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We have previously shown that male mice living in groups of 12 males estab-

lish and maintain stable linear social hierarchies with each individual having a

defined social rank. However, it is not clear which social cues mice use to

signal and recognize their relative social status within their hierarchy. In this

study, we investigate how individual social status both in pairs and in

groups affects the levels of major urinary proteins (MUPs) and specifically

MUP20 in urine. We housed groups of adult outbred CD1 male mice in a com-

plex social environment for three weeks and collected urine samples from all

individuals repeatedly. We found that dominant males produce more MUPs

than subordinates when housed in pairs and that the production of MUPs

and MUP20 is significantly higher in alpha males compared with all other

individuals in a social hierarchy. Furthermore, we found that hepatic mRNA

expression of Mup3 and Mup20 is significantly higher in alpha males than in

subordinate males. We also show that alpha males have lower urinary creati-

nine levels consistent with these males urinating more than others living in

hierarchies. These differences emerged within one week of animals being

housed together in social hierarchies. This study demonstrates that as males

transition to become alpha males, they undergo physiological changes that

contribute to communication of their social status that may have implications

for the energetic demands of maintaining dominance.
1. Introduction
In their natural ecology, the ancestral subspecies of laboratory mice (Mus
musculus, Mus domesticus, Mus castaneus and Mus moloisha) live in large social

groups organized into dominance hierarchies [1]. Mus species are characterized

by a high reproductive skew with elevated levels of inter-male competition lead-

ing to the formation of territories [2,3]. Wild and laboratory male mice mark

territories and advertise their quality to females by depositing urine throughout

their environment [4–8]. Dominant males respond to these urine scent marks by

countermarking over them with their own urine marks [5,6,8].

We have recently shown that groups of up to 30 outbred CD1 male mice living

in complex housing vivaria form highly linear social hierarchies in the laboratory

[9–14]. Within 4–5 days of group, housing all animals can be ranked based on

their relative wins and losses against all other individuals. We have shown that

after 5 days of co-housing, every male is highly directionally consistent in their be-

haviour, only exhibiting aggressive behaviour towards animals of relatively lower

social status and consistently yielding when approached by animals of relatively

higher social status. We have also shown that animals of lower ranks respond to

changes in social context, recognizing when alpha males are inactive or absent

from the hierarchy and consequently increase their aggressive behaviour [12,13].

In this group-housing system, the most dominant male in a group patrols the

entire housing system and monopolizes the food and water areas and a few nest-

boxes. Other individuals spend the majority of their time in other nest-boxes that
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the alpha male favours relatively less. We also have shown that

non-alpha males avoid their aggressive behaviours while the

alpha male is actively patrolling [12]. These behavioural charac-

teristics are consistent with previous findings from other

research groups using wild-caught or laboratory outbred

mice, suggesting that those animals are capable of exhibiting

appropriate social behaviours depending on different social

contexts if given sufficient space and enrichment [2,15–18].

The dynamics of dominant and subordinate behaviour

in social groups suggests that mice use cues to signal and per-

ceive the ranks of other individuals within a social hierarchy.

Although it is possible that individuals use a combination of

visual, auditory and olfactory cues to signal relative social

status, the majority of inter-male mouse social behaviour is

mediated by chemosensory signals [5]. In particular, mice

use both volatile and non-volatile components in urine to com-

municate social information. Previous studies have identified

chemical differences in the volatile components of urine

between dominant and subordinate males. For instance, the

volatiles E,E-a-farnesene, E-b-farnesene and 2-sec-butyl-4,5-

dihydrothiazole (thiazole) (SBT), 3,4-dehydro-exo-brevicomin

(brevicomin) (DHB) and hexadecanol, and 1-hexadecanol

acetate are higher in dominant compared with subordinate

mice housed or repeatedly tested in pairs or triads [19–22].

Major urinary proteins (MUPs) constitute the majority of

the non-volatile component of urine. The production of

these lipocalin proteins is testosterone and growth hormone-

dependent, occurring in the liver with subsequent transport

via kidney into urine [5], tears, saliva and other secretions

[23]. MUPs are detected by vomeronasal sensory neurons

within the olfactory system [24], are elevated in males com-

pared with females and are found at higher levels in urine

following social interaction [25]. Furthermore, MUPs can also

show high affinity to and bind with small volatile molecules

such as E,E-a-farnesene, E-b-farnesene, SBT, 6-hydroxy-6-

methyl-3-heptanone (HMH) and DHB [26–29]. MUPs have

been shown to induce behavioural changes in individuals

who detect these proteins including promoting female mate

preference, social learning and lactational aggression [30–32].

Furthermore, total MUPs and specifically MUP3 and MUP20

have been shown to invoke inter-male aggression [24,33] and

to facilitate self-recognition of own urine marks in dominant

males [33]. MUP20 levels have been shown to be higher in

dominant compared to subordinate inbred mice housed indivi-

dually and tested daily in pairs [34] as well as in dominant

outbred males housed in groups [35]. In wild mice, total

MUP levels have also been shown to be higher in dominant

male mice exposed to each other for 10 days on either side of

a barrier [36] and higher in breeding males with territories

compared with breeding males without territories or singly

housed males [37]. It is unclear whether MUP levels prior to

social interaction predict future dominance as pretest MUP

levels have been reported to be both associated and not associ-

ated with future dominance status in pairs and small social

groups [34,35].

In this study, we address critical questions regarding the

association between MUP levels and social status and the pre-

dictive role of this biological marker in future dominance

status: (i) are urinary levels of total MUPs and MUP20 associ-

ated with relative social dominance within dyads and a social

hierarchy? (ii) Can future social rank in a social hierarchy be

predicted by total urinary MUPs and MUP20 levels prior to

social group formation and (iii) is social rank associated
with individual markers of Mup mRNA expression and

production in the liver?
2. Material and methods
(a) Animals and housing
A total of 72 male outbred CD1 mice aged seven weeks were

purchased from Charles River Laboratories (Wilmington, MA,

USA) and housed in pairs for 11–15 days in standard sized

cages (27 � 17 � 12 cm) with pine shaving bedding. A total of

35 pairs were used as one pair was excluded. We assigned

unique IDs to individuals and marked them accordingly by

dying their fur with blue, non-toxic markers (Stoelting Co.,

Wood Dale, IL, USA). Following this, subjects were housed in

social groups of 11–12 males with unfamiliar individuals for

20–21 days (N ¼ 6 groups) (see electronic supplementary

material for more information). We weighed and placed mice

in large custom-built mouse vivaria (electronic supplementary

material, figure S1; 150 � 80 cm and 220 cm high; Mid-Atlantic,

Hagerstown, MD, USA). Mice were introduced to group housing

sequentially, and the order was randomly assigned. All mice

were introduced to each vivarium within 10 min. The vivarium

was constructed as previously described [10,11]. Briefly, each

vivarium was comprised an upper level with multiple shelves

(36000 cm2¼ 3 floor � 150 cm� 80 cm) and a lower level

with five nest-boxes (2295 cm2¼ 5 cages� 27 cm � 17 cm)

connected by tubes, consisting of total surface of approximately

62 295 cm2, providing approximately 5191.25 cm2 per mouse. All

surfaces of the vivarium were covered with pine shaving bedding.

Standard chow and water were provided ad libitum at the top of

the vivarium to encourage movement between of all the shelves.

Mice could access each level of the vivarium via a system of ramps

and tunnels. We monitored if any individual exhibited a sign of

pain or injury every day during the pair and group-housing periods.

As we expected heightened aggression on the first day of group

housing because they engage in aggressive interactions to establish

social hierarchy, we monitored animals more frequently on group-

housing day (GD) 1/2. There was no animal that had a severe

wound and we did not need to remove any individual from the

experiment because of injury. All experiments were conducted

with approval from the Columbia University Institutional Animal

Care and Use Committee (IACUC protocol: AC-AAAP5405).

(b) Urine collection and analysis
We collected urine from all individuals during pair housing

(three times, PD ¼ pair-housing day; PD2/7/15) and group

housing (GD 1/7/9/11/13/15/17/19). Following collection,

urine samples were subjected to a Bradford assay for total

MUP concentration, creatinine assay for creatinine concentration

and SDS-PAGE for relative MUP20 concentration (see the elec-

tronic supplementary material). Previous studies [30,34,35]

have demonstrated that MUP20 bands could be separated from

other proteins in urine and we were able to replicate and separate

MUP20 bands. Total urinary MUP and MUP20 levels presented

are corrected with urine dilution (creatinine levels) and represent

the total amount of protein each individual produced on each

day of urine collection. Urinary protein concentration values

refer to uncorrected data and represent the amount of protein

per unit volume of urine that each male produces. Following

observations on GD19 animals were sacrificed, and livers were

extracted and stored at 2808C until gene expression analysis

via quantitative real-time PCR.

(c) Statistical analysis
All statistical analyses were undertaken in R v. 3.3.1 [38]. Using

win–loss data from each group, we determined the hierarchical
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organization of each group by calculating Landau’s linearity index

(h0), the directional consistency index (DCI) and triangle transitiv-

ity (ttri), and the ranks of individual animals using the I & SI and

Glicko rating methods. The relationship between pair-housing

social status and final rank and wins and losses during group

housing was tested using randomization tests and generalized

linear mixed models (GLMMs). Protein, creatinine and gene

expression levels were analysed using GLMMs and linear mixed

models (LMMs) with the lme4, lmerTest, glmmADMB and

MASS R packages [39–42]. Main and interaction effects of day

and social status (pair-housing status, final I & SI rank or group-

housing status as appropriate) were tested for all models, except

for models with only main effects of social status. Random vari-

ables included were the pair-ID or group-ID of each subject.

Only significant interaction effects are reported. All models were

tested for whether random slopes improved fit and included

them where appropriate. GLMMs used were for data with

gamma distribution and GLMMPQL was used for data with log-

normal distribution after considering the distribution of both

data and residuals from fitted models. We used Akaike (AIC)

and Schwarz (BIC) information criteria to test the fit of every

model as well as to test the distribution of dependent variables

and residuals. All significance values from multiple hypothesis

tests were corrected to control for false discovery rate (FDR)

using a Benjamini–Hochberg method [43].
3. Results
(a) Behaviour in dyads and social groups
All animals in pairs (N ¼ 35 dyads) could be identified as

dominant or subordinate based on relative wins and losses
when observed between PD13 and PD15. In social groups,

the total number of agonistic interactions recorded ranged

from 475 to 1158 across the six cohorts with a mean of 849

contests recorded per social group. The frequency of wins

and losses between each animal is shown in sociomatrices in

figure 1. All social groups resulted in a significantly linear

social dominance hierarchy (h0 ¼ 0.78+0.06, mean+ s.e.;

all p , 0.001) with significantly high directional consistency

of aggressive behaviour (DCI ¼ 0.90+0.02, all p , 0.001)

and triangle transitivity (ttri ¼ 0.84+0.09, range 0.69–0.93,

all p , 0.001). Body weight prior to vivarium housing, at the

end of vivarium housing and the difference in body weight

between these two time points was not significantly related

to dominance rank in any social group (Spearman’s rank corre-

lation tests, controlled for FDR, all p . 0.76). All cohorts had

significant h0 values and ttri by the end of GD5 (electronic sup-

plementary material, figure S2). Animals that were dominant

in pairs were not significantly more likely to have higher

final social dominance ranks within each hierarchy than

those animals characterized as subordinate in pairs (electro-

nic supplementary material, figure S3; randomization tests,

all p . 0.11). Congruently, dominance status in pair housing

was not significantly associated with total wins or total losses

during group housing (wins: p ¼ 0.130; losses: p ¼ 0.760).

However, animals that were dominant during pair housing

engaged in significantly more aggressive interactions (elec-

tronic supplementary material, figure S4; sum of wins and

losses: b ¼ 20.65+0.19, n ¼ 70, p , 0.001; wins only:

b ¼ 20.96+0.41, n ¼ 70, p ¼ 0.020; losses only: b ¼ 20.28+
0.15, n ¼ 70, p ¼ 0.069) during the first 2 days of group housing

(GD1/2) than males which were subordinate in pairs.
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(b) Total major urinary protein levels and social status
Dominant males had significantly higher total MUP levels

during pair-housing than subordinate males (b ¼ 22.60+
0.95, n ¼ 201, p ¼ 0.010; electronic supplementary material,

figure S5). Dominant males had significantly higher levels

of MUPs at PD2 (Wilcoxon’s signed-rank test, V ¼ 406, p ¼
0.003) and PD15 (V ¼ 403, p ¼ 0.004) compared with sub-

ordinate pair-housed males. No significant difference was

detected at PD7 ( p ¼ 0.237). The total MUP levels of all animals

regardless of pair-housing social status dropped significantly

from PD15 to GD1 when placed into the novel vivarium with

novel conspecifics (electronic supplementary material, figure

S6; b ¼ 23.54+0.47, n ¼ 137, p , 0.001). Protein concentration

was not associated with pair-housing social status ( p ¼ 0.533).

MUP concentrations on PD15 and GD1 were not significantly

different from each ( p ¼ 0.840). Each individual’s total MUP

levels during pair-housing at PD7 (b ¼ 20.24+0.07, n ¼ 67,

p ¼ 0.001) and PD15 (b ¼ 20.19+0.06, n ¼ 67, p ¼ 0.004)

were significantly associated with a higher final dominance

rank in social hierarchies (electronic supplementary material,

figure S7). Total MUP levels at PD2 were marginally associated

with final rank (b ¼ 20.15+0.08, n ¼ 67, p ¼ 0.070). Protein

concentration at each PD was not related to final social rank

in a hierarchy (all p . 0.27).

In social hierarchies, we found a significant effect of rank

with more dominant males having higher total MUP levels

than subordinate males (figures 2 and 3a; b ¼ 20.048+
0.012, n ¼ 925, p , 0.001). There was also a significant effect

of day (figure 3a; b ¼ 0.032+0.01, n ¼ 925, p ¼ 0.005) with

MUP levels increasing over days. Alpha males (rank 1) had

significantly more MUPs than animals of all other ranks

(figure 2; all p , 0.001). Subdominant males of ranks 2, 3

and 4 all had similar levels of MUPs to each other being gen-

erally higher overall than animals ranked 5–12 who also had

similar total MUP levels to each other. We also calculated the

day on which each alpha male had consistently the highest

MUP levels in their hierarchy. This occurred on GD1 in

two cohorts (B&C), GD3 in cohort F, GD4 in cohorts A&D

and GD8 in cohort E (electronic supplementary material,

table S1). The time taken for alpha males to have the consist-

ently highest MUPs was not significantly correlated with the

time taken for alpha males to behaviourally emerge. There

was no effect of day or rank on urinary protein concentration

(all p . 0.05).
(c) Urinary creatinine levels and social status
Dominant and subordinate males housed in pairs did not differ

in creatinine levels (electronic supplementary material, figure

S8). All individuals increased their creatinine levels from

PD15 to GD1/2, indicating that they decreased their urination

as they were put in a novel group-housing environment.

In social hierarchies, we found that creatinine levels

significantly decreased over days (figure 3b, b ¼ 21.10+
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0.22 mg dl21, n ¼ 925, p , 0.001). We also found that more

dominant animals had significantly lower creatinine levels

than subordinate males (b ¼ 1.17+0.54 mg dl21, p ¼ 0.030).

Based on our behavioural observations, we further tested

the creatinine level differences among three social status

groups: alpha (rank 1, the highest positive David’s score),

subdominant (other males with positive David’s score) and

subordinate groups (males with negative David’s score) (see

electronic supplementary material, table S2). Alpha males

had significantly lower creatinine levels compared with

both subdominants (b ¼ 16.91+ 7.10 mg dl21, n ¼ 925, p ¼
0.026) and subordinates (b ¼ 19.03+ 6.83 mg dl21, n ¼ 925,

p ¼ 0.016). Creatinine levels of subdominants did not differ

from those of subordinates ( p ¼ 0.583). Initial or final body

weight was not significantly related to creatinine levels.

There was no significant effect of the degree of received

aggression on creatinine levels (electronic supplementary

material, figure S9; b ¼ 20.14+ 0.15, p ¼ 0.371).
(d) Urinary MUP20 levels and social status
In pair housing, dominant males had significantly higher

MUP20 levels than subordinates (electronic supplementary

material, figure S11). All individuals significantly increa-

sed MUP20 production from PD2 to PD15 (b ¼ 0.91+0.08,

n ¼ 127, p , 0.001). MUP20 concentration was not different

between dominant and subordinate males ( p ¼ 0.107),

although MUP20 concentration increased from PD2 to PD15

for all animals (electronic supplementary material, table S4;

b ¼ 0.50+0.06, n ¼ 128, p , 0.001). We also found a signifi-

cant interaction effect between day and social status for both
MUP20 production (b ¼ 20.50+0.11, n ¼ 127, p , 0.001)

and concentration (b ¼ 20.25+0.09, p ¼ 0.009) during pair

housing, indicating that dominant individuals increased their

MUP20 production levels and concentration more than subor-

dinates from PD2 to PD15. When animals transitioned from

pair housing (PD15) to group housing (GD1/2), there was no

change in total MUP20 levels ( p ¼ 0.303), but MUP20 concen-

tration in urine did significantly increase (b ¼ 0.15+0.05, n ¼
135, p ¼ 0.002). Final social rank in social hierarchies was not

predicted by either of MUP20 production or MUP20 concen-

tration measured from urine collected during pair-housing

period (PD2 and PD15) (all p . 0.21).

In social hierarchies, there was a significant effect of final

social rank on MUP20 production, indicating that more domi-

nant males express MUP20 levels during group housing

(b ¼ 20.04+0.02, n ¼ 198, p ¼ 0.039). Using social status

group and day as predictors, MUP20 production levels

of alpha males were significantly higher than those of sub-

dominants (figure 4; b ¼ 20.86+0.16, n ¼ 198, p , 0.001)

and subordinates (b ¼ 20.96+0.14, n ¼ 198, p , 0.001), but

subdominants were not significantly different from subordi-

nates in MUP20 production levels ( p ¼ 0.56). All individuals

in social hierarchies increased their MUP20 production through-

out group-housing period. Animals on GD15/17 had

significantly higher MUP20 levels than those on GD7/9 (b ¼
0.74+0.08, n ¼ 198, p , 0.001) and GD1/2 (b ¼ 1.59+0.16,

n ¼ 198, p , 0.001), and significantly higher levels on GD7/9

compared with those on GD1/2 (b ¼ 0.85+0.17, n ¼ 198, p ,

0.001). Alpha males increased MUP20 production from GD1/

2 to GD15 significantly more compared with both subdomi-

nants (interaction effects of day and social status: b ¼ 20.35+
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0.16, n ¼ 198, p ¼ 0.047) and subordinates (b ¼ 20.50+0.13,

n ¼ 198, p ¼ 0.0006). Congruently, there was no difference in

MUP20 production on GD1/2 between the alpha group and

the other groups (all p . 0.72). MUP20 concentration also

increased during the first week of group housing (elec-

tronic supplementary material, table S4; GD1/2 to GD7/9:

b ¼ 0.35+0.07, n ¼ 202, p , 0.001; GD1/2 to GD15/17: b ¼
0.39+0.07, n ¼ 202, p , 0.001) but not thereafter (GD7/9 to

GD15/17: p ¼ 0.491). MUP20 concentration was not associated

with final social rank ( p ¼ 0.893).

(e) Social status and hepatic mRNA levels of Ar, Mup3
and Mup20

Alpha males had a significantly higher level of hepatic

Mup3 expression than subdominant (b ¼ 20.32+0.14, n ¼ 43,

p ¼ 0.023) and subordinate (b ¼ 20.44+0.14, p ¼ 0.002)

males (electronic supplementary material, figure S12). Alpha

males differed in Mup20 expression marginally compared with

subdominant (b ¼ 20.57+0.26, n ¼ 44, p ¼ 0.053) and signifi-

cantly compared with subordinate males (b ¼ 20.65+0.25,

p ¼ 0.044). There were no differences between subdo-

minants and subordinates in the relative expression of either

gene (all p . 0.21). There were no significant differences between

animals of different social statuses in Ar mRNA expression (all

p . 0.82).
4. Discussion
In this study, we show that in pair-housed animals, dominant

males produce higher levels of MUPs and MUP20 in urine than

subordinate males and that in social hierarchies, alpha males

produce far higher levels of total MUPs and MUP20 than all

other animals, with subdominant males also excreting slightly

more MUPs than subordinate mice. Furthermore, alpha males

have significantly lower creatinine levels in urine, indicating

that they excrete a higher volume of urine per day than other

males. We also find that alpha males express a higher level

of Mup3 and Mup20 mRNA in the liver, indicating a higher

overall production of these proteins.

Our finding that dominant males have higher levels of total

MUPs and MUP20 than subordinate males in pair-housed

dyads is consistent with previous studies conducted with

inbred and wild-derived M. musculus [34–36]. Guo et al. [34]
found higher levels of MUPs and MUP20 in the urine of domi-

nant-inbred C57BL/6 males housed in isolation and given

10 min of social interaction with the same individual for 21

consecutive days. This difference in MUPs was observed on

day 21 but not on day 1. Janotova & Stopka [36] found

higher levels of MUPs in dominant wild-derived mice

compared with subordinate males housed together for 1 day

following 10 days of social isolation, suggesting that differ-

ences in MUP levels can emerge rapidly following resolution

of social status. Similarly, we found that differences in total

MUP levels between dominant and subordinate mice were

apparent as early as PD2—the earliest time-point we assessed.

The social context of a social hierarchy is dramatically

different from that of dyads. In a dyad, animals that are

dominant will rarely exhibit subordinate behaviours and ani-

mals that are subordinate will rarely exhibit aggressive

behaviour. Conversely, in a social hierarchy with multiple

relationships, animals have to flexibly switch between aggres-

sive and subordinate behaviours with only the alpha male

rarely showing any subordinate behaviours. Over 21 days

of living in a social group, we found that total MUP and

MUP20 production were dramatically higher in alpha males

compared with all other animals. Subdominant animals

(ranks 2–4) who exhibit more aggressive behaviour than sub-

ordinate behaviour on average but still receive significant

aggression from animals ranked higher than themselves

had much lower MUP levels than alpha males but signifi-

cantly higher levels than subordinate animals (ranks 5–12).

These findings extend those of Nelson et al. [35] who found

higher levels of MUPs and MUP20 in the urine of dominant

male versus a subordinate individual in groups of four wild-

derived mice after 3 days of group housing. Interestingly,

the levels of MUPs we observed for alpha males are higher

than those previously reported for animals housed in pairs

or small groups [34,35], but equivalent to those found in

breeding males with territories [37].

Consistent with these data, we found that alpha males

had higher levels of Mup20 mRNA levels and Mup3 mRNA

levels in the liver than the subordinate group. However,

there were only marginally significant differences in Mup20

expression between the alpha and the subdominant groups.

It is possible that these marginal differences in mRNA

levels are manifested in significant differences in urinary

protein levels as the proteins are accumulated in the bladder

over time. This further strengthens our finding, suggesting

that the elevated total MUP and MUP20 levels are not a by-

product of lowered creatinine levels measured in urine.

Mup gene expression in the liver is upregulated by both

growth hormones and testosterone with the final protein

products being transported to urine for excretion [44–47].

Indeed, castrated males have significantly lower Mup
expression in the liver and lower levels of MUPs in urine

[34,48]. Interestingly, we did not find any differences between

animals of different social rank and Ar mRNA expression

similar to Guo et al. [34]. This does not necessarily preclude

the possibility that differences in endogenous testosterone

may facilitate the upregulation of Mup genes in alpha

males, but we believe that this is unlikely given the inconsist-

ent relationships between endogenous testosterone and social

rank observed in mice and rats [13,14,49]. It is possible that

the release of growth hormone-releasing hormone (GHRH)

is increased in the anterior pituitary while an individual

establishes its alpha status in a group. GHRH is inhibited
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by another neuropeptide somatostatin, and the decrease in

somatostatin has been shown to correspond with the social

ascent of an individual in a group [50] and increased aggres-

sive behaviour [51]. However, it is not clear yet which brain

regions are responsible to activate the somatostatin neurons

in response to the perceived social information.

An important outstanding question is whether observed

differences in MUP levels are the result of differences in

social status or are pre-existing to social relationship resolution.

We argue that individual differences in MUP levels are likely a

proxy for individual differences in fitness that modulate an ani-

mal’s ability to rise up a social hierarchy, but that this not the

ultimate determinant of social rank. Consistent with this

hypothesis, levels of total MUPs at the end of pair housing

were associated with individuals reaching higher social ranks

in the hierarchy overall, but individuals who became alpha

males were not necessarily those who had the absolute highest

pair-housing MUP levels. As producing and excreting protein

in urine costs vast metabolic resources [18,25,37,52–55], we

argue that those animals in pair housing that are able to pro-

duce higher amounts of MUPs are likely those with a higher

metabolic capacity and consequently those better able to

ascend a hierarchy. It is well established that those animals

that reach the top position in a hierarchy are not necessarily

those that have the absolute highest individual fitness, but

are those individuals that are beneficiaries of the unique

social dynamics such as winner and loser effects within each

social hierarchy [56,57]. Indeed, we observed that social

status in pair housing affected initial behaviour in the vivarium

(dominant pair-housed animals engaged in more aggressive

behaviour in the first 2 days), but was not related to final

social rank—consistent with previous work by Williamson

et al. [9] and Buwalda et al. [49] showing that social behaviour

prior to group housing predicts only initial behaviour and

not final rank in the social hierarchy.

Once alpha males have established their position in social

hierarchies, they show a number of behavioural and physio-

logical transitions. In particular, alpha males increase their

aggression towards other mice and engage in elevated patrol-

ling behaviour [10]. Alpha males also increase their scent

marking [5,6]. Our finding of lower levels of creatinine in the

urine of alpha males compared with others males is possibly

a by-product of alpha males urinating more frequently to

mark their territory. Importantly, this dramatic reduction in

urinary creatinine is not related to differences in body weight

between animals. Notably, we only found the effect of social

status on urinary creatinine levels in groups but not in pairs,

which may be related to the increased space and number of ani-

mals and potentially increased number of urine marks that

need to be countermarked over by alpha males living in

large groups. Previously, it was reported that more subordi-

nate wild mice have a higher concentration of creatinine than

dominant mice when pair-housed for 24 h consistent with

these animals producing a lower daily urine volume [58].

Conversely, Nelson et al. [35] did not see a difference in urinary

creatinine levels between dominant and non-dominant males.

Our results suggest that mice living in large complex social

environments are able to change daily production of urine

flexibly in response to a given social environment.

We found two major notable dynamic changes in MUP

levels across the experiment. First, immediately after being

placed into group housing following pair housing, all ani-

mals showed a dramatic decline in total MUP production
on the first day of being housed with previously unknown

individuals. This is related to an increase in creatinine

levels detected in the urine of all animals, indicating a

decrease in the total amount of urine produced. It is likely

that being placed into a new physical and social environment

and establishing a new social hierarchy are stressful to every

individual in the group. It has previously been shown that

social stress leads to increased expression of corticotrophin-

releasing factor (CRF) in Barrington’s nucleus (BN), leading

to inhibition of urination in socially defeated rats and mice

[8,59]. However, it is yet to be concluded whether the

higher CRF level in BN corresponds to changes in the stress

response mediated by the hypothalamic–pituitary–adrenal

axis. Hou et al. [8] showed that GABAergic projection from

the medial preoptic nucleus to BN is involved in urinary inhi-

bition. Furthermore, many brain regions of the social

decision-making network [60] such as the periaqueductal

grey and bed nucleus of the stria terminalis also project

directly to BN. Secondly, we observed an increase in total

MUP production and a decrease in creatinine for all animals

with increasing time being spent together in stable pairs or

social groups. This suggests that although there are differ-

ences in the degree to which animals inhibit their urination

and MUP production due to social status, individuals

increase their urination volume as the social hierarchy is

stabilized likely because overall levels of social stress are

reduced in stable social groups [61].

A number of communicative functions have been

ascribed to MUPs deposited in urine [54]. There is strong evi-

dence that MUPs and MUP20, in particular, in male urine

attract females and that females assess the quality of male

scent marks in making mating decisions [30,62–64]. Subordi-

nate males avoid scent marks of more dominant males [65,66]

and indeed avoid urinating near to dominant male scent

marks [7,67]. This behavioural strategy appears to reduce

the likelihood of receiving aggression as castrated males

daubed with MUP3 or MUP20 onto their fur become the

targets of attacks from socially isolated intact males [33].

Conversely, other dominant males from neighbouring terri-

tories do not avoid scent marks, but will countermark over

the scent marks of other males including those of neighbour-

ing territories. A major role of MUPs is therefore to act as

boundary markers between alpha male territories [5]. The

much higher production of MUPs including MUP3 and

MUP20 and lower creatinine levels by alpha males in our

study is consistent with these dominant individuals scent

marking and countermarking throughout their environment,

while subordinate males are downregulating their MUP pro-

duction to avoid invoking further aggression from dominant

alpha males. Subdominant males may be investing moder-

ately in MUP production to be ready for any potential

takeover of the hierarchy should the alpha male lose status

[13]. Finally, it does not appear from this study that absolute

differences in the levels of MUPs are used by mice living in a

hierarchy to distinguish relative rank, though it is possible

that mice may use unique MUP profiles to individually

recognize familiar group members to facilitate socially

contextually appropriate behaviour [29,33,68–71].

In summary, it is clear from this study that socially domi-

nant male mice living in a social hierarchy produce and

excrete far higher levels of MUPs including MUP20 and pro-

duce a higher volume of urine than more socially

subordinate animals. Future studies will address the
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neurobiological mechanisms through which changes in social

status and social context can lead to such dynamic changes

in MUP production in the liver and MUP excretion in urine.
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