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The surface shear viscosity of an insoluble
surfactant monolayer often depends strongly on
its surface pressure. Here, we show that a particle
moving within a bounded monolayer breaks the
kinematic reversibility of low-Reynolds-number
flows. The Lorentz reciprocal theorem allows such
irreversibilities to be computed without solving the
full nonlinear equations, giving the leading-order
contribution of surface pressure-dependent surface
viscosity. In particular, we show that a disc translating
or rotating near an interfacial boundary experiences a
force in the direction perpendicular to that boundary.
In unbounded monolayers, coupled modes of motion
can also lead to non-intuitive trajectories, which we
illustrate using an interfacial analogue of the Magnus
effect. This perturbative approach can be extended to
more complex geometries, and to two-dimensional
suspensions more generally.

1. Introduction
Understanding the structure, dynamics and rheology
of complex interfaces has become increasingly relevant
in various fields of biology, technology and industry.
Multiphase fluids are just about everywhere: in foams
and emulsions [1]; in biological systems like the tear film
and lung alveoli [2]; in food products [3]; and in the
industrial processing of coatings and thin films [4].

Surface-active materials (surfactants) play a crucial
role in the formation, flow and stability of these
multiphase materials. Surfactants lower the surface
tension of an interface, thereby reducing the energy
required to create excess area. Surfactants are, therefore,
prevalent in the form of soaps, emulsifiers, foaming
agents and wetting agents [1,3].
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Gradients in concentration of such surface species (and therefore in surface tension) lead to
the well-known Marangoni stresses, which give rise to a wide variety of flow phenomena [5,6].
Additional stresses, beyond Marangoni stresses, may be required to deform the surfactant
layer. That is, surfactants may exhibit a non-trivial surface rheological response [7,8]. The
impact of interfacial rheology is more subtle than its three-dimensional analogue, particularly
due to difficulties in clearly demarcating it from other sources of dissipation such as
adsorption/desorption [9]. Interpretation of measurements is further complicated by surfactant-
induced incompressibility [10], which fundamentally alters the boundary conditions obeyed
by subphase flow as compared to a clean interface. Additional difficulties are associated with
the design of microrheology tools that excite individual modes of deformation. Despite these
challenges, recent years have seen the development of techniques [11–14] which have produced
clear, quantitative and repeatable results that place interfacial rheology on a firm footing.

For surface rheology to play a non-trivial role, the excess interfacial stress must overwhelm
viscous stress from the surrounding bulk phase. This is represented by the Boussinesq number,

Bo = ηs

ηL
, (1.1)

where ηs and η are surface and bulk shear viscosities of the surfactant and the subphase. Here L
is the length scale over which gradients in surface stresses occur. The classic work of Saffman &
Delbrück [15] regarding diffusivity of proteins within lipid membranes, for example, was in the
regime of dominant surface viscosity (Bo � 1). In this limit, the interfacial layer is governed
by the two-dimensional (2D) Stokes equations. However, there is no solution to steady flow
past a cylinder in two dimensions that satisfies the boundary conditions far from the particle—
the so-called Stokes paradox [6]. Saffman [16] showed that drag from the subphase ultimately
regularizes the divergence at the root of this paradox. This transition from two to three dimensions
beyond a Saffman–Delbrück length ηs/η has since been systematically measured [17]. In this
work, we will assume interfacially dominant flows (Bo � 1) that completely decouple from
the subphase, restricting our attention to distances within the Saffman–Delbrück length and,
therefore, to 2D dynamics.

The standard framework for interfacial momentum balance is the Boussinesq–Scriven
equation [18], which prescribes a general boundary condition for the bulk flow in the subphase.
Viscous stresses within the interface are described by two viscosities, shear (ηs) and dilatational
(κs), much like in bulk fluids, along with Marangoni stresses associated with gradients in surface
tension, γ . Analogous to bulk pressure, one can define a surface pressure, Π , such that

Π (Γ ) = γ0 − γ (Γ ) (1.2)

is the surface stress exerted by the surfactant against the surface tension γ0 inherent in the clean
interface. Here, Γ is the local surfactant concentration. The isotherm Π (Γ ) can be measured
experimentally [19,20] or specified using simple models.

The viscosities of bulk fluids typically change only under extreme pressure, if at all [21–23].
Departures from Newtonian solutions have been reported in the contexts of polymer melt
processing [24,25] and lubricating oils [21], both under high pressures. The surface viscosity
of surfactant-laden interfaces, by contrast, depends strongly on the surface concentration (and
therefore on Π ) of that surfactant. Surfactant monolayers are much easier to compress than three-
dimensional (3D) fluids, and even a modest compression can force it to undergo phase transitions
[7,26]. Consequently, surface viscosities change by orders of magnitude over relatively small
changes in Π : in fact, ηs often increases exponentially with Π [19,20,27,28].

In a previous work [29], we illustrated the non-trivial consequences of surface pressure-
dependent rheology by focusing on lubrication geometries on the interface. These geometries
mimic thin gaps between particles (or between physical barriers) embedded within the
monolayer. Not only do thin gaps naturally amplify surface pressures and therefore the effects of
Π -dependent viscosity, but also the nonlinear governing equations turn out to have a separable
solution within this approximation. Among other qualitatively new phenomena, this study
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revealed that the fluid stresses generated in response to the motion of a probe particle near a
confining barrier break kinematic reversibility of Stokes flow. Such irreversible dynamics could
have far-reaching consequences at the single-particle level, such as with interfacial microrheology,
or more generally in the macroscopic behaviour of 2D suspensions.

In this work, we mathematically quantify the irreversible dynamics that break Newtonian
symmetries and potentially affect the design and interpretation of high-Bo flows. Additionally, we
move beyond the thin-gap regime of lubrication theory, and quantify the asymmetric forces and
irreversible motion due to Π -dependent viscosity for arbitrary distances from confining walls.
We appeal to asymptotic methods and develop a theory for ‘small’ departures from Newtonian
behaviour. Similar methods have been previously used for spheres in weakly viscoelastic (second
order) [30,31] and weakly inertial [32,33] 3D fluids, as well as with temperature-dependent
viscosity [34]. In each of these cases, the leading-order correction to Newtonian behaviour is a
lateral ‘lift’ force (or a reorienting torque) that breaks kinematic reversibility of Stokes flow.

This paper is organized as follows: in §2, we formulate a general expression for leading-order
corrections to Newtonian behaviour using the Lorentz reciprocal theorem, and derive Newtonian
solutions in bipolar cylindrical coordinates. We use this framework to study, in §3, the lateral force
on a disc translating or rotating next to an interfacial boundary. We also show that the results are
consistent with the predictions of a modified lubrication analysis for Π -dependent viscosity. In
§4, we adapt the same method to the 2D journal bearing, which serves as a striking example of
kinematically irreversible trajectories. As a final example, we illustrate the 2D analogue of the
classic Magnus effect in §5, and conclude with suggestions for future problems and a note on the
broader implications to 2D suspensions.

2. Problem formulation

(a) Governing equations
Let the x–y-plane represent a surfactant monolayer atop a bulk fluid (figure 1a). The quasi-steady
Boussinesq–Scriven equation describes the interfacial stress balance [18]:

VsΠ = Vs · [ηs(Vsus + VsuT
s )] + Vs[(κs − ηs)Vs · us] − η

∂u
∂z

∣∣∣∣
z=0

, (2.1)

where ηs and κs are the two surface viscosities, and η is the shear viscosity of the bulk fluid. The
last term couples the interface to the subphase via the bulk viscous traction, which is determined
by solving the Stokes equation for the bulk fluid flow u(x) with equation (2.1) as the boundary
condition.

While surfactant monolayers are easier to compress than 3D fluids, Marangoni elasticity offers
a restoring force against inhomogeneous compression. For example, a translating disc compresses
the surfactant monolayer in front of it and dilates the monolayer behind it. This sets up surface
concentration gradients that drive Marangoni flows from the front to the back of the disc,
returning the surface species to a uniform concentration distribution. When Marangoni stresses
are stronger than surface pressure gradients generated by fluid motion, the monolayer behaves
like an incompressible 2D fluid [10,29]. The surface pressure in equation (2.1) then acts to enforce
incompressibility, while the Π -dependence of viscosity is explicitly retained.

In the interest of highlighting the effect of Π -dependent viscosity, we will work in
the mathematically simpler regime where Bo � 1. Non-dimensionalizing equation (2.1) over
characteristic length L, velocity U and surface stress (which, in this regime, scales with the surface
viscous term ∼ ηsU), the last term is clearly O(1/Bo). While eliminating this coupling reintroduces
the divergence associated with 2D Stokes flow at infinity, we will assume that all relevant length
scales of interest lie within the Boussinesq length [17]. Then, the interface is decoupled from the
bulk, and its dynamics follow the Stokes equations

Vs · [ηs(Π )(Vsus + VsuT
s )] = VsΠ , Vs · us = 0, (2.2)
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Figure 1. (a) Typical geometry of a cylindrical disc embedded on a flat interface near an ‘interfacial wall’. (b) The bipolar
coordinate system.

albeit with a surface pressure-dependent surface shear viscosity. The surface pressure, like the
bulk pressure in 3D fluid dynamics, then acts to enforce surface incompressibility.

For most insoluble surfactants, a moderate change in Π drastically changes ηs. For
example, a major constituent of pulmonary surfactant and cell membranes is the phospholipid
dipalmitoylphosphatidylcholine (DPPC), which forms stable monolayers at air–water interfaces.
Above a critical surface pressure (approx. 8 mN m−1 at room temperature), DPPC undergoes
a phase transition to a liquid-condensed phase [26], above which its surface viscosity grows
exponentially with Π [20,28]. This can be qualitatively reasoned in terms of free-area theories
of viscosity [27], and a good approximation for the surface viscosity of such a ‘Π -thickening’
monolayer is

ηs(Π ) = C eΠ/Πc = η0
s eΠ−Π∞/Πc . (2.3)

Here, C is a constant, Π is the ‘thermodynamic’ surface pressure from equation (1.2) and Πc is
the pressure scale over which this exponential change occurs. We define η0

s = C eΠ∞/Πc as the
reference or undisturbed surface viscosity of the monolayer. Then, Π − Π∞ is the ‘mechanical’
surface pressure that enters equation (2.2).

For a Newtonian interface, Πc → ∞, while Πc is measured to be approximately 6–8 mN m−1

for DPPC. Certain surfactants (e.g. eicosanol [12]) exhibit ‘Π -thinning’ due to tilt transitions
associated with an increase in surface pressure [26]. All results below are easily adapted to
Π -thinning surfactants by inverting the sign of Πc.

Consider the translation and/or rotation of a particle embedded within a bounded surfactant
monolayer (figure 1a). The boundary conditions associated with such motion are

us = Up + Ωp × (x − x0) when x ∈ � (2.4)

and

us = 0 when x ∈ �w, (2.5)

where � defines the boundary of the particle with centre of mass x0, and �w represents a stationary
‘interfacial wall’. Up and Ωp are the imposed translational and rotational velocities of the particle,
respectively.

Clearly, equation (2.2), in conjunction with equation (2.3), is extremely nonlinear. We approach
this perturbatively, for small departures of ηs(Π ) from η0

s . We set Π∞ = 0 without loss of
generality. Specifically, when |Π | � Πc, we rewrite the momentum equation in equation (2.2) as

η0
s Vs ·

[{
1 + Π

Πc
+ O

((
Π

Πc

)2
)}

(Vsus + VsuT
s )

]
= VsΠ . (2.6)
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Non-dimensionalizing over characteristic scales of a for length, U for fluid velocity and Π0 =
Uη0

s /a for surface pressure, and retaining only terms to leading order in the ratio Π/Πc gives

V∗
s · [(1 + ζΠ∗)(V∗

s u∗
s + V∗

s u∗T
s )] = V∗

sΠ
∗. (2.7)

For simplicity of notation, we drop the asterisks in dimensionless variables now. We have
introduced the dimensionless group

ζ = Π0

Πc
= Uη0

s
aΠc

� 1, (2.8)

which is a ratio of the characteristic surface pressure set up by particle motion to Πc. Alternatively,
ζ may be interpreted as a ratio of U to Uc ∼ Πca/η0

s , where Uc is the surface velocity characteristic
of surface pressure variations comparable to Πc. In this sense, U has to be ‘small’ enough for the
asymptotic expansion to remain valid.

Recasting equation (2.7) in terms of a stress tensor σ , the dimensionless governing equations
read:

Vs · us = 0, Vs · σ = 0 (2.9a)

and
σ = −Π I + Vsus + VsuT

s + ζ Π (Vsus + VsuT
s ) + O(ζ 2). (2.9b)

Then, expanding the fluid fields in powers of ζ as

{us, Π , σ } = {u(0)
s , Π (0), σ (0)} + ζ {u(1)

s , Π (1), σ (1)} + O(ζ 2) (2.10)

and substituting in equation (2.9), we find the zeroth (Newtonian) order to be 2D Stokes flow, as
expected:

Vs · u(0)
s = 0, Vs · σ (0) = 0 (2.11a)

and
σ (0) = −Π (0)I + Vsu(0)

s + (Vsu(0)
s )T. (2.11b)

At first order in ζ , however, we have

Vs · u(1)
s = 0, Vs · σ (1) = 0 (2.12a)

and
σ (1) = −Π (1)I + Vsu(1)

s + (Vsu(1)
s )T + Π (0)(Vsu(0)

s + (Vsu(0)
s )T). (2.12b)

Here, σ (1) is the stress associated with the leading effect of pressure-dependent rheology. We chose
to set up the problem such that the particle is constrained to move with imposed velocities Up

and Ωp, which are entirely accounted for by the leading-order flow. Any non-trivial effect of
Π -dependent rheology, therefore, would yield a non-zero force F(1) or torque T(1) at O(ζ ). These
can be computed as the moments of the stress tensor σ (1):

F(1) =
∫

n̂ · σ (1) d� and T(1) =
∫

x × σ (1) · n̂ d�, (2.13)

where n̂ is the normal pointing from the particle into the monolayer.

(b) A reciprocal approach
Solving the O(ζ ) equations of motion is at best tedious. However, the Lorentz reciprocal
theorem [35] allows us to circumvent solving the inhomogeneous equation, using only solutions
to homogeneous Newtonian problems. The reciprocal theorem, in its classic form, relates two
different solutions to the Stokes equations in the same geometry, such that knowing one can
provide useful information about the other. Generalizations of the reciprocal theorem beyond
Newtonian problems have been successfully applied to evaluate perturbative solutions in both
3D [31,33,34] and 2D fluids [36].
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To illustrate this, let us first consider an ‘auxiliary’ problem of a particle moving in a Newtonian
2D fluid (of constant surface viscosity η0

s ) with translational and rotational velocities Uaux and
Ωaux, respectively. Let the associated fluid velocity, stress and hydrodynamics moments on the
particle in the auxiliary problem be uaux, σ aux and {Faux, Taux}, respectively. Then, we have the
vector identity

Vs · (σ aux · u(1)
s ) = (Vs · σ aux) · u(1)

s + σ aux : Vsu(1)
s = σ aux : Vsu(1)

s , (2.14)

where we have used the momentum equation, Vs · σ aux = 0. Similarly,

Vs · (σ (1) · uaux) = σ (1) : Vsuaux. (2.15)

Subtracting equation (2.15) from equation (2.14) and integrating over the entire fluid domain, we
find ∫

[Vs · (σ aux · u(1)
s ) − Vs · (σ (1) · uaux)] dS =

∫
[σ aux : (Vsu(1)

s ) − σ (1) : Vsuaux]dS, (2.16)

which is the general version of the reciprocal theorem. For Newtonian problems, the right-hand
side vanishes.

The left-hand side of equation (2.16) can be simplified by applying the divergence theorem,
and then using the boundary conditions on the disc, from equation (2.4). Then, applying the force
and torque balances from equation (2.13), the left-hand side becomes

−
∫

n̂ · σ aux · u(1)
s d� +

∫
n̂ · σ (1) · uaux d�

= −(Faux · U(1)
p + Taux · Ω

(1)
p ) + (F(1) · Uaux + T(1) · Ωaux). (2.17)

We choose to constrain the particle to its leading-order motion and determine the external force
or torque thus generated at O(ζ ); that is, U(1)

p = Ω
(1)
p = 0. Simplifying the right-hand side of

equation (2.16) using the definitions of the stresses and putting everything together yields

F(1) · Uaux + T(1) · Ωaux = −
∫

Π (0)[Vsu(0)
s + (Vsu(0)

s )T] : Vsuaux dS. (2.18)

Therefore, F(1) or T(1) can be evaluated using only the leading-order Newtonian solution
{u(0), Π (0)} and the flow field uaux corresponding to another known Newtonian problem in the
same geometry. Such a reciprocal formulation is therefore particularly appealing, and we use
specific choices of Uaux and Ωaux in the following sections to determine the O(ζ ) forces and
torques in model problems. Note that the net force (or torque) at this order scales with the
characteristic velocity as ζF(1) ∼ U2: reversing the direction of velocity has no effect on the O(ζ )
force (or torque). This departure from Newtonian reversibility and its consequences are the central
themes of this work.

(c) Newtonian solution in cylindrical bipolar coordinates
The flow and pressure fields required to evaluate the reciprocal integral in equation (2.18) are
all Newtonian solutions to 2D Stokes flow with constant surface viscosity η0

s . For cylindrical
discs embedded in the monolayer, it is convenient to work in the cylindrical bipolar coordinate
system [37–39] as shown in figure 1b. In terms of Cartesian coordinates, the bipolar coordinates
(α, β) are

α + iβ = log
x + i(y + c)
x + i(y − c)

. (2.19)

Equivalently, x = h sin β and y = h sinh α, where

h = c
cosh α − cos β

(2.20)

is a scale factor. Here, 0 < α < ∞, −π ≤ β < π and c is a positive number with dimensions of
length. Particularly, curves of constant α correspond to non-intersecting, coaxial circles with
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centres along the y-axis. Curves of constant β correspond to intersecting circles with centres along
the x-axis. We set α = α0 to represent a circle of radius a = c/ sinh α0 at a distance d = c/ tanh α0
from the origin along the vertical axis (figure 1). Conversely, such a circle is described by
α0 = cosh−1(d/a) and then c2 = d2 − a2. Also, we will use α1 < α0 to represent a circle of a larger
radius that will serve as the outer wall, such that the monolayer is confined to within α ∈ [α1, α0].
The limit of α1 → 0 corresponds to an outer wall of infinite radius, which represents a plane wall
along the x-axis.

Defining a stream function Ψ in terms of the fluid velocities such that

uα = −1
h

∂Ψ

∂β
and uβ = 1

h
∂Ψ

∂α
, (2.21)

the Stokes equations can be recast as a biharmonic equation: ∇4Ψ = 0. One way of writing the
general solution of this equation that decays sufficiently rapidly at infinity is [37–39]

Ψ

h
= Aα(cosh α − cos β) + (B + Cα) sinh α − Dα sin β

+
∞∑

n=1

[{an cosh(n + 1)α + bn sinh(n + 1)α + cn cosh(n − 1)α + dn sinh(n − 1)α} cos nβ

+ {a′
n cosh(n + 1)α + b′

n sinh(n + 1)α + c′
n cosh(n − 1)α + d′

n sinh(n − 1)α} sin nβ], (2.22)

where the coefficients are determined by the general boundary conditions:

u(0) = Up + Ωp × a(−êα) at α = α0 (2.23a)

and
u(0) = 0 at α = α1. (2.23b)

The Cartesian unit vectors can be represented in terms of the bipolar unit vectors as

êx = h
c

[−(cosh α cos β − 1)êα − sinh α sin βêβ

]
, (2.24a)

êy = h
c

[− sinh α sin βêα + (cosh α cos β − 1)êβ ] (2.24b)

and êz × êα = êβ . Using these, and imposing the boundary conditions in equations (2.23), one can
solve for the constants in the expression for the stream function in equation (2.22).

With the stream function known, the pressure field can be obtained from the Cauchy–Riemann
equations [38,40]:

∂Π

∂α
= η0

s
∂∇2Ψ

∂β
and

∂Π

∂β
= −η0

s
∂∇2Ψ

∂α
. (2.25)

Then, the Newtonian force (or torque) acting on the disc is obtained by integrating the traction
n̂ · σ (0) (or its moment) over the cylinder surface [39]:

F(0) = 4πη0
s (Cêx + Dêy) (2.26a)

and
T(0) = 4πη0

s a(A sinh α0 + C cosh α0)êz, (2.26b)

where, again, α0 represents the streamline corresponding to the edge of the disc.
A surprising result [38,39] is that translation and rotation are decoupled for a cylinder moving

next to a plane wall (i.e. α1 → 0). For instance, a torque-free cylinder sedimenting parallel to a wall
will not rotate—unlike the corresponding case for a sphere. This is particularly convenient, as
rotation and translation can be treated as independent O(1) problems in the reciprocal integration
for plane walls. We will consider these problems first, which will serve to highlight the nature
of the O(ζ ) force and its implications in breaking kinematic reversibility. The mathematical
machinery is easily extendable to the case of coupled translation and rotation, as we shall then see
with an interfacial ‘journal bearing’. In every case, we first seek the solution to three independent
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(a) (b) (c)

Figure 2. TheO(1) flow fields used to evaluate the lateral forces atO(ζ ) for a disc moving next to a plane wall. Streamlines
correspond to the Newtonian solutions for a disc (a) translating parallel to the wall, (b) rotating adjacent to the wall and
(c) translating perpendicular to the wall. The plane wall is the bottom edge of each panel.

Newtonian problems: a cylinder translating parallel to the wall (Up = Uêx), rotating next to the
wall (Ωp = Ω êz) and translating perpendicular to the wall (Vp = Vêy) (figure 2).

3. Cylinder next to a plane wall

(a) Translation
A translating disc compresses the surfactant monolayer in front of it and expands it in the rear.
When the interface is incompressible, the surface pressure responds by increasing (or decreasing)
in front of (or behind) the disc. Consequently, ηs(Π ) increases and changes the net force on the
particle. For a disc moving quasi-steadily along a straight line in an infinite interface, however, the
change in ηs preserves the dipolar symmetry of the surface pressure distribution, and generates
no transverse forces. When near a barrier, however, this symmetry is lost and we expect a finite
force in the direction perpendicular to the wall.

The force and torque on the disc at O(ζ ) can be obtained by appropriately choosing the
auxiliary Newtonian solution in the reciprocal integration. Specifically, considering separately
the cases {Uaux, Ωaux} = {êx, 0}, {êy, 0} and {0, êz}, equation (2.18) can be rewritten in bipolar
coordinates as

F‖
‖ = F(1)

‖ · êx = −
∫π

−π

∫α0

0
Π‖[Vsu‖ + (Vsu‖)T] : Vsu‖h2 dα dβ, (3.1a)

F⊥
‖ = F(1)

‖ · êy = −
∫π

−π

∫α0

0
Π‖[Vsu‖ + (Vsu‖)T] : Vsu⊥h2 dα dβ (3.1b)

and T‖ = T(1)
‖ · êz = −

∫π

−π

∫α0

0
Π‖[Vsu‖ + (Vsu‖)T] : Vsu� h2 dα dβ. (3.1c)

The subscripts ‖, ⊥ and � denote the velocity and pressure fields corresponding to translation
parallel to the wall, perpendicular to the wall and rotation adjacent to the wall, respectively. The
superscripts on the forces denote their directions.

The Newtonian velocity and pressure fields {u‖(x), Π‖(x)} are the O(1) solution to translation
parallel to the wall with velocity U. We find that the only non-zero constants in equation (2.22) in
the case of translation parallel to a plane wall are

A = −B = 2b1 = U
α0

coth α0 and C = 2a1 = −2c1 = − U
α0

. (3.2)

The corresponding surface pressure distribution is then

Π‖ = η0
s U
c

coth α0

α0
[2 sin β cosh α + sin 2β(tanh α0 sinh 2α − cosh 2α)] . (3.3)
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For the auxiliary flow field in equation (3.1a), the coefficients are the same as above. The only
non-zero coefficients for the auxiliary flow field u⊥(x) in equation (3.1b) (corresponding to a disc
moving at velocity V perpendicular to the wall) are

D = 2b′
1 = − V

α0 − tanh α0
and a′

1 = −c′
1 = −1

2
D tanh α0. (3.4)

Similarly, for the auxiliary solution u�(x) in equation (3.1c) corresponding to rotation at angular
velocity Ω , we have

A = −B = 2b1 = −aΩ
coth α0

sinh α0
and a1 = −c1 = aΩ

1
2 sinh α0

. (3.5)

We non-dimensionalize all variables as before and set V = U = aΩ = 1. The integrals in
equation (3.1) are cumbersome, but analytically tractable in terms of the streamline α0 and the
scale factor c that define a particular cylinder. It is illustrative to work with the dimensionless
distance δ = d/a of the centre of the cylinder from the wall, such that α0 = cosh−1 δ and c/a =√

δ2 − 1.
The only non-zero integral at O(ζ ) corresponds to equation (3.1b), and results in a force in the

direction perpendicular to the wall:

F⊥
‖ (δ) =

2π
(

2δ cosh−1 δ − (1 + δ2)
√

δ2 − 1
)

(δ2 − 1)3/2(cosh−1 δ)2
(√

δ2 − 1 − δ cosh−1 δ
) . (3.6)

Both F‖
‖ and T‖ are identically zero at O(ζ ): corrections to the wall-parallel drag or torque arise

at best at O(ζ 2). This can be rationalized in terms of the symmetries of the stresses around the
inner disc. At O(1), the fluid stress is an odd function of x about the disc, and adds up to a net
wall-parallel drag as expected. At O(ζ ), however, the stress is an even function around the disc,
and the net result is only a force perpendicular to the wall. To clarify this, consider the net force
on the disc:

Fnet = Fd êx + ζ (F‖
‖êx + F⊥

‖ êy) + O(ζ 2), (3.7)

where Fd is the Newtonian drag from equation (2.26). In dimensional terms, this reads

Fnet = − 4πη0
s aU

cosh−1(d/a)
êx + (η0

s U)2

Πca
(F‖

‖êx + F⊥
‖ êy) + O(U3). (3.8)

The O(ζ ) corrections scale as U2 and do not change sign upon reversing the direction of motion.
Drag against translation (Fnet · êx) must be an odd function of U to reflect this change of sign, and
therefore F‖

‖ = 0. Corrections to wall-parallel drag or torque can thus appear at best at O(U3), or
equivalently, at O(ζ 2). This argument is illustrated further in §3c, where the stresses in a thin film
are quantified to demonstrate these symmetries.

The force F⊥
‖ is shown in figure 3 as a function of the separation ε = δ − 1. For large distances

from the wall, F⊥
‖ decays to zero. This is expected from our discussion above regarding a cylinder

in an infinite quiescent fluid, where symmetry dictates that the O(ζ ) contributions be zero. The
more useful limit is when the disc is very close to the wall, whereupon equation (3.6) behaves as

F⊥
‖ (ε � 1) ∼ π

2
√

2
ε−5/2 + O(ε−3/2). (3.9)

The effect of Π -dependent rheology is, therefore, more prominent as the fluid film between
surface layers becomes thinner. Within this thin layer, a Π -dependent lubrication analysis [29]
is possible, which, as we show in §3c, retrieves the same limiting behaviour as equation (3.9).

The complementary case of a disc approaching (or departing) a wall along the y-direction is
amenable to a simple symmetry argument. Such a flow is left–right symmetric about the disc,
and there will not arise any stresses that result in a net force parallel to the wall. Indeed, it can
be shown by integrating the corresponding velocity and pressure fields in place of equation (3.1)
that this O(ζ ) force F‖

⊥ = F(1)
⊥ · êx is indeed zero.



10

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170346

...................................................

10–2 10–1 1 10 102

ε = d/a – 1

10–6

10–4

10–2

1

102

104

106

U

W

F ^

F||
^

F||
^

F ^

F ^

Figure 3. Force on the disc due toΠ -dependent ηs as a function of distance from the plane wall, following equations (3.6)
and (3.12). ThisO(ζ ) force acts perpendicular to the wall and breaks the kinematic reversibility of Stokes flow. The dashed line
is the ε−5/2 behaviour predicted by the lubrication analysis (§3c).

(b) Rotation
As with translation, a disc rotating quasi-steadily in an infinite interface would not feel a net
force. However, the surface pressure distribution changes in the proximity of a wall, which in
turn changes the local surface viscosity to result in a net force perpendicular to the wall.

Consider a cylindrical disc rotating at angular velocity Ω near a wall (such that the
characteristic fluid velocity scale is now U = aΩ). The only non-zero coefficients in the stream
function corresponding to u�(x) are the same as in equation (3.5), giving a surface pressure
distribution:

Π� = −η0
s aω
c

coth α0

sinh α0
[2 sin β(cosh α − tanh α0 sinh α)

+ sin 2β(tanh α0 sinh 2α − cosh 2α)]. (3.10)

Again, consider the auxiliary Newtonian flow field u⊥(x) by setting Ωaux = 0 and Uaux = êy. The
only non-trivial reciprocal integral is

F⊥
� = F(1)

� · êy = −
∫π

−π

∫α0

0
Π�[Vsu� + (Vsu�)T] : Vsu⊥ h2 dα dβ, (3.11)

where, like before, the subscripts refer to the modes of motion (� for rotation) and F⊥
� is the O(ζ )

force on the disc in the direction perpendicular to the wall.
Performing this integral, and recasting in terms of the distance δ = d/a from the centre of the

disc, the dimensionless vertical force at O(ζ ) is now

F⊥
�(δ) =

2π
(

2δ cosh−1 δ − (1 + δ2)
√

δ2 − 1
)

(δ2 − 1)5/2
(√

δ2 − 1 − δ cosh−1 δ
) . (3.12)

As shown in figure 3, F⊥
� decays with δ at a rate faster than due to a translating disc. More

interestingly, the near-wall behaviour (ε = δ − 1 � 1) is identical to that of translation. In fact,
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Figure 4. (a) Geometry of the thin film between a disc and a wall. (b) Surface pressure distribution (in arbitrary units) in the
thin gap (solid line) illustrating the Newtonian andO(ζ ) contributions (dashed-dotted lines) from equation (3.24).

expanding equation (3.12) in this limit, we find

F⊥
�(ε � 1) ∼ π

2
√

2
ε−5/2, (3.13)

again suggesting that the problem is indistinguishable from the case of a disc sliding past the wall
when the gap is very small.

A similar integral can be performed to evaluate the O(ζ ) force parallel to the wall on a
rotating disc. The first-order problem maintains the symmetries of the Newtonian problem,
and the force F‖

� = F(1)
� · êx evaluates to zero. Therefore, a cylinder rotating next to a wall in a

pressure-thickening medium will experience a force solely in the direction perpendicular to the
wall—if unconstrained, the cylinder will translate vertically away from the wall (see §4b) while
maintaining its relative horizontal position.

(c) The lubrication limit
Thin gaps on the interface naturally amplify surface pressure fields, and therefore also the effects
of Π -dependent surface viscosity as evinced by the behaviour of F⊥

‖,Ω when ε → 0. In thin gaps,
momentum transport is predominantly in one direction, and the governing equations simplify
significantly. In fact, it is possible [29] to obtain analytical solutions to flows within 2D lubrication
geometries with Π -dependent ηs without resorting to asymptotic methods as we have done here.

Let h(x) be the profile of the thin fluid layer between a disc and a wall (figure 4a) such that
the characteristic thickness of this gap, h0, is much smaller that the size of the disc (h0 � a).
With the same assumptions as before (incompressible 2D flow; high Bo), the momentum equation
equation (2.2) can be shown to simplify in thin gaps to [29]:

∂Π

∂x
= ηs(Π )

∂2us

∂y2 ,
∂Π

∂y
= 0. (3.14)

These equations take the same form as the Newtonian lubrication theory, albeit with a
Π -dependent viscosity. Surface pressure (and therefore ηs(Π )) is constant along the y-direction
within this approximation, and therefore the x-momentum equation can be integrated like in
standard lubrication analysis. In a frame of reference moving with the particle, no-slip conditions
are us(x, h(x)) = 0 on the particle surface and us(x, 0) = −U at the wall. Then, the fluid velocity field
and local flux are

us(x, y) = U
(

y
h(x)

− 1
)

+ 1
2ηs(Π )

dΠ

dx
y(y − h(x)) (3.15)
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and

Q =
∫ h(x)

0
us(x, y) dy = −Uh(x)

2
− h3(x)

12ηs(Π )
dΠ

dx
. (3.16)

Despite the strong nonlinearity due to an arbitrary functional form of ηs(Π ), equation (3.16) can
be rearranged to a separable ODE:

dΠ

ηs(Π )
= − 12

h(x)3

(
Q + Uh(x)

2

)
dx. (3.17)

Remarkably, this relation can be integrated (at least in principle) for any given ηs(Π ). Fluid
incompressibility dictates that the flow rate Q be constant at every vertical section, and may
be obtained by setting the pressure to be equal far away on either side of the particle in
equation (3.17): Π (x → −∞) = Π (x → +∞) = 0. We find

Q = −U
2

∫∞

−∞
dx

h2(x)

/ ∫∞

−∞
dx

h3(x)
. (3.18)

The above form is standard in lubrication theory for Newtonian fluids. The nonlinearity due to
pressure-dependent viscosity enters only through the left-hand side of equation (3.17), allowing
standard Newtonian results to be adapted in a straightforward manner.

Proceeding further needs an explicit expression for the gap profile. When the gap is small
compared to the disc radius (h0 � a), we can approximate the profile as

h(x) = h0

(
1 + x2

L2
circ

)
, (3.19)

where

Lcirc =
√

2h0a. (3.20)

Then, Q = −2Uh0/3, upon which equation (3.17) becomes

∫Π(x)

0

dΠ ′

ηs(Π ′)
= 6U

h2
0

∫ x

−∞

(
4
3

1

(1 + x2/L2
circ)3

− 1

(1 + x2/L2
circ)2

)
dx. (3.21)

We now pick the same form of surface viscosity as before: ηs(Π ) = η0
s eΠ/Πc . Performing the

integration, the surface pressure distribution becomes

Π (x) = −Πc ln

[
1 − 8η0

s Ua2

Πc

x

(x2 + L2
circ)2

]
. (3.22)

The logarithmic dependence imposes an upper bound on U: a unique feature of Π -dependent
systems that we discuss at length in a previous work [29]. Here, however, we stay in the regime
where the velocity is small enough such that ζ � 1. Upon non-dimensionalizing equation (3.22)
as before and scaling lengths over Lcirc, we have

Π (x) = − 1
ζ

ln

[
1 − 8ζa3

L3
circ

x
(1 + x2)2

]
. (3.23)

To compare with our asymptotic analysis from before, we expand equation (3.23) in a Taylor series
for small ζ :

Π (x) = 8a3

L3
circ

x
(1 + x2)2 + ζ

32a6

L6
circ

x2

(1 + x2)4 + O(ζ 2). (3.24)

Within the lubrication approximation, the net vertical force is simply F⊥ = ∫
Π dx. The first term

in the expansion in equation (3.24) corresponds to a Newtonian problem with constant surface
viscosity η0

s , and the integrated vertical force at this order is zero. This is consistent with kinematic
reversibility arguments, and from the shape of the pressure distribution at O(1) as shown in
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(a) (b) (c)

Figure 5. Newtonian streamlines corresponding to (a) azimuthal translation of the inner cylinder, (b) rotation and (c) radial
translation.

figure 4b. The O(ζ ) term, however, has a finite contribution resulting in a net ‘lift’ force away
from the wall that breaks Stokesian reversibility. Using Lcirc =√

2h0a and ε = h0/a, we find

F⊥ ∼ ζ
π

2
√

2
ε−5/2, (3.25)

which is exactly the ε � 1 limit of equation (3.9).
This lubrication analysis not only verifies the thin-gap limit of the reciprocal theorem

approach, but also illustrates the symmetries of the stresses at O(ζ ). The pressure distribution
from equation (3.24) elucidates the origin of the O(ζ ) force perpendicular to the wall due to
Π -dependent ηs, as shown in figure 4b. It is also evident from figure 4b that the leading-order
correction to the drag on the particle in the direction parallel to the wall can occur only at O(ζ 2)
due to the even symmetry of Π (x) at O(ζ ).

4. Cylinder within a cylinder

(a) The two-dimensional journal bearing
The framework of the bipolar cylindrical coordinate system and the reciprocal theorem developed
here can be easily adapted to more complex geometries. Consider, for instance, a cylinder rotating
within a cylindrical cavity, with a Π -thickening surfactant occupying the gap between them
(figure 7a). The 2D journal bearing is a well-studied limit of this geometry when the fluid is
Newtonian and the characteristic thickness of the fluid gap is small. Although our analysis is not
restricted to thin fluid gaps, we shall again use results from lubrication theory [6,29] to compare
our solutions in the appropriate limits. Notably, translation and rotation are now coupled, unlike
in the case of a plane wall.

Mathematically, the problem is identical to the previous sections, with the fluid now confined
between α = α0 and α = α1. The inner cylinder, of radius a and identified by the streamline α0, is
translated and/or rotated by imposing an external force and/or torque. The external cylinder, of
radius b > a corresponding to α1 < α0, is held stationary.

The governing equation at O(1) is, again, ∇4Ψ = 0, subject to boundary conditions now
applied at a finite α1 �= 0 (see electronic supplementary material). The Newtonian streamlines
corresponding to different modes of motion of the inner cylinder are shown in figure 5.

It is useful to define a clearance ε and eccentricity λ such that the radius of the outer cylindrical
wall is b = a(1 + ε), and the distance between the centres of the cylinders is λaε. Written this way,
λ = 0 represents concentric cylinders, whereas the cylinders touch tangentially at λ = 1. These
geometric parameters then relate to α0 and α1 as

sinh α0 = (λ + 1)(λε + ε + 2)
2λ

√
(λ − 1)(λε − ε − 2)
(λ + 1)(λε + ε + 2)

and cosh α1 = λ2ε + ε + 2
2λ(ε + 1)

. (4.1)
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Figure 6. Forces on a rotating disc in a journal-bearing geometry. (a) The Newtonian journal-bearing force (solid line) atO(1)
and the prediction from standard lubrication theory (dashed line). (b) TheO(ζ ) symmetry-breaking force (solid line) from
the reciprocal theorem calculation and the prediction fromΠ -dependent lubrication theory (dashed line). In both cases, the
eccentricity isλ = 0.5.

In a Newtonian fluid, kinematic reversibility requires that the radial force (i.e. towards the centre
of the outer cylinder) on a rotating disc be zero. The net hydrodynamic force generated by the
no-slip condition on the inner cylinder, if at all, should act in the azimuthal direction (i.e. parallel
to the outer wall). This Newtonian force is particularly significant when the fluid layer between
the cylinders is thin, and the methods of lubrication theory may be used to evaluate this ‘journal-
bearing force’ [6]:

Flub = F‖
�(ε � 1) = 12πη0

s Ωa
ε2

[
λ

(2 + λ2)(1 − λ2)1/2

]
. (4.2)

The ε−2 dependence on the clearance makes it particularly suitable for engineering applications,
where a load balances this lubrication force in, say, a shaft rotating within a journal enclosing a
thin film of lubricant.

We may readily compare the hydrodynamic force on the inner cylinder from the general
Newtonian solution obtained in bipolar coordinates to this lubrication limit when the gap is
thin. Following equation (2.26), the radial component (or Fy) is indeed zero, and the azimuthal
component (or Fx) is

F‖
� = 8πη0

s Ωa sinh(α1) sinh(α0 − α1)
4 sinh(α0) sinh(α1) sinh(α0 − α1) − (α0 − α1)[cosh(2α0) + cosh(2α1) − 2]

. (4.3)

This is the Newtonian journal-bearing force without limitations on the thickness of the fluid
layer. As expected, this relation limits to zero when α1 → 0 due to the decoupling of rotation
and translation in two-dimensional Stokes flow next to a wall. Rewriting in terms of λ and ε,
we can compare this force against the predictions of lubrication theory (figure 6a). When ε → 0,
equation (4.3) approaches the prediction from lubrication theory (equation (4.2)).

Now, consider a fluid with Π -dependent viscosity filling the gap between the cylinders, as in
figure 7a. Like with the motion of a cylinder near a plane wall, stresses generated in this geometry
would result in a net force along the line connecting the centres of the cylinders. We will assume
for now that the inner disc is constrained in the horizontal direction, so there is no azimuthal
motion. The reciprocal integral then takes the form

F⊥
� = −

∫π

−π

∫α0

α1

Π�
[
Vsu� + (Vsu�)T

]
: Vsu⊥ h2 dα dβ, (4.4)

where, like before, the subscripts denote the mode of motion (rotation corresponding to the O(1)
solution and radial translation as the auxiliary solution), and the superscript on F denotes that
this force is perpendicular to the outer wall.
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(a) (b) (c) (d)

Figure 7. (a) The interfacial journal bearing. When the disc is torqued, it spirals inward (or outward) in a Π -thickening
(or -thinning) surfactant. (b–d) Trajectories obtained by timemarching equation (4.10) to a finite time (when spiraling inward,
in blue) or until the disc touches the outer wall (when spiraling outward, in red). The three cases correspond to different values
of ζ : (b) |ζ | = 0.05, (c) |ζ | = 0.1 and (d) |ζ | = 0.5. (Online version in colour.)

The stream functions corresponding to this geometry are more involved than before, and
a closed-form expression for the integral in equation (4.4) eludes us. However, a numerical
integration is straightforward and F⊥

� is shown in figure 6b. As with translation/rotation
near a plane wall, this regime can be interpreted to represent ‘small’ velocities such that the
corresponding surface pressure is much smaller than Πc. On the other hand, a separable solution
valid for thin films but for arbitrary values of ζ can be found in a manner similar to §3c. The
correction to the Newtonian pressure distribution again breaks the symmetry, generating a ‘lift’
force that is, to leading order [29],

F⊥
�(ε � 1) ∼ 18πζ

ε4
λ3(3 − 2λ2)

(2 + λ2)2(1 − λ2)5/2 . (4.5)

As shown in figure 6b, these two calculations are consistent in the regime where both the angular
velocity (and therefore, ζ ) and fluid layer thickness (or ε) are small.

(b) Irreversible trajectories
Both F‖

� and F⊥
� above were evaluated for a disc torqued such that it rotates at a constant angular

velocity Ω at a fixed azimuthal location. If we relax this constraint on its position, one can expect
the disc to move in both the radial (due to the O(1) Newtonian force F‖

�) and the azimuthal (due
to the O(ζ ) force F⊥

�) directions. The net effect is a unique spiral trajectory that brings the inner
cylinder closer to the centre of the outer cylinder in a Π -thickening fluid.

In order to obtain these trajectories, we consider a force-free inner cylinder imposed with
an external torque Te. Translation and rotation are now coupled, and we assume that the inner
cylinder moves with angular velocity Ω , azimuthal velocity U and radial velocity V towards the
centre of the outer cylinder, all of which are expanded as

{U, V, Ω} = {U(0), V(0), Ω (0)} + ζ {U(1), V(1), Ω (1)} + O(ζ 2). (4.6)

At O(1), the journal-bearing force F‖
� balances the hydrodynamic drag to azimuthal motion

with velocity U(0). Additionally, rotation as well as wall-parallel translation are both resisted
by hydrodynamic torques, the sum of which should balance the applied torque Te. It is also
clear from the stream-function coefficients that radial motion is decoupled from azimuthal and
rotational motion, and therefore V(0) = 0. The force and torque balances at O(1) are(

RF
‖ RF

�
RT

‖ RT
�

)(
U(0)

Ω (0)

)
=
(

0

−Te

)
. (4.7)

Here, R is the resistance coefficient, with the superscript denoting the hydrodynamic moment
(force or torque) and the subscript representing the mode of motion (wall-parallel translation
or rotation). The O(1) flow fields are Newtonian, and these coefficients can be determined from
equation (2.26) and the stream-function coefficients (see the electronic supplementary material)
to give U(0) and Ω (0).
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These O(1) modes of motion generate Newtonian fluid fields {u‖, Π‖} or {u�, Π�} that in turn
could result in O(ζ ) forces and torque on the inner cylinder. These corrections F(1) and T(1) can be
determined by appropriately choosing the auxiliary flow field similar to equation (3.1). Stresses
at this order follow the same symmetries along lines of constant α as with the case of a disc near a
plane wall, and integrate to a non-zero force only in the direction perpendicular to the outer wall:

F⊥
1 = −

∫π

−π

∫α0

α1

(Π� + Π‖)[Vs(u� + u‖)(Vs(u� + u‖))T] : Vsu⊥ h2 dα dβ, (4.8)

where F⊥
1 = F(1) · êy. Similar integrations show that F‖

1 = F(1) · êx and T1 = T(1) · êz are identically
zero. As with a plane wall, corrections to U(0) and Ω (0) arise at best at O(ζ 2).

If the disc is not constrained, this force acts to push it closer to the centre of the outer cylinder.
Like before, vertical translation decouples from rotation and horizontal translation. The O(ζ )
vertical force balance is simply

RF
⊥V(1) = −F⊥

1 . (4.9)

Between equations (4.7) and (4.9), the translational velocities of the inner disc are

U ≈ U(0) + O(ζ 2) and V ≈ ζV(1) + O(ζ 2). (4.10)

Time-marching using these velocities, we obtain the trajectories in figure 7. As hypothesized,
stresses generated at O(ζ ) in a Π -thickening surfactant lead to a spiral trajectory inward. When
the surfactant is Π -thinning (ζ → −ζ ), these spiral trajectories bring the disc closer to the outer
wall.

Indeed, when α1 → 0, rotation and wall-parallel translation decouple, and the calculations are
simple enough to track analytically. The result is that a disc rotating adjacent to a plane wall drifts
away from the wall (assuming positive ζ for Π -thickening) with a velocity V ≈ ζV(1) with V(1) as
in equation (4.9). The O(ζ ) force then is F⊥

1 (α1 = 0) = F⊥
� as given in equation (3.12). The following

limiting values can be easily obtained:

V(δ → 1) ∼ ζ

12(δ − 1)
and V(δ → ∞) ∼ ζ

2δ3 , (4.11)

where, like before, δ = d/a is the dimensionless distance of the centre of the disc from the wall and
V is in units of the tangential velocity aΩ .

These transverse velocities are within experimentally accessible regimes for microfabricated
ferromagnetic probes [11,12] of radius a ∼ 50 µm on a DPPC monolayer (Πc ∼ 8 mN m−1 and η0

s ∼
10 µNs m−1). Obviously, thin gaps amplify the effect due to large lubrication pressures, and hence
let such a disc placed at a distance of about half its radius from the wall (such that ε = δ − 1 ∼ 0.5)
be torqued to rotate at 3 Hz (Ω ∼ 20 s−1). The vertical velocity due to Π -dependence of viscosity
is then V ∼ 5 µm s−1. This drift is manifestly irreversible: flipping the direction of rotation, for
instance, by imposing an oscillatory motion instead of constant rotation, does not reverse the
direction of this drift and only continues to push the disc further away from the wall.

5. Interfacial magnus effect
More generally, the reciprocal theorem approach also applies to unconfined systems where
Newtonian symmetries break as a result of Π -dependent viscosity. The integral in equation (2.18)
is nonlinear in the O(1) pressure and velocity fields, and coupled modes of motion can also
lead to non-zero forces. We illustrate this using an interfacial analogue of the Magnus effect
in 3D fluids [32]. In the traditional Magnus effect, a rigid sphere simultaneously spinning and
translating through a stationary fluid at finite Reynolds number experiences a ‘lift’ force, leading
to a curved trajectory.

Consider the simultaneous translation and rotation of a disc of radius a on an unbounded
interface. The disturbance velocity (figure 8a) induced by its translation at velocity U in a
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Figure 8. Streamlines corresponding to a disc (a) translating and (b) rotating in an unbounded Newtonian monolayer.
(c) Surface pressure contours due to translation (rotation does not alter the surface pressure). Darker shades correspond to a
relative increase in Π ahead of the disc. The associated increase in ηs leads to the O(ζ ) force F⊥ that ‘rolls’ the disc in a
direction perpendicular to U, leading to a curved trajectory. (Online version in colour.)

Newtonian monolayer is a superposition of a 2D Stokeslet and a 2D potential dipole [41]:

ut(x) =
[

2
(

− ln(r)I + xx
r2

)
+ a2

(
I
r2 − 2xx

r4

)]
· U, (5.1)

where x is measured from the centre of the disc and r = |x|. The associated surface pressure
distribution is

Πt(x) =
[

4η0
s x

r2

]
· U. (5.2)

Similarly, the disturbance velocity corresponding to rotation (figure 8b) with angular velocity Ω is

ur(x) =
(

a2

r2

)
Ω × x, (5.3)

while the surface pressure remains unchanged due to rotation alone: Πr(x) = 0.
These disturbance fields can be superimposed due to linearity of the O(1) equations. As the

auxiliary Newtonian problem in equation (2.18), we use the solution uaux corresponding to a disc
translating with velocity Uaux. The correction at O(ζ ) then becomes

F1 · Uaux = −
∫

Πt[Vs(ut + ur) + (Vs(ut + ur))T] : Vsuaux dS. (5.4)

Neither translation nor rotation alone can generate a force at O(ζ ) in an infinite Π -dependent
monolayer, due to physical symmetries as described earlier. The integral in equation (5.4) results
in a non-zero force only due to the coupling between the two modes of motion. After some
algebra, we find (in dimensional units)

F⊥ ≈ 16π
(η0

s )2

Πc
U × Ω , (5.5)

which acts perpendicular to the direction of motion.
The importance of the coupling between translation and rotation is depicted in figure 8c.

Translation sets up a surface pressure distribution such that Π increases ahead of the disc
and decreases in its rear. In a Π -thickening monolayer, ηs(Π ) changes in the same sense as Π .
Consequently, the surface-viscous resistance to rotation is larger in front of the disc as compared
to its rear. The mechanism is similar to that of a ‘hot janus sphere’ in a 3D fluid with temperature-
dependent viscosity [34]: a temperature dipole (as against a surface pressure dipole) then sets up
a viscosity distribution and breaks spherical symmetry around the particle. In either problem,
the disc (or the sphere) responds by ‘rolling’ on the more viscous side, moving in a direction
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perpendicular to U, leading to a curved trajectory (figure 8c). The direction of the curve is opposite
that of the traditional Magnus effect in 3D inertial fluids, where the lift force on a sphere is
F⊥ ∝ Ω × U [32].

6. Conclusion
We have illustrated the leading-order symmetry-breaking consequences of surface pressure-
dependent surface viscosity, a feature of most insoluble surfactant monolayers. Working with
incompressible monolayers with negligible bulk viscous stresses (‘high-Boussinesq’ limit), we
applied the Lorentz reciprocal theorem to obtain perturbative corrections to Newtonian stresses
when a disc is embedded in the monolayer. We focused primarily on bounded monolayers, which
demonstrate the loss of Newtonian symmetries and reveal characteristic trends of the forces and
torques generated by Π -dependent rheology. However, the formulation based on the reciprocal
theorem is more general, as we illustrate with the interfacial Magnus effect.

We found that a disc translating parallel to (or rotating adjacent to) an interfacial barrier is
subject to a force in the direction perpendicular to that barrier, leading to an evident loss of
kinematic reversibility. The results are amplified in thin gaps, and are consistent with a lubrication
theory adapted for ηs(Π ). As a striking display of kinematic irreversibility, we solved for the
trajectory of a force-free disc rotated within a cylindrical cavity. In this 2D ‘journal bearing’, forces
perpendicular to the wall lead to unique spiral trajectories.

We have previously established the surprising consequences of Π -dependent viscosity in
small fluid gaps [29], for any form of ηs(Π ) and arbitrary velocities. The current work, on the
other hand, focuses on ‘small’ velocities in a perturbative sense, without restrictions on the
thickness of the fluid gap. Between these two works, we now have a clearer grasp of the impact
of Π -dependent rheology, with quantitative predictions and qualitative insights into practically
relevant situations. With the rising prominence and success of interfacial microrheology [11,12,
14,28], these results are of particular experimental relevance due to their implications on the
measurement and interpretation of surface rheology.

Even without wall effects, coupling different modes of motion can lead to non-intuitive
trajectories, as evinced by the example of the interfacial Magnus effect. This also applies
to the translation of a disc in a background surface flow with a rotational component [33].
Likewise, two discs translating at the same velocity perpendicular to the line of centres would
repel (or attract) at O(ζ ) in a Π -thickening (or -thinning) monolayer, like in the analogous
3D viscoelastic problem [31]. Shape asymmetries can potentially introduce finite torques at
O(ζ ), leading to reorientation of particles [42] either perpendicular or parallel to the direction
of translation. This could probably enrich the applications of needle-shaped probes used to
infer interfacial rheology [14]. Some of these results can be extended to finite Bo: while the
corresponding auxiliary solutions are more involved [16], we expect the qualitative trends to
remain unchanged.

Finally, the relative motion of force-free pairs of particles in an ambient flow, like its 3D
analogue [43], sets the stage for a hydrodynamic theory of the rheology of 2D suspensions.
Changes in local microstructure, guided by irreversible pair interactions due to ηs(Π ), could
lead to hydrodynamic aggregation or separation of particles, which in turn result in macroscopic
shear-thickening or -thinning. The mathematical machinery developed here, and the qualitative
insights gained, will inform these studies, which we leave for future work.
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