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Abstract

Substances of Unknown or Variable composition, Complex reaction products, and Biological 

materials (UVCBs), including many refined petroleum products, present a major challenge in 

regulatory submissions under the EU Registration, Evaluation, Authorisation and Restriction of 

Chemicals (REACH) and US High Production Volume regulatory regimes. The inherent 

complexity of these substances, as well as variability in composition obfuscates detailed chemical 

characterization of each individual substance and their grouping for human and environmental 

health evaluation through read-across. In this study, we applied ion mobility mass spectrometry in 

conjunction with cheminformatics-based data integration and visualization to derive substance-

specific signatures based on the distribution and abundance of various heteroatom classes. We 

used petroleum substances from four petroleum substance manufacturing streams and evaluated 

their chemical composition similarity based on high-dimensional substance-specific quantitative 

parameters including m/z distribution, drift time, carbon number range, and associated double 

bond equivalents and hydrogen-to-carbon ratios. Data integration and visualization revealed 

group-specific similarities for petroleum substances. Observed differences within a product group 

were indicative of batch- or manufacturer-dependent variation. We demonstrate how high-

resolution analytical chemistry approaches can be used effectively to support categorization of 

UVCBs based on their heteroatom composition and how such data can be used in regulatory 

decision-making.
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Introduction

Health and environmental assessments of the UVCB (Unknown or Variable composition, 

Complex reaction products or Biological materials) substances are some of the most 

challenging areas in regulatory toxicology.1 UVCBs are identified on global chemical 

inventories with unique identifiers (EC or CAS numbers) and names; however, these are not 

always adequately specific to permit unambiguous identification.2 Detailed chemical 

characterization of UVCBs is a challenge because of the complexity of their composition, as 

well as variability in composition between batches or manufacturers.3, 4 Petroleum 

substances are one example of UVCBs; they are both very chemically complex and have 

variable composition which may be due to manufacturing processes, intended uses, or 

sources of crude oil. The range of petroleum substance types is wide, they are most 

commonly used as transportation fuels, in energy/heat-raising applications, and in 

manufacturing of other chemicals and products.

Due to the very high production volumes, almost all petroleum substances were registered in 

the 2010 REACH deadline; they represent a quarter of the top 20 most frequently registered 

substances in the European Union.5 Most of the REACH registration submissions for 

petroleum substances incorporated some form of read-across argument to address existing 

data gaps.6 Read-across requires justification to establish “sufficient similarity” between 

data-poor and data-rich substances, which traditionally rests on the similarities in chemical 

structure, metabolites, or biological effects. Substance identification is a critical initial step 

in evaluating similarity. Because of chemical complexity and variability, identification of 

petroleum substances is based on their manufacturing process and performance 

characteristics.4 Specifically, ECHA guidance states that characteristics like “the name, 

carbon-chain length range, boiling point, viscosity, cut-off values and other physical 

properties are generally more helpful than compositional information.” At the same time, 

analytical data (UV/Vis, infra-red, nuclear magnetic resonance or mass spectrometry) is also 

considered useful for substance identification in REACH, especially if it allows for 

establishing a “chromatographic fingerprint” of a complex substance.4

Mass spectrometry-enabled analyses of complex petroleum substances7–11 are especially 

attractive as they aim to provide comprehensive characterization of their organic 

composition and yield data that may be used to address not only the complexity, but also 

inherent natural and process-related variability in end-products. Recent developments in 

high-resolution mass spectrometry8 and novel separation techniques7, 12 enable ever greater 

ability to confront the identification of petroleum substances. For example, comprehensive 

two-dimensional chromatography (GC×GC) which exploits orthogonal separation13 has 

been coupled with time-of-flight mass spectrometry (TOF MS) to provide an effective basis 

for compound identification.14 GC×GC-based mass spectrometry methods yield substance 

composition information consisting of a wide range of carbon number and many distinct 

chemical structural classes (e.g., linear and branched alkanes, cycloalkanes, parent and alkyl 

mono-, di-, and poly-aromatics). High-resolution mass spectrometry enables identification of 

non-carbon atoms (referred to as heteroatom classes, or molecules that also contain N, O, 

and S), double bond equivalents (DBE, the number of rings plus double bonds involving 

carbon), and carbon number.10 Fourier transform ion cyclotron resonance mass spectrometry 
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(FT-ICR MS), TOF MS and Orbitrap MS have been also coupled to different high-resolution 

separation techniques for more precise structural and compositional characterization of the 

compound classes.7, 8, 15, 16

While much progress has been made in developing novel analytical methods for the analysis 

of complex petroleum-derived UVCBs, less attention is dedicated to the use of these data in 

regulatory decision-making. Cheminformatics-based techniques that aim to define “blocks” 

of compounds in each petroleum substance17–19 have taken advantage of the advances in 

analytical chemistry-based techniques. For example, chromatographically-defined aromatic 

ring class (ARC) profiles and other physico-chemical properties of petroleum substances 

have been used for modeling health and environmental hazards and risks19–21, but they have 

not been widely used in read-across. Regulatory opinions on read-across submissions of 

petroleum substances frequently cite considerable uncertainties on these approaches. These 

uncertainties may be alleviated, at least in part, with novel data integration techniques 

analyzing multiple sources of relevant high content data, as presented previously in the 

context of petroleum UVCBs22, including data from advanced analytical methods. The 

current paper focuses on the latter, in which we aimed to use ion mobility TOF MS to 

characterize heteroatom profiles of a number of petroleum substances from several distinct 

product categories and evaluate the use of these data to support grouping and read-across of 

these substances.

Materials and Methods

The overall study design is summarized in Figure 1.

Materials

LC/MS grade methanol Optima™ (CAS 67-56-1), toluene Optima™ (CAS 108-88-3) and 

formic acid (CAS 64-18-6) were purchased from ThermoFisher (Grand Island, NY). 

Naphthalene (CAS 91-20-3, 99% purity), phenanthrene (CAS 85-01-8, 98% purity), 1,2-

benzanthracene (CAS 56-55-3, 99% purity), benzo[ghi]perylene (CAS 191-24-2, 98% 

purity), benzo[a]pyrene (CAS 50-32-8, 98% purity), and coronene (CAS 191-07-1, 98% 

purity) were purchased from Sigma Aldrich (St. Louis, MO). Samples of petroleum 

substances from four different manufacturing streams, straight run gas oils (SRGO, n=5), 

other gas oils (OGO, n=2), vacuum & hydrotreated gas oils (VHGO, n=8), and heavy fuel 

oils (HFO, n=3) were graciously provided by Concawe (Brussels, Belgium). SRGO are 

produced by atmospheric distillation of crude oil and typically contains hydrocarbons in the 

range from C9 to C25 and has a boiling point range from ~150 to 400 ˚C. VHGO are 

produced by distillation under reduced pressure (light vacuum) and subsequently treated 

with hydrogen in the presence of a catalyst to remove hetero compounds and reduce 

aromatic compounds to cycloalkanes. VHGO typically comprise of hydrocarbons in the 

range from C13 to C30 and has a boiling point range of ~230 to 450˚C. OGO are produced 

from crude oil distillates by a series of subsequent treatments to remove hetero and aromatic 

compounds and typically have hydrocarbon ranges from C10 to C27 and a boiling point 

range from ~150 to 400˚C. HFO are residual refinery distillates from thermal and cracking 
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units with typical hydrocarbon ranges from C20 to C50 and boiling point ranges from ~350 

to 650˚C.

Ion mobility-mass spectrometry

In accordance with published standard procedures,8, 23 all petroleum substances were diluted 

prior to IM-MS analysis to a final concentration of 1 mg/ml using 1:1 (v/v) methanol:toluene 

containing 0.5% (v/v) formic acid to increase protonation efficiency and [M+H]+ ion 

generation from basic compounds for IM-MS analysis in positive ion mode. Toluene as a 

solvent is typical for the analysis of petroleum Cho Y, Ahmed A, Islam A, Kim S. 

Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation 

methods for petroleomics. Mass Spectrom Rev. 2015. 34:248–63; Hsu CS, Hendrickson CL, 

Rodgers RP, McKenna AM, Marshall AG. Petroleomics: advanced molecular probe for 

petroleum heavy ends. J Mass Spectrom. 2011. 46:337–43 No partitioning of the solvent or 

precipitation of sample upon dilution with the MeOH: toluene mixture was observed. 

Diluted samples were directly infused into a Waters Synapt G2-S Q-TOF MS (Waters 

Corporation, Milford, MA).

The instrument assembly contained an electrospray ionization source, equipped with a fused 

capillary electrospray tip prepared in house; voltage of the tip was set to 2.5kV. The 

sampling cone was set at 40V, the extraction cone was set at 4V, the source temperature was 

maintained at 120°C, the cone gas flow was kept at 40 l/h. The Nano Flow Gas pressure was 

set at 2 Bar, and a purge gas at a flow of 75 l/h was used for all samples. Following initial 

ionization, molecules were separated according to their volume/charge ratio by IM and the 

drift times were recorded. The IM wave velocity was set to 800 m/s and the wave height set 

to 40V. Mass analysis was achieved using a Time-of-Flight high-resolution mass analyzer. 

All samples were acquired for 2 minutes and each measurement was repeated two times. 

Data were acquired using MassLynx software (Waters, Milford, MA).

Reproducibility Assessment

The reproducibility of IM-MS data was assessed using correlation analysis of identifiable 

features in duplicate sample runs. IM-MS data were acquired as specified above and spectra 

were integrated for feature identification using DriftScope 2.0 software (Waters). Peak 

detection parameters were as follows: minimum drift time peak width: 1.0 bins; drift time 

range: auto; retention time range: auto; MS resolution: 5000; minimum intensity threshold: 

500. Unique features in duplicate runs were then matched based on matching high-resolution 

m/z values and associated drift times using an assumed precision up to two-decimals. 

Acquired abundances for duplicate determinations of unique features were analyzed using 

Pearson and Spearman correlation analysis in Prism 5 (Graphpad, San Diego, CA).

Data processing

Waters Synapt IM-MS outputs (.raw format) were imported into PetroOrg software (http://

software.petroorg.com; Omics, Tallahassee, FL) for quantitative feature identification. Peaks 

were identified across an m/z range between 0 and 2500 and were defined by a minimum of 

11 counts/peak using a variable abundance threshold in positive ion mode. Raw data were 

then recalibrated according to the developer’s recommendations using the most abundant 
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heteroatom class, the N1 class (close shell), as a reference. Assignment settings for 

individual feature identification included fixed carbon (0–100) and hydrogen (4–200) atom 

ranges, as well as heteroatom number limitations for nitrogen (0–2), oxygen (0–2), and 

sulfur (0–2) containing molecules. The maximum error and noise threshold were kept at 

their respective default values, 5.0 ppm and 0. Calibration-specific settings included a 

maximum error of 50 ppm and an abundance threshold of 0.05. ESI was selected as the 

ionization type.

Quantitative descriptors derived for each petroleum substance were exported as Microsoft 

Excel files and included a list of identifiable features based on their unique combination of 

recalibrated m/z ratio, drift time, and relative abundance. Derived descriptors for each 

molecule included the heteroatom class assignment, theoretical high-resolution mass, 

elemental composition, carbon chain length, double bond equivalents (DBE), and hydrogen/

carbon (H/C) and nitrogen/carbon (N/C) ratios.

Aromatic Ring Class (ARC) analysis

Weight percentages of the polycyclic aromatic compounds in all petroleum substances were 

determined as detailed previously.24, 25 Briefly, 4 g of each substance was dissolved in 10 

mL of cyclohexane and subsequently extracted with 10 mL DMSO twice. Extracts were 

combined and diluted with two volumes of 4% (w/v) sodium chloride prior to a two-step 

extraction with 20 and 10 mL of cyclohexane. The organic fractions were combined and 

washed twice with 5 ml water. Following filtration using anhydrous sodium sulfate the 

cyclohexane was evaporated to near dryness at 40°C. Remaining solvent was then 

evaporated for 30 min at 80°C. The amount of each extract was then determined using the 

weight difference of the empty flask and following solvent evaporation. The extract was 

subsequently dissolved in cyclohexane yielding a final concentration of 50 mg/ml and stored 

at 4°C. ARC content analysis was then performed by gas chromatography-coupled mass 

selective detection (GC/MSD). Sample separation was achieved on a (30m; 0.25 mm; 0.25 

mm) Zebron-5HT capillary column (Phenomenex, Torrance, CA) using a starting 

temperature of 70°C (30 sec), followed by a temperature gradient of 5°C/min until the final 

temperature of 300°C was reached and held for 35 minutes. Likewise, detector and injection 

port temperatures were kept at 300°C. Helium was used as the carrier gas at a rate of 30 cm/

sec. Quantitative integration of the GC/MSD chromatograms was achieved using standards 

of naphthalene, phenanthrene, 1,2-benzanthracene, benzo[a]pyrene, benzo[ghi]perylene, and 

coronene. The resulting ARC profiles consisted of weight percentages by ring number.

In silico data processing for chemical data-integrative grouping of petroleum substances

In order to group petroleum substances according to global similarities in their chemical 

composition, we utilized a variety of computational approaches for data processing and 

visualization. For qualitative comparison of the chemical complexity of individual 

substances, we generated intensity plots showing either carbon chain length vs DBE or H/C 

ratio (van Krevelen plots) for the most abundant heteroatom class (N1), directly in PetroOrg.

For quantitative data-integrative groupings, we initially extracted data matrices containing 

information on the sample-specific heteroatom class distribution, based on absolute counts 
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of individual features or their relative abundance. Sample-associated ARC content data were 

processed in the same manner. Using these data sets, we conducted an unbiased cluster 

analysis using the gplots software package in R studio (version 3.1.1). Cluster analysis 

provided a dendrogram summarizing the compositional correlation between petroleum 

substances, as well as heatmap visualization of the absolute or relative abundance of 

heteroatom classes and ARC content contained in specific samples. Compositional 

similarities among petroleum substances of the various manufacturing streams was also 

evaluated by principal components analysis using the scatterplot3D and plotrix software 

packages in R studio.

Results

Global compositional analysis of petroleum substances using IM-MS

IM-MS heatmaps, i.e. plots based on the chemical constituent’s m/z (mass divided by charge 

number, x-axis), drift time (time for each ion to traverse within a homogeneous electric field 

in the ion mobility spectrometer, y-axis), and abundance (color) provide a visual fingerprint 

of the sample-specific feature distribution26 that can serve as a qualitative indicator of the 

overall chemical complexity of petroleum substances (Figure 2). IM-MS heatmaps were 

obtained for petroleum substances from four manufacturing streams, other gas oils (OGO), 

straight run gas oils (SRGO), vacuum & hydrotreated gas oils (VHGO), and heavy fuel oils 

(HFO). These indicate strong qualitative and quantitative compositional similarities within a 

substance class, and differences between classes. OGOs represent the least complex, in 

terms of heteroatom content, example of the four manufacturing streams examined herein. 

This is evident from the overall lower feature abundance, as well as the absence of feature 

regions in the IM-MS heatmaps as compared to other petroleum substances. SRGOs and 

VHGOs featured a high degree of overall compositional resemblance, covering both similar 

m/z and drift time ranges and feature abundance. HFOs were the most complex substances 

tested in this study, exhibiting significantly higher feature abundance than any other 

petroleum substance class, as well as significantly broader feature distribution. This 

complexity was qualitatively and quantitatively well-preserved across all three tested HFO 

substances.

To generate chemical signatures and conduct global compositional fingerprinting of 

petroleum substances, IM-MS data were processed for feature identification using PetroOrg 

software (Figure 3A). Quantitative outputs of these data included unique feature identifiers 

(e.g., m/z, drift time, predicted molecular weight, etc.) in addition to variable characteristics 

including feature abundance, carbon chain length, H/C ratio, and DBEs. A cumulative 

summary of the distribution breakdown, i.e. absolute and relative abundances of all sample-

specific heteroatom classes, was also obtained. Within assigned ranges for carbon (0–100), 

hydrogen (4–200), nitrogen (0–2), oxygen (0–2), and sulfur (0–2) atoms, the number of 

identifiable peaks varied widely between the three gas oil classes, with OGOs offering the 

lowest number of identifiable peaks (213–257), SRGO (269–1774) and VHGO (244–1724) 

covering similar ranges, and HFOs (4163–7580) exhibiting the highest complexity (Figure 

3B). Identifiable features across all petroleum extracts constituted a total of 82 unique 

heteroatom classes (Supplemental Table 1). As expected, there were identifiable trend lines 
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in IM-MS data of the substances analyzed herein (e.g. Paglia and Astarita, Nature Protocols 

12, 797–813, 2017). However, based on the spatial distribution of heteroatom classes across 

the IM-MS spectra, m/z and drift time of the identifiable features were closely correlated for 

the identifiable heteroatom classes and there does not appear to be unique separation of the 

trend lines. We found that, for the same substance shown in Figure 3A (see image below) 

and the region used for quantitation (black dots in Figure 3A),

The top 10 most abundant heteroatom classes across all samples, based either on absolute 

counts or relative abundance, i.e. following sample-specific normalization of peak counts, 

are shown in Figures 3C and 3D. There was good overall concordance between both 

approaches. The N1 heteroatom class was the predominant one constituting approximately 

34% of the bulk of identifiable features and being detectable in all petroleum substance 

extracts. Likewise, the N1S1 and N2S1 heteroatom classes were quantifiable in all tested 

samples, contributing 13% and 6% based on relative abundance of all identifiable features, 

respectively.

Comparison of top 10 heteroatom class distribution based on the absolute number of the 

features revealed strong quantitative similarities among individual samples within each 

petroleum substance manufacturing category (Supplemental Material, Figure S1). OGOs 

appeared as the least complex samples with less than 25 counts per group. A distinguishing 

feature for OGOs was the absence of features belonging to the N1
13C1 heteroatom class. 

SRGOs and VHGOs exhibited higher complexity as compared to OGOs, with the N1 and 

N1S1 representing the most abundant heteroatom classes, while comparably low levels of N2 

and N1O2 containing compounds were also common characteristics. HFOs exhibited on 

average more than ten-fold higher counts per heteroatom class compared to gas oils. The N1 

class was again predominant with between 800 and 1000 counts per sample. The O1, N1O2 

and N2O1 classes were the least abundant ones across all HFOs, but still provided a large 

number of counts (>100) per class.

While a count-based comparison was primarily reflective of quantitative similarities and 

differences among the samples, to elucidate qualitative characteristics of the substances we 

also compared the distribution of top 10 heteroatom classes based on their relative 

abundance (Supplemental Material, Figure S2). The relative abundance does not take overall 

quantitative differences into account, as it is a result of a normalization of the counts for the 

individual heteroatom features to the total identifiable ion content in each sample. However, 

the relative feature distribution is pronounced, allowing improved qualitative comparison 

between global chemical sample compositions. In fact, OGOs were quite distinct with 

respect to overabundance of the O1 heteroatom class, whereas samples of the other two gas 

oil categories contained comparably lower amounts of the O1 heteroatom class molecules. 

By contrast, N1 and N1S1 classes were most abundant in SRGOs and VHGOs with other 

groups being present at significantly lower amounts. HFOs, despite also featuring the N1 

class as their most abundant chemical contributor, displayed a higher abundance of the less 

frequent heteroatom classes, i.e. N2O1, N1S2, as compared to the gas oils.
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Reproducibility Assessment of the IM-MS data

Qualitative analysis of replicate IM-MS spectra for representative OGO (CON-07), SRGO 

(CON-02), VHGO (CON-12), and HFO (A083/13) samples indicates virtually 

indistinguishable drift time and m/z patterns, including feature abundance distributions as 

compared to original sample runs (Supplemental Material, Figure S3).

In order to provide a quantitative basis for estimating sample replicability, unique features 

were determined using standardized peak identification settings in DriftScope 2.0 software. 

Identification was based on matching high-resolution m/z values and associated drift times 

and revealed a wide range of compositional complexity of the substances among in four 

manufacturing streams tested. While m/z values and drift times are invariable identifiers of 

the individual constituents in complex substance matrices, their relative abundance is a 

variable characteristic that provides a meaningful descriptor for quantitative replicability 

analysis. Correlation analysis based on replicate abundances for unique features revealed 

strong linear correlation for all four petroleum samples: Pearson’s r correlation coefficients 

were 0.99 for duplicates of CON-02, CON-05, and CON-12 substances and 0.82 for a more 

complex A083/13 substance. Similar results were found using Spearman’s ρ values (0.96 for 

CON-02, CON-05, CON-12 and 0.72 for A083/13). All correlations were statistically 

significant (p<0.0001).

Semi-quantitative compositional similarity assessment

To evaluate the feasibility of using the most frequent and abundant heteroatom class, the N1 

class, in semi-quantitative compositional similarity analysis, we prepared heatmap 

abundance visualization plots for chemical property correlations, i.e. carbon chain length 

distribution versus DBE (Figure 4A) and carbon chain length distribution versus H/C ratio 

(Figure 4B). These plots show that OGOs are the least complex substances tested, with a 

narrow carbon chain length distribution within this heteroatom class (approx. 15–23). 

SRGOs and VHGOs exhibited a wider range of carbon-containing molecules (approx. 11–

40), as well as wider ranges for both DBEs (approx. 4–17) and H/C ratio (approx. 0.6–2) as 

compared to OGOs (approx. 6–10 and 1–1.7). By contrast, HFOs contain molecules with 10 

to 80 carbons, while having a DBE range of approx. 4–60 and H/C ratios ranging from 0.3 to 

higher than 2. Carbon number ranges for heteroatom classes of petroleum substances are 

thus concordant with their expected distillation profiles.27 The density plots indicated overall 

compositional similarities within each petroleum substance category, but they were also 

reflective of the fact that samples within a given category exhibit compositional variation, 

albeit to a much lower extent than differences among the samples of different manufacturing 

class.

ARC content analysis

Characterization of the wt.% concentration of each of seven ring classes of aromatic 

compounds in complex petroleum substances is a common strategy for estimating their 

hazard properties.20, 28, 29 ARC profiles28 of the substances tested in our study comprised of 

sample-specific weight percentages for aromatic compounds containing 1 through 7 rings.30 

Total weight percentages of aromatic compounds were obtained across all petroleum 

substances as detailed in Methods, they ranged between 2.1 and 9.9% (4.7–6.5% for 
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SRGOs, 2.3–6.6% for OGOs, 2.1–9.9% for VHGOs, and 2.3–5.4% for HFOs). It should be 

noted that HFOs can vary substantially in their composition and 2.3–5.4% aromatics content 

is not unusual for HFOs, even though it can be significantly greater depending on the source 

of the sample and performance specifications for a refinery stream. The relative distribution 

among ARC revealed comparably low concentrations of single aromatic ring containing 

molecules (0–9%), whereas compounds containing two (9–83%) or three (14–80%) 

aromatic rings comprised the most abundant groups based on the total ARC content. 4-ring 

containing compounds were less prevalent in SRGOs (0–13%), OGOs (0%), and VHGOs 

(0–19%), but still constituted 22% and 36% of the ARC content in two of HFOs. Molecules 

containing five or more aromatic rings were only sporadically observable in gas oils, 

whereas they were still prevalent (0–21%) in HFOs.

Chemical data-integrative fingerprinting of petroleum substances

Integration and visualization of IM-MS data sets for chemical fingerprinting and groupings 

of petroleum substances was achieved using (i) heatmap-based cluster analysis (Figure 5 and 

Supplemental Material, Figure S4) and (ii) principal components analysis (Figure 6 and 

Supplemental Material, Figure S5) using absolute count- and relative abundance-based 

heteroatom class distributions, as well as aromatic ring class mass percentages as underlying 

data matrices.

A cluster analysis based on the relative abundance of all 82 identified heteroatom classes 

provided a visualization of the complexity of the heteroatom distribution for each sample 

and allowed the identification of unique compositional patterns (Figure 5, Supplemental 

Table 1). As described previously for the abundance of the top 10 most frequent heteroatom 

classes, OGOs were characterized by the highly abundant O1 class, but also due to the 

consistent presence of the O1
13C1, O1S1, O2S1, N2O1S1, and N2O1S2, as well as the absence 

of the N1
13C1 heteroatom classes. SRGOs did not exhibit uniquely identifying features and 

largely resembled the heteroatom class distribution obtained from VHGOs. The most 

abundant heteroatom classes in SRGOs and VHGOs, N1, O1, N1
13C1, N1S1, and N2S1, were 

also detectable at similar amounts in HFOs. The higher complexity of HFOs, which 

represented the least refined product class in this study, was reflected by an overall higher 

number of detectable heteroatom classes. The N1S2 class was among the unique identifying 

features of HFOs, albeit there were a larger number of low abundance classes that were only 

detectable in HFOs. The associated dendrogram showed clusters consisting of HFOs 

(A092/13, A087/13, A083/13) and OGOs (CON-07 and CON-09), with the HFOs separating 

from gas oil samples. SRGOs and VHGOs were not well separated. Principal components 

analysis also demonstrated sample and manufacturing stream-specific compound groupings 

with clear separation between HFOs and the gas oils. OGOs separated from SRGOs and 

VHGOs with three principal components, whereas the latter two groups were highly 

overlapping.

When absolute counts, rather than relative abundances, were used as the data input for 

chemical fingerprinting, a more pronounced separation between HFOs and gas oils was 

evident (Supplemental Material, Figure S4). Still, the overall trends observable in the cluster 

analysis remained identical between two approaches, i.e. HFOs and OGOs each cluster 
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together with HFOs clearly separating from all gas oils, whereas SRGOs and VHGOs 

remain indistinguishable from each other. Principal components analysis based on absolute 

counts shows strong overlap and a narrow distribution of OGOs, SRGO, and VHGOs, with 

HFOs clearly distinct but broadly dispersed (Supplemental Material, Figure S5). Conversely, 

the less complex ARC profile data matrix did not provide uniquely identifying, group-

specific patterns (Figure 5A) or result in distinct separation of HFOs from gas oils as 

reflected in visualization using clustering (Figure 5B), a technique which groups samples 

based on their overall correlation, and principal components analysis (Figure 6), a 

dimensionality reduction technique that visualizes the relative position of samples in high-

dimensional space.

Discussion

Most chemicals in commerce do not meet all of the REACH data requirements with regard 

to mammalian toxicity and data gaps are most often addressed through substance similarity-

based read-across. Grouping and read-across are encouraged in regulatory submissions for 

both mono-constituents and UVCBs.31–33 However, the inherent compositional complexity 

and variability of many UVCBs creates unique challenges for their grouping and read-

across. Regulatory guidelines allow for inclusion of multidimensional data to support read-

across submissions; these can include data on biological activity (toxicological and 

mechanistic) and bioavailability (including metabolite profiling).31, 32 We recently 

demonstrated that comprehensive bioactivity assessment using organotypic in vitro models 

and high-content screening technologies provides an effective means towards grouping and 

read-across of petroleum substances in a way reflective of their manufacturing process.22, 34

Still, while biological data are one way to define groupings of substances, demonstration of 

chemical similarity within a group remains a strong requirement, it is an even greater 

challenge for UVCB substances.32 Conventional analytical techniques, primarily GC-MS 

have been used to provide high-dimensional substance composition information, primarily 

of the hydrocarbon constituents of petroleum substances, which typically form well over 

90% of their total mass.7, 35 Advancements in IM-MS-based technologies have improved 

sample separation efficiency by incorporating shape and size-based dimensionality, and are 

amenable for high (TOF-MS) and ultra-high (FT-MS) mass analyses of petroleum 

substances.16, 36 Collectively, these approaches are defined under the term petroleomics; 

they are useful for detailed chemical characterization to meet regulatory requirements 

towards grouping of petroleum substances for read across.7, 10, 15, 37

ESI-coupled IM-MS is particularly well-suited for the analysis of polar molecules and thus 

is a promising technique for compositional fingerprinting of petroleum substances based on 

their heteroatom constituents, i.e. content and distribution of oxygen-, nitrogen-, and sulfur-

containing molecules.10, 37 While ESI-coupled IM-MS has been shown to be useable for 

characterization of very complex substances such as crude oil and refined products, this 

study demonstrates its utility also for grouping of petroleum substances. Specifically, we 

show how chemical signatures characteristic for petroleum manufacturing classes can be 

used for data-integrative groupings of petroleum substances based on their hetero-atom 

content. Even though heteroatom-containing molecules comprise only a relatively minor 
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fraction (<10% based on mass percentage10) of crude oil and refined petroleum products, 

heteroatom-based fingerprints can be used to support groupings of petroleum substances in 

support of regulatory decision-making by read-across.

We demonstrate global chemical similarity in heteroatom class distribution and abundance 

of petroleum substances belonging to one of four manufacturing streams, including three 

types of gas oils (OGOs, SRGOs, VHGOs) and HFOs. Importantly, while we observed good 

separation between the gas oils and HFOs, qualitative and quantitative differences among 

samples of a given product group provide a measure for manufacturer- and batch-dependent 

compositional variation. IM-MS heatmaps reveal certain chemical-specific regions that are 

consistent with feature distributions and determined compositions, mostly nitrogen and 

oxygen-containing compounds, in previously published IM-MS data of crude oil and 

gasoline.15 These characteristics reflect advancements in the removal of sulfur-containing 

compounds in modern refining.38 Detailed feature identification still remains technically 

challenging due to the complexity of petroleum substances and resulting ion suppression; 

these limitations preclude the use of such data for read-across of the individual components 

of different UVCBs. However, we show that heteroatom signatures derived from IM-MS 

data enable effective communication of the degree of chemical similarity among UVCBs for 

scientific information-driven grouping of complex substances, information that should 

improve confidence in read-across.

Compositional information based on heteroatom feature identification reveals sample 

complexities that are largely concordant with previous characterizations based on GC-MS 

analyses.27 For example, observed heteroatom-based carbon number ranges fall within, but 

did not entirely cover expected ranges for gas oils and the more complex HFOs. HFOs were 

clearly segregated from all gas oil samples due to their increased qualitative and quantitative 

complexity, primarily due to the presence of higher molecular weight, i.e. less volatile, 

constituents resulting in increased carbon number-, DBE-, and H/C ratio ranges. However, 

while traditional ARC content analysis reveals more pronounced differences among the 

three HFO samples, consistent with a lower degree of refinement and more pronounced 

product diversity as compared to gas oils, the heteroatom signatures indicated strong 

similarities and thus did not reflect the variation in the hydrocarbon composition. OGOs 

were characterized as the samples bearing the lowest complexity, and were therefore 

distinguishable from their related gas oils within the SRGO or VHGO categories. SRGOs 

and VHGOs were indistinguishable using the current methodology, which could be 

reflective of their overall high degree of chemical similarity and could provide a rationale for 

clustering them in a single category. Altogether, chemical signature based-comparisons were 

highly concordant with previously observed trends based on bioactivity profiles.22 

Specifically, the case study of about two dozen petroleum substances from the same product 

groups used herein revealed distinct groups of petroleum substances similar to the 

manufacturing process-based categories based on the concentration-response bioactivity 

profiles of cell function and toxicity in human induced pluripotent stem cell-derived 

cardiomyocytes and hepatocytes. Both studies indicated some overlap among SRGOs and 

VHGOs, but also a clear distinction between these gas oils and OGOs as well as HFOs.
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Another important consideration of our findings is the relationship between substance 

chemical composition and possible adverse effects. For example, ARC content of petroleum 

substances tested herein has been related to their dermal carcinogenic potential.24, 25, 30 

Thus, it may be not surprising that ARC while content may be less useful for chemical 

fingerprinting and empirical groupings of petroleum substances as compared to heteroatom-

class distribution. This raises a question of whether heteroatom content of petroleum 

substances, in addition to being useful for classification and grouping, may be indicative of 

their potential toxicity. Comprehensive correlation analysis between heteroatom content and 

biological activity of petroleum substances will require more extensive data sets and the 

utility of these data for toxicity prediction cannot be evaluated as only a limited number of 

substances was examined.

There are a number of other limitations to the approach presented in this work. Electrospray 

ionization is most efficient for polar molecules. Because many heteroatom (N, O, S)-

containing components of petroleum substances are highly polar, ESI is specific and 

especially efficient in generating their gas-phase ions which make up 10% or less of the 

crude oil content and can be partially unstable.10 Hydrocarbons on the other hand are, except 

for some relatively polar molecules, not effectively ionized by ESI but constitute on average 

over 90% of crude oil components. Thus, our methodology, while already useful for 

grouping of complex petroleum substances, is not sufficiently comprehensive with respect to 

the hydrocarbon complexity of these substances. There are several potential solutions to 

address this limitation. First, additional chemical and physico-chemical characterization of 

the same substances with other analytical techniques can be utilized to achieve more holistic 

approach as no single technology is capable of providing a comprehensive chemical 

fingerprint of complex petroleum samples. For example, two-dimensional39 and 

conventional gas chromatography methods,40 or vacuum ultraviolet photoionization mass 

spectrometry,11 can derive additional features suitable for “fingerprinting” of the individual 

compounds in UVCBs. Second, alternative ionization methods, such as field desorption/

ionization41, atmospheric pressure chemical ionization, and atmospheric pressure 

photoionization,42 may provide access to many of the remaining petroleum components 

including cycloalkanes, polycyclic aromatic hydrocarbons, and even to benzo- and 

dibenzothiophenes, and furans that are present at very low amounts. Third, future studies 

should be targeted at adapting and optimizing the herein presented approach towards 

chemical fingerprinting of more acidic components in negative ion mode.15

However, even in the absence of hydrocarbon-based signatures and the more acidic 

heteroatom-containing molecules, the concordance among observed heteroatom-class 

composition in positive ion mode, previously determined associated bioactivities22, 43, and 

manufacturing process-associated sample clustering indicates the potential of these data to 

be applicable as a surrogate data layer that can potentially suffice to justify chemical 

similarity within a regulatory category. An added benefit is that IM-MS data can be acquired 

considerably faster as compared to, for example, GC-MS (minutes vs hours), allowing both 

higher sample throughput and a timely analysis for samples.

Overall, this work charts a path to an analytical chemistry-based method for grouping 

chemically similar UVCB substances which is a major step to increase confidence in read-
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across. We successfully derived heteroatom class distribution and abundance profiles for 

diverse petroleum substances representing several distinct manufacturing streams. These 

data were used to demonstrate manufacturing-group specific similarities, as well as batch- 

and manufacturer-dependent variation, using vizualizations that communicate global 

compositional fingerprinting of complex petroleum substances. Importantly, there is 

concordance between groupings based on chemical signatures and the manufacturing 

process-based categories, as well as sample bioactivity.22

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow for IM-MS based quantitative chemical grouping of petroleum substances from 

Other Gas Oils (OGO), Straight Run Gas Oils (SRGO), Vacuum & Hydrotreated Gas Oils 

(VHGO), and Heavy Fuel Oils (HFO) manufacturing streams.
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Figure 2. 
IM-MS spectra for representative petroleum substances. The figure depicts IM-MS spectra 

(m/z vs drift time, feature abundance is highlighted by color intensity) for each two 

representative of OGO, SRGO, VHGO, and HFO.
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Figure 3. 
IM-MS data processing and global feature identification. Computational integration of IM-

MS data sets in PetroOrg software (CON-20 shown as a representative example) enables 

identification of the unique features (highlighted in black) and quantitation of heteroatom 

class distribution for each sample (A). Plots in (B) depict the total number of features 

identified in each sample grouped into petroleum manufacturing streams. Averages for the 

top 10 most abundant heteroatom classes based on raw counts and relative abundance are 

shown in (C) and (D), respectively. The frequency of feature detection in the various 

petroleum substances is indicated.
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Figure 4. 
Chemical composition-based grouping of petroleum substances. Plots visualize unique 

feature distributions for the N1 heteroatom class, i.e. carbon chain length vs double bond 

equivalents (DBE) (A) and carbon chain length vs hydrogen-to-carbon (H/C) ratio (B). Two 

representative samples for each of four manufacturing streams (OGO, SRGO, VHGO, and 

HFO) are shown. The feature density is reflected through increasing color intensity.
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Figure 5. 
Chemical fingerprinting and cluster analysis of petroleum substances. Heatmap (A) and 

cluster analysis (B) were performed based on the relative frequency of heteroatom class 

distribution or aromatic ring class (ARC) content. Representative informative features are 

identified as a sidebar in panel A. Complete data table with all heteroatom classes is 

included as Supplemental Table 1.
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Figure 6. 
Principal components-based grouping of petroleum substances. Principal components 

analysis was based on the relative heteroatom class distribution (A) and aromatic ring class 

profile (B) of individual petroleum substances.
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