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For decades, linden trees (basswoods or lime trees), and particularly silver

linden (Tilia tomentosa), have been linked to mass bee deaths. This phenom-

enon is often attributed to the purported occurrence of the carbohydrate

mannose, which is toxic to bees, in Tilia nectar. In this review, however, we

conclude that from existing literature there is no experimental evidence for tox-

icity to bees in linden nectar. Bee deaths on Tilia probably result from

starvation, owing to insufficient nectar resources late in the tree’s flowering

period. We recommend ensuring sufficient alternative food sources in cities

during late summer to reduce bee deaths on silver linden. Silver linden metab-

olites such as floral volatiles, pollen chemistry and nectar secondary

compounds remain underexplored, particularly their toxic or behavioural

effects on bees. Some evidence for the presence of caffeine in linden nectar

may mean that linden trees can chemically deceive foraging bees to make

sub-optimal foraging decisions, in some cases leading to their starvation.
1. Introduction
Pollinators face increasing pressure from anthropogenic environmental impacts

including land use intensification, climate change and pesticides [1]. Con-

currently, agricultural and urban environments can support abundant and

species-rich pollinator communities if suitable floral resources are available

[2–4]. Accurate knowledge about how plant species benefit or harm pollinators

is therefore of central importance for creating pollinator-friendly environments.

For example, non-native plants interact with native pollinators and the whole eco-

system, with direct or indirect effects that benefit or hinder pollinators and

ecosystem services they provide [5]. Non-native plant species can have negative

consequences for local non-adapted pollinators where toxins occur in nectar,

as shown for the invasive Rhododendron ponticum in the British Isles [6].

Linden or lime trees (Tilia sp., Malvaceae) have at times been regarded as

either beneficial food sources or deadly traps for bees. In antiquity, linden trees

were regarded as bountiful food plants for honeybees [7]. Linden trees have

been planted in Europe to support honeybees since medieval times [8] and are

productive nectar sources [3,9]. Conversely, since at least the sixteenth century,

other authors have suggested linden can harm bees [10,11]. The potential dual

nature of linden is most apparent by reoccurring mass deaths on flowering

linden trees with sometimes thousands of dead bees (table 1). Silver linden

(Tilia tomentosa Moench) are most often associated with bee deaths and have

been asserted in numerous accounts to produce toxic nectar [12,16,21,24–28].

Silver linden (figure 1) originates from southeastern Europe, but is planted

widely outside its native range across Europe and North America [8,21].

Linden are among the most common urban trees throughout Europe and

North America [29], and so have the greatest potential to affect urban pollinators.
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Their high drought and pest tolerance qualifies silver linden as

excellent urban trees [30,31]. Given the importance of urban

habitats and trees for pollinator populations [2,3], it is necess-

ary to review whether linden trees have detrimental effects

on bees, and how these may arise.

Dead bees under flowering linden have been reported from

the UK [21], Switzerland [32], Germany [12–15], Norway [33],

Poland [16], Austria [20,23] and the USA [28,34] (table 1). The

Crimean linden (Tilia � euchlora), a putative hybrid between

Tilia cordata and Tilia dasystyla [8], is also associated with bee

deaths (table 1). Small-leaved linden (T. cordata), large-leaved

linden (Tilia platyphyllos) and their hybrid common linden

(Tilia � europaea) are generally not linked to this phenomenon,

with the exception of a recent bumblebee kill under T. cordata in

Oregon (USA; table 1).

Bumblebees are most affected, accounting for over 75% of

dead bees [12,35] (table 1). Short-tongued bumblebee species

like Bombus terrestris dominate (table 1 and figure 1). Fewer

honeybees (Apis mellifera) die, even though they forage as

abundantly on the tree as bumblebees [13,16].

While dead bees under T. tomentosa and other linden trees

are still recorded in many countries, uncertainty and con-

fusion prevails over the causes. Here, we categorize and

assess the published explanations under five hypotheses,

examine their plausibility considering existing research, and

identify key research gaps (table 2).
2. Toxic Tilia metabolites
A widely held belief and historic explanation of bee deaths

under Tilia is that components in nectar poison bees, first

suggested by Elwes & Henry [21]. Geissler & Steche [36] and

Madel [12] proposed that the presence of the monosaccharide

mannose (figure 1) in T. tomentosa nectar was responsible,

after von Frisch [48] and Staudenmayer [49] had discovered

toxicity of mannose to honeybees and bumblebees. This toxic

effect results from a metabolic disease, in which an inter-

mediate product, mannose 6-phosphate, accumulates and

adenosine triphosphate is depleted, resulting in paralysis and

death [50]. However, Madel’s assertion [12] that this explained

T. tomentosa toxicity was supported by scant detail about the

detection of mannose beyond stating that he had conducted

preliminary paper-chromatographic investigations. Biological

evidence was limited to a feeding trial with eight bumblebees

caged with seven T. tomentosa flowers without control [12].

All bumblebees tested died within 12 h, leading Madel to con-

clude T. tomentosa nectar was toxic. However, Baal et al. [35]

showed nectar of seven flowers was inadequate for eight

caged bumblebees, meeting less than 2% of their energe-

tic demand, and suggested starvation explained Madel’s

results [35]. Geissler & Steche [36] analysed sugars with

paper chromatography and did not detect mannose in linden

(T. platyphyllos) nectar. A hydrolysed linden nectar sample

revealed a sugar bound as a glycoside that was tentatively

identified as mannose based on relative retention time, but

was not clearly distinguishable from galactose. Via a colori-

metric test, Geissler & Steche [36] also detected a sugar in

dead bees collected under linden they concluded to be galac-

tose or mannose. Notably, Geissler & Steche [36] pointed out

their identifications were tentative, as they could not isolate

sufficient sugar quantities for more refined analytical pro-

cedures. Subsequent chemical analyses, described below,



mannose

dinotefuran

caffeine

(a) (b)

(d)

(c)

Figure 1. (a) Silver linden (T. tomentosa ‘Petiolaris’) at the Royal Botanic Gardens, Kew, UK; (b) chemicals implied in bee deaths; (c) buff-tailed bumblebee (B. terrestris)
worker foraging on T. tomentosa; (d ) dead bees (B. terrestris, B. hypnorum, B. lucorum, Apis mellifera) collected during 1 day (29 July 2016) under flowering T. tomentosa.
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discount these earlier proposed identifications. Despite this,

Crane [24] later popularized the idea that mannose was respon-

sible, erroneously presenting the riddle of bee deaths on linden

as solved (figure 2).

Baal et al. [35] and Krasenbrink et al. [37] re-examined the

nectar sugar chemistry of T. tomentosa and other Tilia species

using gas chromatography of derivatized sugars, following

standard methods by Sweely et al. [51]. Chromatograms

published in Baal et al. [35] and Krasenbrink et al. [37] demon-

strate their methods distinguished mannose from other nectar

sugars. Glucose, fructose, sucrose and mannose were further-

more enzymatically quantified [35]. These analyses showed

unequivocally that mannose was absent in nectar of T. tomentosa
(n ¼ 36 trees), T. platyphyllos (n ¼ 20), T. cordata (n ¼ 12) and

T � euchlora (n ¼ 14). Only the non-toxic sugars sucrose,

glucose and fructose were detected. Since mannose might be

produced as a nectar metabolite by bees [36], Baal et al. [35]

analysed guts, abdomina and heads/thoraxes of 80 dying

bumblebees from flowering T. tomentosa and T � euchlora, but

recorded no mannose in the bumblebees. Finally, Baal et al.
[35] fed T. tomentosa nectar to 30 caged B. terrestris, and again

mannose was absent from guts and haemolymph. Bumblebees

fed on T. tomentosa nectar for 5 days showed no adverse effects.

Baal et al. [35] thus disproved the hypothesis of mannose

poisoning by T. tomentosa. Nevertheless, non-nutritive sugars

in Tilia nectar, including sugar moieties in glycosides [36],

deserve further study. We suggest carbohydrate chemistry of

linden nectar and pollen will become clearer through more

accurate and sensitive methods including nuclear magnetic

resonance spectroscopy.

Despite the lack of evidence, the received wisdom of man-

nose poisoning by T. tomentosa nectar continues to prevail as

fact in much scientific and technical literature (figure 2), includ-

ing reviews [24,27,52–58], original research papers [16,59,60],

horticultural and botanical guides [25,26], pest control [61]

and governmental advisories [38].

The non-sugar chemistry of T. tomentosa nectar and pollen

remains largely unstudied. Naef et al. [41] and Frérot et al. [62]
described the volatile nectar constituents from the related

T. cordata and found secondary compounds including terpe-

noids, flavonoids and a novel cyclohexa-1,3-diene-1-carboxylic

acid and its b-gentiobiosyl ester. The disaccharide gentiobiose

occurs in crops of honeybees foraging on T. tomentosa [63], and

in linden honey [64]. Gentiobiose is most likely the product of

enzymatic cleavage of the b-gentiobiosyl moiety of the above-

mentioned glycoside in Tilia nectar [62]. Effects of gentiobiose

on bees are unknown, but the feeding trials by Baal et al. [35]

(see above) suggest no adverse effects should be expected.

Bumblebees collect pollen on linden [65] (figure 1), but the

importance of T. tomentosa pollen remains unknown. Melville

[66] observed that only bumblebees and not honeybees collected

pollen from T. tomentosa, and speculated a toxic compound in

the pollen could explain why the majority of dying bees are

bumblebees. However, no published pollen chemistry analysis

beyond amino acids and sterols in Somme et al. [3] exists.

It remains unknown if foraging bees directly consume Tilia
pollen on the tree, or rather carry pollen back externally to the

nest as larval food.

We conclude the available evidence shows mannose does

not occur in Tilia nectar and therefore cannot explain mass

bee deaths on Tilia. There is no convincing experimental evi-

dence for toxicity of T. tomentosa nectar or pollen to bees.

However, the exposure of bees foraging on T. tomentosa flowers

to toxic compounds other than mannose cannot be completely

excluded, given the incomplete knowledge of Tilia pollen and

nectar metabolites, and the limited experimental tests of

T. tomentosa forage on bumblebee individual or colony health.

Plant metabolites in T. tomentosa nectar and pollen therefore

need to be analysed further, and their potentially lethal or

sub-lethal effects on bees should be tested experimentally.
3. Insecticides
Although T. tomentosa does not poison bees, insecticide appli-

cation to the tree can. Tilia trees are occasionally treated with
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insecticides against aphids. Several instances of bumblebee

deaths under T. cordata have recently occurred in Oregon,

USA. In one outstanding case, over 50 000 bumblebees died

under T. cordata trees in Wilsonville, Oregon [28]. Owing to

the widespread misconception about the presence of toxic

sugars in linden nectar (see above), some sources erroneously

suggested naturally occurring nectar toxins caused these bee

kills (e.g. [61]). The Oregon Department of Agriculture

judged the neonicotinoid dinotefuran (figure 1), that had

been applied to the trees prior to the event, as the cause [38].

Neonicotinoids are potent neurotoxins for honeybees and

bumblebees [67]. Even when applied outside the flowering

period, neonicotinoids can persist in plant tissues and

subsequently occur at concentrations detrimental to bees in

pollen and nectar [67]. The neonicotinoid use on flowering

trees like Tilia spp. should therefore be prohibited.

Bee deaths under linden trees predate the introduction of

neonicotinoid insecticides in the 1990s [12,14,21]. Neoni-

cotinoids therefore cannot explain this phenomenon more

broadly, but can account for isolated recent cases. The wide-

spread confusion over the erroneously presumed presence

of toxic mannose in Tilia nectar (see above) could however

misguide policy-makers and pest control professionals

(e.g. [38,61]).
4. Death by natural causes: predators and old
age

Tilia tomentosa flowers later than other linden species, between

mid-July and early August for Europe [13,15,66]. Large

trees can accommodate thousands of foraging bees [13].

Many bumblebee species approach the end of their colony

cycle at this point in the season. The high bee population on

a mass flowering tree like T. tomentosa may see significant
numbers of older bumblebees dying of natural causes, giving

an impression of toxicity. However, Mühlen et al. [15] classified

only 6% of 4116 dead bumblebees collected under T. tomentosa
as old, based on characters like loss of pile and wing wear. The

vast majority of dead individuals consisted of younger age

classes, including young bumblebee queens. These findings

led Mühlen et al. [15] to discount old age as a major cause of

bee deaths.

Predators including great tits and wasps attack bees on

flowering linden trees [15]. Mühlen et al. [15] found 76.1%

of 10 984 dead bees from T. tomentosa had damage indicating

predator feeding. Mühlen et al. [15] found high variability

between trees and seasons for predator damage, with some

trees having high death counts but few signs of predation.

This suggested predators mostly attacked dying or dead

bees, and predation was only a secondary factor.

In conclusion, natural deaths owing to old age or preda-

tors account for some of the observed bee deaths, but

appear insufficient to fully explain the many thousands of

deaths recorded by Mühlen et al. [15] and others.
5. Starvation
The late flowering period of T. tomentosa can coincide with a

scarcity of nectar resources in the wider landscape [35]. After

the often more abundant linden species T. platyphyllos, T �
europaea and T. cordata (generally not linked to bee deaths)

have stopped flowering, bees concentrate foraging on the

rarer T. tomentosa owing to missing alternative nectar sources.

The large honeybee and bumblebee populations at the flower-

ing time of T. tomentosa then face intense competition for

remaining nectar [35].

In a detailed temporal study of nectar production, foraging

bee species and dead bees covering the flowering period of
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T. tomentosa, Illies [13] observed an increase of dead bumble-

bees towards the end of the flowering period. During this

time, flowers secrete less nectar, but bumblebees continue

visiting [13,39]. This drop in available nectar may lead to

large-scale starvation [39]. Similarly, Surholt & Baal [17] mon-

itored foragers of a B. terrestris colony close to a T. tomentosa tree

throughout its 11 day flowering period, and found that,

coinciding with the cessation of nectar production by the tree

at day 8, bumblebee foragers returned from foraging trips

without collected nectar. Individually marked workers from

the colony were at this point found dead or dying beneath

the tree, and the colony died of starvation [17]. Support for

the ‘starvation hypothesis’ also comes from the analysis of

sugar reserves in bumblebees’ bodies [35]. Foragers dying

under T. tomentosa had less than a third of the energy reserves

left compared with foragers on T. cordata or T. platyphyllos [35].

Surholt et al. [40] reported that paralysed bumblebees under

T. tomentosa recover when provided with T. tomentosa nectar.

Bumblebees feeding on this nectar recovered fully after

30–40 min [40]. Honeybees may be better able to deal with

late summer nectar shortage because of available honey

stores in the colony, possibly explaining fewer dead honeybees

under T. tomentosa compared to bumblebees [13].

Baal et al. [35], Surholt & Baal [17] and Illies [13] thus

presented a compelling case for the bee mass deaths on

T. tomentosa resulting from starvation, and considering current

evidence this seems the most likely explanation. However,

why this happens is still unknown. The best management

decision to avert dead bees under Tilia should be to increase

late season floral resources in urban environments. This would

reduce competition between honeybees and bumblebees.

By contrast, felling of T. tomentosa would be counterproductive

by further reducing available nectar resources and leading to

increased bee losses [13]. Linden including silver linden are

valuable nectar sources for bees [3,9].

Doubts remain, however, whether simple starvation

owing to insufficient alternative food sources completely

explains the phenomenon. Zucchi [18] suggested bee deaths

occur under T. tomentosa in areas with alternative flowering

forage plants based on observations in a flower-rich park in

Osnabrück and observations by Breinl [19] in a botanical

garden in Gera (both in Germany). Similarly, we observed

403 dead bumblebees over the flowering period of a single

T. tomentosa tree at the Royal Botanic Gardens, Kew

(Richmond, UK) in July 2016, when many other nectar pro-

viding plants were still flowering in the surrounding

garden (table 1 and figure 1).

Bees have been shown to adopt an ideal free distribution

across resources [68,69]. This would suggest that if bees are

starving on T. tomentosa, they should be starving to an equal

extent on other flowering plants simultaneously. Bee deaths

on T. tomentosa would thus only be a ‘canary in a coal mine’,

highlighting a general lack of nectar resources in a particular

area. To test the ‘starvation hypothesis’, bumblebee mortality

on T. tomentosa and surrounding flowering plants should be

compared, and bumblebee colonies foraging in comparable

landscapes with and without T. tomentosa should be monitored

for their food intake and starvation. If bumblebee deaths on

T. tomentosa are owing to simple starvation, similar levels

should be observed on T. tomentosa and other plants, or in colo-

nies foraging in comparable landscapes with or without

T. tomentosa. If, however, elevated rates of individual or

colony mortality are observed in the presence of T. tomentosa,
starvation alone cannot account for the observed phenomenon,

and alternative hypotheses outlined in this review need to

be considered.
6. Chemical deception
Plants can chemically manipulate pollinator behaviour

against the pollinators’ best interests, to optimize pollination

services at minimal cost. Bee orchids (Ophrys spp.) offer bees

no nectar reward, but instead mimic female bee sex phero-

mones to trick corresponding male bees into visiting and

transferring pollen [70]. Other plant species may still offer

nectar rewards, but chemically induce pollinators to over-

value these rewards and visit with greater frequency than

would be optimal for pollinators [42].

Despite the continued interest in the bee deaths on

T. tomentosa, the floral chemistry including nectar, pollen and

floral volatiles remains understudied. Bumblebees, and to a

lesser extent honeybees, are attracted to linden even at the

end of the flowering period, when little nectar is produced

[39]. The potent scent of T. tomentosa has long been noted

[21]. Illies [13] speculated T. tomentosa scent may mimic

unknown bumblebee pheromones, causing bees to visit with-

out receiving nectar rewards and thus act as a ‘scent trap’.

Returning bumblebee (B. terrestris) foragers emit three phero-

mones within the colonies that recruit idle workers to start

foraging: eucalyptol, farnesol and ocimene [71]. All three com-

pounds occur in flower volatiles or nectar of Tilia species

[41,45,46]. Exposure to these volatiles either on the tree or in

the colony through returning foragers with Tilia scent could

exploit the bumblebees’ sensory bias and increase foraging

intensity even at times of low nectar production. However,

all three volatiles are common among European flowering

plants [47]. This suggests that, while the volatiles could have

been selected in plants to act as innate stimuli attracting

foraging bumblebees, any behavioural effects would not

necessarily be unique to Tilia. The specific volatiles emitted

by T. tomentosa flowers should be investigated and compared

to species of Tilia that are not associated with bee deaths.

Their effects on bumblebee foraging behaviour and persistence

to return to empty flowers should furthermore be tested

experimentally with artificial flowers.

Intriguingly, Naef et al. [41] reported caffeine (figure 1) in

T. cordata nectar, and Mathon et al. [72] detected caffeine in

Tilia sp. flower tea. Additional studies should verify if, and at

what concentrations foraging bees are exposed to caffeine or

related alkaloids across different Tilia species. We propose

that recent experimental studies investigating the effect of caf-

feine on bees could help explain the mystery behind bee deaths.

Wright et al. [43] demonstrated caffeine enhances odour

memory associated with food rewards in honeybees, pre-

dicting this induced greater floral fidelity. This was later

demonstrated in free-flying honeybees by Couvillon et al.
[42], who showed caffeine-laced sugar water increased fora-

ging intensity and recruitment behaviour. Notably, caffeine

increased persistence of honeybee foragers to return to pre-

viously rewarding but subsequently empty feeders, and

increased site specificity, i.e. reducing searching behaviour

for other food rewards around the caffeine-laced feeder.

Caffeine may allow plants to reduce their nectar investments

by misleading bees into making sub-optimal foraging

decisions, depleting honey stores despite increased foraging
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activity [42]. Thomson et al. [44] demonstrated nectar caffeine

also affects bumblebee foraging behaviour, with ecologi-

cally relevant caffeine levels (1025 M) leading to increased

deposition of a pollen substitute on artificial flowers.

Given sub-optimal honeybee foraging under the influence

of caffeine [42], could T. tomentosa similarly manipulate

bumblebees to visit after cessation of nectar secretion, until

they starve? Certainly, caffeine exposure of bees foraging on

Tilia, and its resulting effects should be investigated. Study-

ing T. tomentosa volatiles and their effects on bees, alongside

interactive effects with caffeine on scent-reward association

learning [43] using artificial flowers (cf. [44]), could help

bring two of the more plausible explanations together to

understand this extraordinary natural phenomenon.
13:20170484
7. Interactive effects
The interaction of stressors such as pesticides and nutritional

deficits is more damaging to pollinators than each stressor in

isolation [1]. Similarly, interactions of factors in the preceding

five hypotheses could increase bee mortality on T. tomentosa.

For example, if compounds in T. tomentosa paralyse bees,

they would be more vulnerable to predation. Nutritionally

stressed bees may be more susceptible to effects of toxic metab-

olites in nectar or pollen. Tilia tomentosa metabolites could

interact with insecticides causing additive or synergistic toxic

effects. Chemical deception of T. tomentosa may be more effec-

tive if fewer alternative flowering resources are available in

the contiguous landscape. These interactive effects should be

considered and tested experimentally.
8. Conclusion
There is no convincing evidence for direct toxicity of

T. tomentosa nectar or pollen to bees. Mannose does not occur

in T. tomentosa nectar, and the hypothesis of mannose poisoning

by foraging bees on this tree has been refuted. In isolated cases,

neonicotinoid treatment against aphids can explain some mass

bee death events, and insecticide treatment of Tilia trees

should be prohibited. In general, starvation of bees owing to

insufficient nectar availability is the most likely cause of bee

deaths on T. tomentosa. Yet, as the event occurs in the presence

of alternative food sources in gardens, starvation alone may

not explain the deaths. Starvation rates of individual bees and

bee colonies in landscapes with and without T. tomentosa trees

associated with bee deaths should be investigated. Ensuring

alternative floral resources in late summer during T. tomentosa
flowering could be the best way of avoiding associated bee

deaths. Tilia tomentosa flower chemistry (including nectar,

pollen and volatiles) remains incompletely known, and

should be analysed and experimentally tested for bumblebee

toxicity. Further research should determine if T. tomentosa can

chemically manipulate bee foraging behaviour. A combination

of caffeine and Tilia volatiles could lead to sub-optimal foraging

in bees, in some cases leading ultimately to starvation.
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