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Introduction

The number of burn injury victims in the United States is
estimated to be 1.2 million per year, with an annual incidence
of 2 million fire accidents reported.1 Among these injuries,
75% are considered mild, treated on an outpatient basis,2,3
while on average 50,000 burn patients require admission to a
hospital or major burn center.4

Despite a considerable decrease in the incidence of burns
in the developed world, they remain one of the commonest
forms of injury, accounting for a significant proportion of
trauma cases in hospital emergencies worldwide, and they con-
tinue to cause devastating morbidity and mortality.5,6

The distressing consequences of burns have been recog-
nized by the medical community, and significant amounts of
resources and research have been dedicated to successfully im-
proving these dismal statistics. Recent reports revealed a 50%
decline in burn-related deaths and hospital admissions in the
USA over the last 20 years. This is attributable to the effective
prevention strategies that have been introduced to the practice,
limiting burn-associated morbidities as well as reducing the
number and severity of burns.7,8,9,10

Local changes

Burn injury triggers coagulative necrosis of the different
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layers of the skin as well as the underlying tissues. The gravity
of the damage is determined by the energy carried by the
causative agent, the spell of exposure, in addition to the tem-
perature to which the skin is exposed. 

Thermal injuries are categorized based on their etiology
and depth of injury. Causative agents include fire, scald and
contact with hot/cold objects. They contribute to coagulative
necrosis by inducing tissue damage through transfer of energy.
Other causative agents include exposure to chemicals and con-
duction of electricity. In addition to transfer of heat, chemical
and electrical burns also induce direct damage to cellular mem-
branes. Thanks to its major function as a reliable barrier reduc-
ing heat transfer to underlying tissues, the skin usually restricts
the propagation of damage into the deep layers; however, in-
jury of underlying tissues still occurs secondary to local tissue
responses. In principle, three zones can be identified at the site
of cutaneous injuries: 
1. Zone of coagulation: this zone confines the area of necro-

sis. It is characterized by irreversibly damaged tissues at
the time of injury.

2. Zone of stasis: lying adjacent to the zone of coagulation,
this area is subject to a moderate degree of damage asso-
ciated with vascular leakage, elevated concentrations of
vasoconstrictors as well as local inflammatory reactions
resulting in compromised tissue perfusion.11 Depending on
the wound environment, this zone can either survive or
proceed into necrosis.

3. Zone of hyperemia: secondary to inflammation-induced
vasodilation, this zone is characterized by increased blood
supply with healthy tissues under no major jeopardy for
demise.

Systemic changes

Burns exceeding 30% of total body surface area (TBSA)
result in considerable hypovolemia coupled with formation and
release of inflammatory mediators with subsequent systemic
effect, namely a distinctive cardiovascular dysfunction known
as burn shock.12,13,14 Burn shock is a complex process of circu-
latory and microcirculatory impairment as well as edema gen-
eration in both traumatized and non-traumatized tissues. Even
with timely and adequate fluid support, this pathophysiologic
state remains incompletely reversible. In fact, burn shock in-
volves an anomalous condition of inadequate tissue perfusion
with resultant insufficient oxygen and nutrient delivery as well
as failure to remove waste products from tissues. Despite
proper fluid resuscitation and adequate preload, pulmonary and
systemic vascular resistances are increased and myocardial de-
pression follows.14,15,16,17,18 This, in turn, will stimulate further
exacerbation of the inflammatory response and contribute to
the risk of organ failure.13,14,19

A typical immediate response after a thermal insult is
plasma extravasation followed by a sequence of hemodynamic
events. The most common hemodynamic changes include di-
minished plasma volume, cardiac output and urine output as
well as increased systemic vascular resistance (SVR) with re-
sultant reduced peripheral blood flow.12,14,20,21,22 Unlike in hem-
orrhage, burn insults are associated with an increase in
hemoglobin and hematocrit. 

Edema formation is another characteristic reaction of burn
injuries. As the ratio of fluid filtered out of microvessels to
fluid entering them becomes more than 1, edema is developed.

The process of edema formation is biphasic. Initiated in the
first hour following burn trauma, the primary phase witnesses
an abrupt increase in the water content of traumatized tis-
sues.21,22,23 The second phase involves a more gradual increase
in fluid flux of both burned and intact skin and soft tissues 12-
24 hours post-burn.13,23

Of significant importance is the rapidity of tissue water
content increase. Double the original volume is usually reached
during the first hour, with 90% of this change observed in the
initial few minutes.21,24,25,26 Whether fluid resuscitation is pro-
vided or not determines the amount of edema development.
Following burn-induced plasma extravasation, additional ex-
travasation occurs following resuscitation since fluid support
increases blood flow and capillary pressure. On the other hand,
the edema remains self-limited when no fluid is administered.
In addition to the trauma type and extent, type and amount of
administered fluid also play a key role in determining the vol-
ume of edema.21,27,28

Thermal insults additionally have a major impact on cel-
lular membranes. Cellular transmembrane potentials in skeletal
muscles distant to the site of injury are subject to a systemic
decrease when the burn size exceeds 30% of TBSA.16 Further-
more, it has been proven that both directly and indirectly trau-
matized cells experience tissue edema following cell
membrane alterations and increased sodium and potassium
fluxes. Cellular membranes in injured and intact skeletal mus-
cles demonstrate partial depolarization of membrane potential
from -90mV to -70mV and -80mV. As soon as the decrease in
membrane potentials is initiated, water and sodium contents
within cells increase.29,30,31 Those alterations are also seen in
cases of hemorrhagic shock. Reports of similar changes en-
countered in cardiac, hepatic and endothelial cells have been
published.29,30,31,32,33,34 The driving forces responsible for mem-
brane depolarization have been a subject of debate. Some au-
thors attribute membrane depolarization to a decrease in ATP
and reduced ATPase activity. Others postulated increased
sodium conductance in membranes and enhanced sodium-hy-
drogen antiport activity as the etiologies behind membrane de-
polarization.23,30 Several studies have been conducted aiming
at identifying the factors responsible for the cellular edema
seen in burn shock. It has been postulated that membrane de-
polarization could be attributed to the presence of unidentified
complex circulating shock factor(s).35,36,37 This hypothesis has
been supported by the failure of resuscitative measurements to
fully restore membrane potential and intracellular sodium con-
centration to normal levels. By concluding that burn-associated
tissue edema is not solely caused by hypovolemia, burn shock,
thereby, should not be considered just as another form of hem-
orrhage.38

Immense energy needs is a typical finding in victims of
burns. Measured by resting energy expenditure, the metabolic
rate reaches astronomical levels depending on the size of burn.
The resting metabolic rates in mild burns (less than 10%
TBSA) are quantified to be near normal levels. These rates rap-
idly increase to 2-fold of the basal rate in burns exceeding 40%
of TBSA during acute admission. Following this curvilinear-
fashioned increase, resting metabolic rate in severely burned
patients starts to decrease progressively to reach 150% of the
basal rate at the time of burn wound healing. Resting metabolic
rates at 6, 9 and 12 months post trauma are calculated to be
140%, 120% and 110% of the basal rate respectively.39

The hypermetabolic response has deleterious effects and
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devastating sequelae at cellular and systemic level, as well as
socio-economic consequences for the victim. The structure and
function of essential organs (heart, liver, skeletal muscle, skin),
the immune system and the cellular membrane transport system
are compromised while wound healing is impaired, infection
risk is increased, rehabilitation is hampered and reintegration
of survivors back into society is delayed.40,41,42 The hypermeta-
bolic response is the result of a series of events triggered by a
significant and persistent rise in secretions of cateholamine,
cortisol, glucagon and dopamine.39,43,44,45,46,47,48,49,50 Several fac-
tors have been identified to regulate metabolic response and
alter glucose metabolism for up to 3 years after the initial in-
sult. The list of these mediators includes interleukins (IL) 1 and
6, platelet-activating factor (PAF), tissue necrosis factor (TNF),
reactive oxygen species (ROS) and complement cascades.51,52,53

These metabolic regulations have been found to occur in 2
phases: early and late. The ‘Ebb’ phase starts immediately fol-
lowing thermal injury. It lasts for three days with a character-
istic hypometabolic state associated with hypodynamic
circulation, decreased oxygen consumption and hyper-
glycemia. These variables later start to progressively increase
until reaching the ‘Flow’ phase. This hypermetabolic phase
lasts for up to 1 year.39,54,55,56

In response to burn injury, alterations in metabolic path-
ways and pro-inflammatory cytokines promote the shift of
muscle protein metabolism into a faster rate of degradation
than synthesis.56,57,58,59 Significant net protein loss becomes ev-
ident in the form of negative whole-body and cross-leg nitro-
gen balance.58,60,61 Accelerated protein degradation contributes
to a remarkable decrease in lean body mass (LBM) and muscle
wasting associated with a decrease in strength and delay in re-
habilitation.61,62 Several dysfunctions and impairments follow
depending on the magnitude of LBM loss. While alterations in
the immune system, increase in rate of infection and delay in
wound healing are correlated with a 20% loss of LBM, inhib-
ited cough reflexes, prolonged mechanical ventilatory require-
ments as well as increased risk for pneumonia and pressure
ulcers are seen in patients who lose 30% of their lean body
mass. When loss reaches 40%, the mortality rate varies be-
tween 50-100%.63

Energy substrate metabolism is also modified as a result
of the metabolic changes seen in severe burns. Glucose is con-
sumed through anaerobic pathways with resultant high lactate
production.64,65,66,67 Patients with severe burns experience in-
creased glucose production, particularly from alanine.68 Amino
acids become the main fuel for glucose generation through glu-
coneogenesis, leaving very few of them involved in their orig-
inal function as building blocks of body protein. Nitrogen
excretion, primarily in urea, increases and the body becomes
short of protein storage. An important finding observed in pa-
tients with severe burns is the development of insulin-resis-
tance. Despite a 2-fold increase in insulin levels, plasma
glucose levels remain significantly elevated, reaching up to
180mg/dl.69,70,71 Persistent hyperglycemia is explained by an
increase in gluconeogenic substrates, attenuation of the sup-
pressive effect of insulin on hepatic glucose release, enhanced
hepatic glycogenolysis, and impaired glucose disposal. Glyc-
erol, alanine and lactate are gluconeogenic substrates that are
increased in burns secondary to enhanced adipose tissue lipol-
ysis and skeletal muscle proteolysis. Glycogenolysis enhance-
ment, in burns, is secondary to the direct effect of sympathetic
stimulation as well as catecholamine.72,73,74,75,76,77,78

Cardiac function is subject to several modifications start-
ing at the time of injury. Before any plasma volume reduction
is detected, receptors on thermally affected skin induce a neu-
rogenic response initiating a rapid cardiac output depression.
This is associated with an initial reduction followed by a re-
markable increase in cardiac index starting on the third day.56

Other common findings include long-term increase in cardiac
work, myocardial oxygen consumption and heart rate, which
remain elevated during the recovery period.57,79,80 As cardiac
stress becomes massive, myocardial depression ensues. Fluid
resuscitation usually fails to resume normal cardiac output.
This persistent depression is justified by hypovolemia, high
SVR, low venous return, and the effects of myocardial depres-
sant substance.81

The renal system is also affected following alterations in
the cardiovascular system. Renal blood flow and glomerular
filtration rate (GFR) are reduced secondary to hypovolemia,
diminished cardiac output, and the effects of angiotensin, va-
sopressin and aldosterone. These alterations are usually trans-
lated in the form of oliguria as an early sign of renal
compromise. Failure to promptly and adequately manage these
cases may lead to acute tubular necrosis (ATN), renal failure
and mortality.82,83 

As thermal trauma seldom spares the hepatic function, a
severe burn affects expression of acute phase proteins. Both
serum complement C3 and α2- macroglobulin levels experi-
ence an initial fall followed by a gradual rise over time.56 Sub-
stantial depletion of constitutive hepatic proteins is also
prominent secondary to decreased production or accelerated
consumption or loss.56 In addition, alterations in serum levels
of triglycerides and free fatty acids are highlighted, both of
which are significantly increased secondary to a decrease in fat
transporter proteins rendering the liver susceptible for fatty in-
filtration and hepatomegaly with resultant increased risk of
sepsis and burn mortality.56

The effects of burns on the gastrointestinal system should
not be underestimated, as demonstrated by mucosal atrophy,
reduced absorptive capacity, and increased surface permeabil-
ity.84 In proportion to burn size, apoptotic epithelial cell death
occurs, stimulating bowel mucosa degeneration.85 Mucosal at-
rophy subsequently leads to several defects in the absorptive
function of the digestive system, notably the uptake of glucose,
amino acids as well as fatty acids. Brush border lipase activity
is also disturbed.86 Increase in bowel permeability to macro-
molecules is also noted following alterations in intestinal blood
supply.87

Endocrine response is among the systemic reactions ex-
hibited by severely injured burn patients. Characterized by sig-
nificant alterations in the hypothalamic-anterior-pituitary-
peripheral-hormone axes, this response follows a biphasic pat-
tern. Target-organ resistance is considered to be responsible for
the low levels of effector hormones seen in the acute phase. In
the long-term phase, on the other hand, decreased levels of tar-
get organ hormones are due to suppression at the level of the
hypothalamus.88 Among the hormones actively involved at the
onset of injury are catecholamine, glucagon and cortisol, col-
lectively labelled as stress hormones. These hormones display
an exponential increase in their levels, sometimes reaching 10-
fold their normal values.89,90,91 The significance of such an up-
surge resides in its influence on the cardiovascular system and
the resultant fluid shifts that follow these changes. The stress
hormones are thereby considered as the initiators of the hyper-
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metabolic -catabolic and proteolytic - response.91 Subsequent
to the initial stress-related hormonal response, alterations occur
at several points in the hypothalamic-pituitary-organ axes.
Growth Hormone – Insulin-Like Growth Factor-1 (GH-IGF-
1) axis is considered as one of the essential axes to be affected
in severe burns. Of significant importance is the fact that IGF-
1 and Insulin-Like Growth Factor Binding Protein-3 (IGFBP-
3) were found to be much more affected when compared to
GH.92,93,94,95 During the acute post-burn phase, decrease in Thy-
roid Stimulating Hormone (TSH), Triiodothyronine (T3), Thy-
roxine (T4), Testosterone, Osteocalcin and Parathyroid
Hormone (PTH) are also not uncommon. 

Regarding the effects of burn on the male reproductive sys-
tem, thermal insults commonly affect the histology of seminif-
erous epithelium with germ cell atrophy being the most typical
change encountered followed by sloughing.96 The etiologies of
germ cell apoptosis and alterations in spermatogenesis are mul-
tifactorial: scrotal temperature, hormonal reduction, systemic
trauma and oxidative stress following under-perfusion.97,98,99,100
Depletion of testosterone concentrations in blood is occasionally
attributed to the presence of testicular toxicants. Reversing the
deleterious effects of these toxicants can be achieved by the ad-
ministration of free radical scavengers: i.e. ascorbic acid, which
also reduces resuscitative fluid needs and complications.101,102

Immunologically speaking, thermal insults exert a consid-
erable effect, in terms of global depression, on the immune sys-
tem, notably cellular immune responsiveness. The
immunodeficiency seen in burn patients is thought to be due
to attenuated expression of bone marrow Granulocyte Colony
Stimulating Factor (G-CSF) receptors rather than decreased G-
CSF levels.103 Although the loss of skin and the mechanical
barrier it provides contributes to infection in burn patients, it
has long been established that impaired immune mechanisms
are key factors in post-burn bacterial, viral and fungal infec-
tions. Such vulnerabilities are attributed to qualitative and
quantitative compromises in all components of the immune
system.

Burn metabolism management strategies

To date, not a single therapeutic modality has been suc-
cessful in completely reversing the complex reactions induced
by a burn injury; nevertheless, several non-pharmacological
and pharmacological strategies have been found to effectively
modulate burn-associated metabolism. 

So far, early excision and closure of the burn wound have
been described as the greatest advancement in the management
of patients with severe thermal injuries. In fact, this strategy
remains the single most important management modality to de-
crease the rate of complications associated with severe burn
injuries. Patients undergoing total excision and wound cover-
age with autograft and/or cadaveric skin within the initial 72
hours following severe thermal injury (50% TBSA) have meta-
bolic rates 40% less than those with similar burn severity that
are not excised and covered within a week.61 Furthermore, im-
mediate excision and resurfacing have been found to offer ad-
ditional advantages in terms of net protein loss, infection/sepsis
rate and pain compared to delayed primary reconstruc-
tions.104,105,106 Compared to autografts, biosynthetic skin sub-
stitutes and human cadaver skin have demonstrated equal
effectiveness in early reconstructions.107,108,109 

Since sepsis plays a major role in boosting burn-associated

mortality and morbidity related to hypermetabolic response,
every effort should be made to control the rate of sepsis by tak-
ing the appropriate measurements to prevent infection in burn
patients.110

Adequate nutrition and proper feeding are of utmost im-
portance in the recovery process of burn patients. Unlike oral
nutrition alone, continuous enteral usually succeeds in preserv-
ing total body weight and decreases hypermetabolic response
in burn patients.111,112,113,114,115,116 Enteral feeding remains the
gold standard nutrition for burn patients. It preserves gastro-
intestinal motility and reduces microorganisms’ translocation
and sepsis. Should the patient have absolute contraindications
for enteral feeding such as prolonged ileus and enteral nutrition
intolerance or in cases where enteral feeding alone is not reach-
ing the target caloric delivery, parenteral feeding can be con-
sidered. It is crucial that parenteral nutrition is avoided as much
as possible due its reported adverse effects, namely immuno-
suppression, liver function impairment as well as increased
mortality.117,118,119 Concerning the diet profile that best fits burn
patients, several considerations should be taken into account
that aim at maintaining lean body mass. Considering the high
rates of amino acid oxidation in burn patients, protein synthesis
can be stimulated and lean body mass can be maintained with
a high protein, high carbohydrate diet which also increases en-
dogenous insulin production.120 

Another conservative management action that helps dimin-
ish resting energy expenditure in patients with more than 40%
TBSA burn is raising the room temperature. This simple step
elevates the patient’s core temperature, subsequently reducing
body water evaporative loss.121 

Burn wound contracture is an inevitable sequela that re-
mains with the patient throughout life if not treated properly.
Its prevention, however, remains the most adequate manage-
ment modality. This can be achieved with early, progressive
physical therapy with specific regimens designed to improve
body mass and muscle strength.122

In an attempt to modulate burn-induced hormonal disequi-
librium, several pharmacological therapeutic strategies have
already been established. These can be classified into anabolic
agents and anti-catabolic agents. The anabolic hormones in-
clude GH, insulin, IGF-1, oxandrolone and testosterone. The
most important anti-catabolic agent remains propranolol, an
adrenergic antagonist. 

Recombinant human growth hormone (rhGH) has proved
to modulate responses initiated by the burn in various ways. It
reduces the hepatic acute phase response by increasing consti-
tutive hepatic proteins, decreasing acute phase proteins and
modulating cytokine expression.123,124 It also decreases donor
site healing time,125 improves muscle protein kinetics, main-
tains muscular growth,126,127 stimulates protein synthesis and
attenuates nitrogen loss after injury.125 However, treatment with
rhGH has been associated with increased mortality rate in adult
patients, thus restricting its administration.121

On the other hand, it has been demonstrated that recombi-
nant human IGF-1 and IGFBP-3 effectively improve muscle
protein synthesis in catabolic patients with significantly less
adverse effects compared to GH.128,129 These agents further en-
hance intestinal mucosal integrity in the severely burned pedi-
atric population,130 attenuate muscle catabolism, and improve
hepatic acute phase, the inflammatory response as well as the
immune response. As the clinical use of GH is restricted, it ap-
pears that recombinant human insulin-like growth factor-1
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(rhIGF-1) may be a better drug to effectively attenuate post-
burn responses.

The employment of insulin has been advocated in burn in-
juries. It has proved to prevent muscle catabolism, promote
muscle anabolism and preserve lean body mass without in-
creasing hepatic triglyceride production.130,131,132

In turn, oxandrolone has gained a reasonable clinical ap-
plication for the prevention and treatment of burns sequelae.
As a synthetic testosterone analogue, it restores serum testos-
terone levels with a resultant surge in anabolic gene expression
in muscles as well as a decrease in protein breakdown.133,134,135

In addition to improving muscle protein synthesis, lean body
mass and bone mineral content, oxandrolone has been success-
ful in counteracting the effects of hypermetabolism and short-
ening acute hospitalization.136,137,138

With the destructive effects induced by elevated body con-
centrations of catecholamine, anti-catabolic agents have been
introduced to the burn injury management protocol. Propra-
nolol was demonstrated to abate obligatory thermogenesis,
resting energy expenditure, tachycardia and cardiac work.80,139

It was also found to be influential in increasing lean body mass
and decreasing urinary nitrogen loss and whole-body urea pro-
duction. Moreover, reduced insulin resistance, peripheral lipol-
ysis, hepatic acute phase response, fatty infiltration of the liver
and skeletal muscle wasting were additional advantages offered
by beta-adrenergic blockers.57,140,141

Conclusions

In response to thermal insult, the human body reacts in
an immediate and complex manner by releasing stress hor-
mones and inflammatory mediators that subsequently induce
vasoconstriction, increase vascular permeability, reduce di-
uresis, alter cellular membrane function and impair cardiac
contractility. Depending on the burn size, the outcomes of
these responses include, but are not limited to, decreased in-
travascular volume, increased systemic vascular resistance,
decreased cardiac output, end-organ ischemia and metabolic
acidosis. This can further lead to systemic deterioration,
multi-organ failure and death when early appropriate resus-
citation is not provided. 

Burn-associated catabolism cannot be completely reversed
but may be manipulated by non-pharmacologic and pharma-
cologic means. Early burn wound excision and complete
wound closure, prevention of sepsis, maintenance of the pa-
tient’s thermal neutrality, and graded resistance exercises dur-
ing recovery are simple, safe, reliable and successful primary
treatment strategies. Anabolic and anti-catabolic agents greatly
reduce lean body mass loss and linear growth delay. Continu-
ous administration of low-dose insulin, beta-blockers (propra-
nolol), and synthetic testosterone analogue (oxandrolone) are
still the safest and most cost-effective therapeutic modalities
to date.
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