in the northern breeding period [47].

Strong partial least-squares regression loadings on the first component implicated a number of factors
potentially responsible for the long-term decline in overwinter population size. The principal variables
were glyphosate and neonicotinoid use in the breeding period and total forest loss in the overwintering
area. Neonicotinoid exposure results in increased development times, higher mortality rates and smaller
body weights for monarchs [30] and has been associated with the decline of Lepidoptera in the UK and
California [76,77]. Total neonicotinoid usage increased 48-fold in the northern USA between 2003 and
2010 (electronic supplementary material, appendix A), but thereafter began declining, probably lessening
the correlation between neonicotinoid application and monarch butterfly abundance. Total forest loss in
the overwintering area was a strong correlate of monarch butterfly abundance, irrespective of the data
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source considered [13,26]. The strongest loading, however, and the covariate identified in eight of the
nine top performing reduced-variable linear models suggested that glyphosate application, by removing
their obligate host plant, was the stressor most highly associated with the decline of the eastern migratory
population of monarch butterflies.

After controlling for the long-term decline in monarch butterfly abundance, we found, similar to other
studies, that annual monarch population dynamics were strongly influenced by climatic factors [17–
20,24]. Strong loadings by minimum and mean June temperature, as well as temperature in Period
4 (31 May–9 June), on the second component of the partial least-squares regression indicated that
temperature variation in the early growing season had an important influence on subsequent overwinter
population size. Earlier warm temperatures (mean temperatures and number of days greater than
21.1°C from 1 to 20 May) in the northern regions were negatively associated with population size,
whereas later warm temperatures (31 May–9 June) were positively associated with abundance. As
minimum June temperature increased, however, population size declined. These results cohere with
Zipkin et al. [24, p. 3045], who reported that the accumulation of monarch growing degree days had the
strongest positive impact on counts of monarch butterflies in Ohio in the coolest sites, but that this effect
diminished as sites became warmer, with the pattern beginning to reverse at the warmest sites. These
temperature-abundance correlates suggest the possibility of a phenological mismatch, either between
monarchs and their host plants or nectar sources, and diminished access to optimal resources [24] in
early warm years. Minimum temperature in August was negatively related to abundance, perhaps
because heightened temperatures forestall reproductive diapause and the subsequent onset of migration.
Unlike Zipkin et al. [24], we did not find strong effects of precipitation on annual patterns in abundance,
perhaps because precipitation, unlike temperature, exhibits considerably more spatial and temporal
heterogeneity, which may have been dampened at the regional scales we examined.

Ecological processes are often extremely complex and, as a result, it can be difficult to discern
putative cause-and-effect relations when there are many more predictor variables than there are samples.
Small sample sizes preclude complex model development using traditional regression techniques and
many environmental covariates associated with biotic responses often covary. The partial least-squares
regression approach we took simultaneously maximizes the explained variation in the X-space (predictor
variables), the explained variation in the Y-space (response variable), and the conjoint variation of the
X- and Y-spaces (predictor and response variables). Despite the strengths of the partial least-squares
approach, there are still uncertainties remaining that we cannot overcome with the data at hand. For
instance, our ability to predict change in population size from one year to the next is hampered by noisy,
collinear variables. Glyphosate application (irrespective of whether measured as cumulative or annual)
obviated the need for previous year’s abundance, derogating the role density dependence plays at the
scale of our study. Additional data may increase the differentiability of the other collinear variables in
the future.

Our analysis suggests that immediate steps to mitigate the large declines in milkweed due to the use
of herbicide-resistant crops in the breeding region is a key strategy for monarch restoration [12,14,78]. The
Conservation Reserve Program (CRP) offers one particularly important mechanism for providing high-
quality habitat for milkweed and the monarch butterflies reliant on them [78]; encouraging farmers and
other land managers to include forbs and milkweed in seed mixes for CRP and other farm conservation
incentive programmes could increase monarch habitat. Zalucki and Lammers [39] suggested a strategy
for monarch conservation in the vast agricultural areas of the Corn Belt should be to increase milkweed
abundance in the ‘matrix’, the land in between the remaining monarch habitat patches. This strategy
could include focusing on roadsides and other right-of-way lands, yards and fence-rows [50,78]. In the
southern USA, there has not been a single factor associated with extensive habitat loss; instead, multiple
years of below-average precipitation may have had a larger effect on monarchs than habitat loss in this
region. Improving monarch habitat across the species annual cycle may be more challenging, but doing
so may ameliorate climate-related losses in any single step of the annual cycle.

Given that ≥92% of corn and soy agriculture in the northern USA is now glyphosate-tolerant [79], we
might expect relatively little additional loss of agricultural fields as habitat for monarch butterflies [22].
Essentially, large declines in the carrying capacity of the eastern monarch population are nearly complete
and predictions from both the partial least-squares regression and the best reduced-variable linear model
suggest a roughly stationary population for the years 2012–2014 (figure 4). Thus, the ability to detect
changes in monarch butterfly abundance in response to further increases in glyphosate application will
probably be limited [22]. In the future, we may expect major drivers of population size to be associated
with changes in grassland, including CRP land, and forest in the overwintering location. If threats to
these habitats are mitigated, then we would expect climate-induced stochastic variation of the eastern
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migratory population of monarch butterfly around a relatively stationary population size (electronic
supplementary material, appendix D).

5. Conclusion
We began our threats assessment with three times as many variables as years in our time series of
monarch butterfly population size. Partial least-squares regression focused our attention on a subset
of the 76 variables, leading to a single best model comprised of three covariates (i.e. glyphosate use,
number of warm days in early June, minimum August temperature) explaining greater than 90% of
the annual variation in abundance. A structural equation model implicates the loss of milkweed as the
mechanism by which glyphosate application influences monarch butterfly population size. To offset this
loss of milkweed, we suggest that a strategy of restoring habitat in a variety of areas including CRP lands,
public and private lands, roadsides and marginal agricultural areas, as well as protecting habitat where
monarchs overwinter, would help increase monarch populations [78] and thereby reduce the probability
of extirpation. Further, we suggest that these conservation efforts should proceed quickly to avoid further
monarch butterfly population declines.
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