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Single-cell sequencing is a promising technology that can
address cancer cell evolution by identifying genetic alterations
in individual cells. In a recent study, genome-wide DNA
copy numbers of single cells were accurately quantified
by single-cell sequencing in breast cancers. Phylogenetic-
tree analysis revealed genetically distinct populations, each
consisting of homogeneous cells. Bioinformatics methods
based on population genetics should be further developed
to quantitatively analyse the single-cell sequencing data. We
developed a bioinformatics framework that was combined
with molecular-evolution theories to analyse copy-number
losses. This analysis revealed that most deletions in the breast
cancers at the single-cell level were generated by simple
stochastic processes. A non-standard type of coalescent theory,
the multiple-merger coalescent model, aided by approximate
Bayesian computation fit well with the data, allowing us to
estimate the population-genetic parameters in addition to false-
positive and false-negative rates. The estimated parameters
suggest that the cancer cells underwent sweepstake evolution,
where only one or very few parental cells produced a
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descendent cell population. We conclude that breast cancer cells successively substitute in a tumour
mass, and the high reproduction of only a portion of cancer cells may confer high adaptability to this
cancer.

1. Introduction
The idea that tumour progression can be viewed as a Darwinian process goes back to the 1970s,
when it led to the concept of ‘clonal expansion’ [1]. During clonal expansion, tumour cells acquire
rare advantageous mutations and then undergo rapid population expansion due to selection. This
evolutionary process in tumours is strongly supported by recent genomic studies employing next-
generation sequencing for a tumour mass, i.e. a mixture of tumour cells [2–7].

A more direct approach for evolutionary analysis is to study the genomes of individual cells. Single-
nucleus sequencing (SNS) is a promising technology that generates high-resolution data, illustrating
the genetic heterogeneity of cancer cells and providing an excellent tool for investigating the molecular
evolution of cancer cells [8–13]. In SNS, single cells are isolated from tumour tissue by flow cytometry
or micromanipulation, and then short DNA fragments (typically 50–200 bp) derived from a single cell
are sequenced using a next-generation sequencer. The short sequenced reads are mapped to the human
reference genome and then copy-number alterations (CNAs) or point mutations present in single tumour
cells are identified by bioinformatics analysis. In particular, CNAs are detected based on the rationale
that a larger number of reads mapping to a genomic region reflects a higher copy number in the
region [8,14].

A recent study combined flow cytometry with next-generation sequencing and identified CNAs in
the genomes of individual cells sampled from tumour tissues obtained from two patients with breast
cancer [8]. Phylogenetic analysis of these CNA profiles revealed the existence of genetically distinct
subpopulations, each of which was composed of homogeneous cells. These results suggested that breast
cancer cells do not gradually evolve, but evolve rapidly between otherwise quiescent evolutionary
periods. The results of other studies identified point mutations in the exomes of single cancer
cells, and principal-component, phylogenetic-tree and allele-frequency analyses of these mutations
revealed the mutational landscape of renal cell carcinoma and the monoclonal origin of essential
thrombocythaemia [9,10].

Extensive efforts to develop analytical methods for cancer SNS data are mainly focused on the
reconstruction of evolutionary trees such as phylogenetic trees (dendrograms in which the nodes
represent cancer cells) [15,16] and mutation trees (dendrograms in which the nodes represent mutation
sites) [17,18]. However, these methods assume data on point mutations, not CNAs. Tree reconstruction
using SNS CNA data was introduced in a previous study [8], which employed the neighbour-joining
method [19] based on the Euclidean distance between the integer copy numbers of cells. Although this
distance shows some relatedness between cells, it is a population-genetic metric that may reflect correct
genealogical relationships but is not well confirmed. Recently, a pipeline program to analyse SNS CNA
data was developed [20]; however, this program focuses on quality control and CNA calling, and uses
tree-reconstruction methods for which the distances have not been validated as appropriate metrics
for phylogenetic-tree inference using copy numbers (e.g. the Euclidean distance between integer copy
numbers). It is necessary to use a valid metric for reconstructing phylogenetic trees that reflects correct
genealogies and further to develop an evolutionary model for understanding the dynamics of cancer
cells that underlie the reconstructed trees.

For this purpose, we developed a population-genetic framework combined with bioinformatics
techniques that analyses SNS CNA data, where cancer cells were treated as individuals of a non-sexually
reproducing species. Based on this framework, we decoded integer copy numbers in the previous SNS
CNA data [8] into genetic alleles, revealing an unexpectedly simple allelic nature for the breast cancers.
We further found that individual cancer genomes fit well with an extended type of coalescent model,
namely a multiple-merger coalescent (MMC) model [21] (reviewed in [22]) rather than the standard
Kingman coalescent model, which is derived from the classic Wright–Fisher model [23]. MMC modelling
allows multiple lineages to be merged simultaneously, based on a probability distribution for the number
of merged lineages, whereas the Kingman coalescent model only allows the merger of two lineages. Our
current findings explain why the phylogenetic tree showed distinct clades composed of homogeneous
cells in a previous study [8], and suggest the underlying microscale dynamics of cancer cells in this
cancer type.
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2. Results
2.1. The nature of deletion alleles
Here, we analysed data generated in a previous study [8]. In the previous study, SNS was performed
to identify integer copy numbers along binned chromosome regions (see the electronic supplementary
material for more details regarding the data) for 100 single cells in a tissue designated as T10 and 100
single cells in tissues designated as T16P and T16M, which we collectively designate as T16 hereafter.
Integer copy numbers ranged from 0 to 42, where ‘2’ represents the original diploid state, ‘0’ and ‘1’
represent deletions, and numbers greater than 2 indicate amplifications. The tissues were sampled from
two patients diagnosed with ductal breast carcinoma. Tissue T10 was the primary carcinoma, and tissue
T16 consisted of primary breast and metastatic liver carcinomas. Sampled cancer cells are considered
as random samples because cells taken from the macro-dissected tissues were randomly selected and
sorted by flow cytometry, and classified into ‘subpopulations’ with different ploidies based only on their
DNA content, without any preference for particular cell types [8]. In this study, we focused only on the
copy-number data and did not analyse somatic point mutations because there were few common sites
among the cells, due to the low genomic coverage per cell (approx. 6% of the genome per cell).

First, we observed that the copy-number profiles were unexpectedly simple for cancer. The copy-
number changes mostly involved 1-copy losses or gains (66% for T10 and 41% for T16), or, at most 2-copy
losses or gains (87% for T10 and 76% for T16) (electronic supplementary material, figure S1a). In addition,
the patterns along the binned chromosome regions were mostly simple, such as a pattern of 2 copies
changing to 1 copy and back to 2 copies along the chromosome, from the start to end positions (electronic
supplementary material, figure S1a). These simple copy-number patterns motivated us to perform a
deeper analysis using population genetics. CNA segments were usually (91% for T10 and 96% for
T16) composed of either amplifications or deletions, allowing us to analyse amplifications and deletions
separately. Because the number of deletion states (0 or 1 copy) is lower than that of amplifications (3–42
copies), we focused on deletions to avoid theoretical complications in subsequent analyses. The deletion
patterns were also simple (figure 1a).

Next, to perform population-genetics analysis, we considered the simple model of deletions
illustrated in figure 1b, which assumes that any deletion event leaves a unique pair of right and left
breakpoints on a chromosome. Under this assumption, all variable loci are bi-allelic, with original and
derived allelic states. Because all chromosomes in a single cell are co-inherited by progeny cells, we
treated them as if they evolved as a single chromosomal unit. Because paired homologous chromosomes
are also inherited together, we assigned two different coordinate systems to a pair of homologous
chromosomes, as if one homologous chromosome was physically linked to another by their ends.

Based on this model, we extracted deletion events as alleles. From the integer copy-number profiles
for each cell, we obtained the left and right breakpoint pairs of the deletion events, using a simple greedy
algorithm (figure 1c; electronic supplementary material for the details). We then performed clustering
analysis to align the breakpoints across cells because breakpoints may fluctuate due to noise (figure 1c;
electronic supplementary material). We defined a ‘genetic locus’ or ‘polymorphic site’ by a unique
breakpoint pair and assigned a derived allele to cells that harboured the deletion. The ancestral allele
was assigned to cells without the deletion. Results from principal-component analysis indicated that we
successfully decoded the deletion alleles (electronic supplementary material, figure S1b).

We observed simple distributions for the deletion allele sizes and breakpoint positions. The number
of deletion alleles gradually decreased according to size, which appeared to follow a reciprocal (1/x)
distribution (figure 1d; electronic supplementary material, figure S1c). The breakpoints were distributed
roughly uniformly across the genome (figure 1e). These data indicated that the deletion events occurred
largely based on a relatively simple stochastic process, which was amenable to molecular-evolution
analysis.

2.2. Multiple-merger coalescent
We drew phylogenetic trees for the subpopulations defined previously [8]. Of all the subpopulations, the
tree of the hypodiploid subpopulation (HP) had features expected from MMC theory: skewed branching
and multiple mergers within a close distance (fig. 1 in [24]), as shown in figure 2a (by the neighbour-
joining method) and in electronic supplementary material, figure S2 (by the unweighted pair group
method with arithmetic mean [UPGMA]). The HP subpopulation most closely reflected the nature of
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Figure 1. The nature of deletion alleles. Results from T10 only are shown because T16 showed essentially the same tendencies. (a)
Profile patterns of the integer copy number (CN). The horizontal axis represents the chromosomal position. The general CN pattern
‘2→n→ . . . →m→2’ indicates that the copy numbers of a segment changed from 2 copies to n copies, . . . and tom copies finally
back to 2 copies along a chromosome. (b) Evolutionary model of deletions. Every deletion event (the inverted U-shaped marks shown in
red and green) leaves a unique pair of left and right breakpoints as fingerprints on a homologous chromosome (blue lines). (c) Procedure
to convert copy-number profiles into alleles. ‘L’ and ‘R’ represent positions to the left and right of breakpoints, and an ‘L–R’ pair defines
a locus. The symbols ‘0’ and ‘1’ represent the ancestral and derived alleles, respectively. (d) Distribution of deletion allele lengths. We
excluded deletion alleles larger than the size of a chromosome level (40 Mb). (e) Distributions of breakpoint locations. The locations were
normalized with respect to chromosome lengths.

deletions of all the subpopulations because HP was dominated by many copy-number losses [8]. Hence,
we sought to analyse HP cells using an MMC model.

The objective of using an MMC model was to estimate various parameters that included a parameter
related to the probability of multiple mergers. One of the simplest MMC models is the β-coalescent MMC
model [22]. We used a modified β-coalescent model that included an exponential growth term (Material
and methods section). Inclusion of the exponential growth term was justified by clinical observations
with several types of cancer, including breast cancer [25]. We also modelled the occurrence of false-
positive and false-negative errors in the data, because SNS data may have considerable errors.
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Figure 2. Phylogenetic trees and MMC. (a) Phylogenetic trees reconstructed by the neighbour-joining method. HP, AP, DP, PDP, MDP
and MAP represent respective subpopulations of hypodiploid, aneuploid, diploid, primary diploid, metastatic diploid and metastatic
aneuploid cells, which were defined previously [8]. OG represents the outgroup: no deletions at all sites. (b) Flow chart of our ABC.
(c) The posterior distributions for the parameters of the MMC model. (d) The posterior distributions for the parameters of the Kingman
population-growth model. (e) The posterior distributions for the parameters of the Kingman population-constant model. (f ) Site-
frequency spectrum under the MAP estimates. Sample size n= 23. (g) Distribution of the number of merged lineages under the MAP
estimates. For (f,g), the results of 100 000 replications in the simulations were used.

Our model thus had seven parameters: the growth rate (α), the parameter (β) of the distribution that
represents the rate of multiple mergers, population mutation rate (θ ), false-positive and false-negative
rates, and the numbers of false-positive and false-negative sites. The parameter α takes non-negative
values, and a value of zero represents a constant population size. Values of β are defined within the range
of 0–2. When β has a value close to 2, the rate distribution for the number (m in equation (4.1) in Material
and methods section) of lineages to be merged has a large value for two lineages and smaller values for
greater than two lineages. Indeed, the limit of 2 for β represents that only mergers of two lineages occur,
as in Kingman coalescent models. When β has a value close to 0, it has larger values for greater than two
lineages, meaning that multiple mergers (more than two lineages) tend to occur. Mutational events occur
following a Poisson distribution with the mean of θ × lb on a branch of a coalescent tree, where lb is the
branch length. False-positive sites are sites where alleles are originally copy-number neutral for all cells
but are misjudged as deletions for some cells. False-negative sites are sites where alleles are originally
deletion alleles for all cells but are misjudged as neutral for some cells.

We estimated these parameters in the framework of approximate Bayesian computation (ABC)
(figure 2b) [26,27]. We used the features and summary statistics listed in table 1. The detailed reasons
for selecting the features are described in electronic supplementary material, table S1. For comparison,
we also used the models of Kingman coalescent with a constant population size and Kingman coalescent
with a population growth. We obtained the posterior distributions (figure 2c–e) and maximum a posteriori
probability (MAP) estimates (table 2). In the MMC model, the MAP result of β was 1.6, and the ratio of
the posterior probabilities to the β value of nearly 2 (1.999) was 12.2. Hence, it appeared that HP cancer
cells were better modelled by multiple mergers than by Kingman two-branch mergers.

Formally, we calculated the posterior probabilities of the three models in model selection when we
used the multinomial logistic regression with explanatory variables for the summary statistics. The
posterior probabilities were 1.00, 0.00 and 0.00 for the MMC, Kingman population-constant and Kingman
population-growth models, respectively, which suggests that MMC was the best model. We confirmed
that it was possible to distinguish the three models when we used the multinomial logistic regression
by performing a leave-one-out cross-validation analysis of the misclassification rates of the models
(misclassification rate of only 1.7% on average; electronic supplementary material, table S2).

In addition, we performed two analyses that complement the analysis of models’ posterior
probabilities [28]. We first performed the goodness-of-fit test using, as the test statistics, the distance
between the accepted summary statistics and observed summary statistics for each model. The p-values
were 0.37, 0.18 and 0.05 for the MMC, Kingman population-constant and Kingman population-growth
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Figure 2. (Continued.)

models, respectively. This suggests that the Kingman population-growth model was significantly
deviated from observed data, and that the MMC model was the best fit among the three.

Second, we performed posterior predictive checks for each model, where we checked the concordance
between summary statistics calculated from observed data and summary statistics calculated from
coalescent simulations performed secondarily, based on 1000 sets of parameter values sampled from
the initially obtained posterior distributions for the parameters (electronic supplementary material,
figure S3). In addition, we checked the concordance between the observed summary statistics and
summary statistics secondarily simulated under the MAP estimates (electronic supplementary material,
figure S3). These results showed that the summary statistics were reasonably reproduced for all of the
models, although the Kingman population growth and constant models were least concordant in the
predictive checks based on the posteriors and MAP estimates, respectively. In summary, the MMC model
was always the best model across all the three analyses of model selection.
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Table 1. Features and summary statistics. The reasons for selecting these features are listed in electronic supplementary material,
table S1.

feature summary statistics

number of mutation sites the number itself
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

allele frequencies at all sites 10, 30, 50, 70 and 90% quantiles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

distances between all cell pairs in a tree 10, 30, 50, 70 and 90% quantiles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

all branch lengths in a tree 10, 30, 50, 70 and 90% quantiles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

associations (r2) between all site pairs 10, 30, 50, 70 and 90% quantiles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. MAP estimates.α andβ represent the population-growth rate and the parameter of the distribution that describes the rate of
multiple mergers, respectively. See the text for more information onα andβ . Here, θ is the population mutation rate.

parameter the MMCmodel Kingman population-constant model Kingman population-growth model

α 17.1 n.a. 17.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β 1.64 n.a. n.a.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ 102.9 52.1 97.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

false-positive rate 0.012 0.013 0.010
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

false-negative rate 0.068 0.072 0.098
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

false-positive sites 89 72 70
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

false-negative sites 21 26 35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We also calculated an allele-frequency spectrum (figure 2f ). This spectrum was drawn based on the
estimated parameters without false-positive or false-negative errors, because a spectrum (electronic
supplementary material, figure S4) constructed directly from the observed data might have been
contaminated by false positives and negatives. For comparison purposes, we calculated spectra for
Kingman population-constant and population-growth models. The β coalescent with growth showed an
intense frequency at the smallest number of derived alleles and sharp drops in the frequencies at large
numbers, particularly at the second smallest number (figure 2f ). The Kingman growth model showed
a less intense frequency at the smallest number, but did not show as sharp a drop in the frequency at
the second smallest number. The Kingman constant model did not have an intense frequency at the
smallest number and had long-tail frequencies at large numbers. We also computed a distribution for
the number of merged lineages observed during the simulation. Mergers of more than two lineages were
found (figure 2g). Both Kingman models were two-lineage mergers by definition.

3. Discussion
In this study, we developed a computational framework that integrates bioinformatics copy-number
algorithms with population-genetics theory. Using this approach, we quantitatively analysed the
previous SNS CNA data in breast cancers [8]. Our analyses of copy-number profiles and deletion
alleles demonstrated that their patterns were unexpectedly simple for cancer. Other investigators
proposed the fractal globule model to explain the 1/x distribution of CNA sizes in typical bulk-cell
sequencing [29,30], and our analysis demonstrated that this observation held true at the single-cell level.
The 1/x distribution, together with the uniform distribution of breakpoint positions in chromosomes,
may serve as a future simulation framework for modelling stochastic processes of CNAs in cancer
cells. Lengths around branch mergers in the HP tree (figure 2a) mostly appeared short enough to be
approximated with multiple mergers; indeed, MMC fit better to the CNA data than it did to the Kingman
coalescent models.

A phylogenetic analysis by Navin et al. [8] demonstrated the presence of distinct subpopulations
composed of homogeneous cancer cells; no clear intermediate subpopulations were found in the
breast cancer cells they examined. The absence of intermediate subpopulations can be explained by
‘sweepstake’ reproductive processes underlying the MMC model. Unlike the Wright–Fisher model or
the Kingman coalescent model, MMC is characterized by great variance in the number of descendants:
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the MMC models are coalescent processes in species with ‘sweepstake’ reproduction such as fish and
parasites, in which only one or very few individuals produce descendants [21,22,31]. The population is
composed of very few genotypes. Therefore, cancer cells within the same subpopulation were genetically
homogeneous in the previous study [8]. On the other hand, the time of allele fixation in the sweepstake
reproduction modelled in MMC is short; hence, many divergences (substitutions) tend to accumulate
between two incipient populations [22]. This is the reason why distinct subpopulations were observed in
the previous study [8].

One important prediction by MMC is that alleles under positive selection theoretically may have a
probability of 1 to become fixed [22]. The possibility that even a slightly advantageous allele can be
fixed under a little genetic drift may be related to numerous ‘passenger’ mutations observed in recent
cancer-genomics studies [2,32].

There are several biological and medical implications if the cancer data fit the MMC model.
(1) To understand how cancer is generated in a human body, cancer genomics employing typical

next-generation sequencing for bulk cells estimates the order of dysfunctional genes from the variant
allele frequencies in a tumour tissue sample, based on the idea that older variants have higher variant
allele frequencies [33,34]. For example, if variants in KRAS and TP53 show variant allele frequencies of
50% and 30%, it is estimated that the KRAS variant occurred before the TP53 variant. In this example,
KRAS is interpreted as a possible initiating factor for this cancer. This reconstruction holds true in the
Wright–Fisher and Kingman models; however, it is not true in the MMC model because higher variant
frequencies may just reflect variants occurring in a rapidly expanding subpopulation [35]. If the data fit
the MMC model well, this order reconstruction method may be incorrect.

(2) As with the management of marine species [31], the reproductive skew in the MMC model
has implications for the management of cancer treatment. The reproductive skew is represented by a
heavy-tailed Cx−β distribution for the probability of having x or more offspring, where C is a positive
constant [31,36]. If data from a cancer patient fit with the MMC model, it suggests that killing cancer
cells randomly with anti-cancer drugs would be ineffective because the surviving cells with very high
reproduction located in the heavy tail of the distribution will surely re-emerge. It is much more effective
to distinguish such cells using biomarkers and kill them directly. The cancer stem cell hypothesis suggests
that only a small portion of cancer cells with stem cell properties generate mitotic descendent cells, which
constitute almost all of the cancer cell population [37]. This hypothesis may be associated with the high
reproductive skew represented in the MMC model, and some markers (e.g. CD44+/CD24− for breast
cancer) to distinguish cancer stem cells have already been developed.

(3) If the cancer data fit the MMC, it is disadvantageous to take a wait-and-see approach because even
slightly advantaged variants may spread through the population and cancer cells rapidly evolve; thus,
an estimated β can serve as an index to represent the malignancy of the cancer.

To our knowledge, this is the first study to apply MMC modelling to cancer SNS data. Branching
processes have been often used to model cancer evolution [13,38]. Branching processes are a time-
forward type of model, while MMC is a time-backward type of model. The standard Kingman model as
a backward model can be derived from the Wright–Fisher model as a forward model [23]. In this light, it
is interesting that recent theoretical studies indicated a relationship between MMC as a backward model
and branching processes as a forward model [39,40].

Although multiple deletion events may share the same breakpoint pairs, we ascertained that virtually
all deletions in the dataset arose from single events (see the electronic supplementary material). One
caveat in our analysis is that we only examined simple deletions defined from copy-number profiles.
We did not identify deletions within amplifications, let alone amplifications or point mutations. Future
studies are warranted to include these mutations. Moreover, if data with a sufficient number of cells were
obtained from every dissected sector of a tissue, ‘geographic’ differences in tissues could be addressed
in the future. The mutational model of CNAs depicted in figure 1b and also suggested in a previous
study [41] is in principle applicable to germ-line copy-number variations (CNVs) and therefore may also
be helpful for improving population-genetic studies of CNVs [42,43].

4. Material and methods
4.1. Phylogenetic tree
Because we extracted genetic alleles from copy-number profiles, we applied standard phylogenetic-
construction methods that are used for point mutations. For the distance, we used the p-distance [44]
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because multiple occurrences were unlikely to occur, as described in the electronic supplementary
material. We used the neighbour-joining method [19] for agglomeration, in addition to the UPGMA
method. We constructed trees for subpopulations with greater than 20 cells.

4.2. Multiple-merger coalescent
In our coalescent simulation, we used a β-coalescent model modified to include population growth. We
based our simulation procedures on reference [24]. In the β-coalescent model [22], the rate of merger of
m lineages from k active lineages is represented by

λk,m =
∫ 1

0
xm−2(1 − x)k−m

{
1

Γ (2 − β)Γ (β)
x1−β (1 − x)β−1

}
dx

= B(m − β, k − m + β)
B(2 − β, β)

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

where Γ and B represent the gamma and beta functions, respectively, and β is the parameter. The number
of lineages to be merged is first sampled from the probabilities:

pk,m =
(

k
m

)
λk,m. (4.2)

Next, particular lineages to be merged are randomly sampled. This process is repeated until no
lineages remain.

Coalescent time tk under the assumption of a constant population size is simulated in [24] as follows:

tk ∼ Exponential(pk) (4.3)

and

pk =
k∑

m=2

pk,m, (4.4)

where tk is sampled from an exponential distribution with a rate of pk. Intuitively, coalescent events occur,
following a Poisson process with the average number of occurrences of pk in coalescent time units.

We scaled the waiting times to include the effect of population growth, following the standard
approach in coalescent theories [45]. This approach focuses only on changes in the coalescent rate due to
changes in population size, i.e. smaller population size is associated with a higher coalescent rate, and
scales the coalescent time appropriately. We assumed an exponential growth model:

N(t) = N0e−αt, (4.5)

where N0 is the population size at the present and t is the time before the present; α is the growth rate
measured in coalescent time units (4N0 generations). Exponential growth can be included in a coalescent
model by scaling time as follows:

t∗k ∼ Exponential(pk), (4.6)

where t∗k is sampled from an exponential distribution with a rate of pk. The time is then scaled with the
growth rate α:

tk = 1
α

log(1 + αt∗k e−αvk+1 ), (4.7)

and

vk+1 =
n∑

i=k+1

ti, (4.8)

where n is the sample size. We thus obtained the coalescent tree and time.
For each branch of an MMC tree, we sampled the number of mutational events from a Poisson

distribution with the mean of θ × lb, where θ is the population mutation rate (in coalescent time
units) and lb is the branch length. We then placed mutational events onto the branch. As shown in
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figure 1c, we treated the breakpoint pair of a deletion as a point mutation that follows the infinite-site
model [46].

4.3. Approximate Bayesian computation
We first sampled values from prior distributions, assuming uniform distributions:

α: {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100},
β: {0.001, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 1.999},
θ : {10, 20, 30, 40, 50, 60, 70, 80, 90, 100},
False-positive rate: {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1},
False-negative rate: {0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.2},
Number of false-positive sites: {10, 20, 30, 40, 50, 60, 70, 80, 90, 100},
Number of false-negative sites: {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

Here, the false-positive sites are sites that had copy-number-neutral alleles for all cells originally, but
were misjudged to have a deletion allele for at least one cell. Conversely, false-negative sites are sites that
had deletion alleles for all cells originally, but were misjudged to have a neutral allele for at least one cell.

Under a set of parameter values, we generated an MMC tree with mutations. From the tree, we
obtained DNA sequences where derived and ancestral alleles were represented as ‘1’ and ‘0’, respectively.
We then simulated false positives and negatives by performing Bernoulli’s trials with the probability of
the given false-negative and false-positive rates, and then flipped the alleles (‘1’ to ‘0’ or ‘0’ to ‘1’) based
on the outcomes of the trials, respectively. The same method was applied to Bernoulli’s trials for single
sites where the alleles were all ‘1’s (or ‘0’s) across the cells. It follows that we obtained sites where at least
one ‘1’ (or ‘0’) was flipped over. Then, we added such sites to the DNA sequence data up to the given
number of false-negative (or false-positive) sites. In this way, we simulated DNA sequences with false
positives and false negatives.

We then extracted five features and their summary statistics, as given in table 1. The reasons for
selecting these features are described in electronic supplementary material, table S1. The reason for using
the summary statistics of quantiles is that we wished to use information as close to the distribution itself
as possible. We repeated these processes 10 000 000 times to obtain 10 000 000 sets of summary statistics.

Using the ‘abc’ package [47] of R, we compared the summary statistics obtained with the simulated
data with those with the observed data, based on ABC with the ridge regression adjustment
(method=‘ridge’ in the ‘abc’ function) [26]. We determined the acceptance rate to be 0.001%, based
on prediction errors calculated from 100 cross-validations for each parameter at different acceptance
rates by the ‘cv4abc’ function (electronic supplementary material, table S3). We used features of the tree
reconstructed from the neighbour-joining method for the ABC features related to a tree.

For the population-growth Kingman model, we fixed α to 0. For the population-constant Kingman
model, we further fixed β to 1.999 (approx. 2). For these models, we performed the same ABC procedures
that were performed for the β coalescent with growth.

In model selection analysis, we used the ‘postpr’ function to calculate the posterior probabilities of
the three models in the multinomial logistic regression, and used the ‘cv4postpr’ function to perform a
leave-one-out cross-validation analysis for the misclassification rates of the three models. We used the
‘gfit’ function to perform a leave-one-out cross-validation for the goodness-of-fit test using a statistic of
the distance between the accepted summary statistics and the observed summary statistics.
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