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pharmacologic inhibition of PTEN in mouse Tregs desta-
bilizes their suppressive phenotype, and this prevents trans-
plantable and autochthonous tumors from creating their 
normal immunosuppressive microenvironment. Genetic 
ablation of either IDO or PTEN+ Tregs in mice results in 
a fundamental defect in the ability to maintain tolerance to 
antigens associated with apoptotic cells, including dying 
tumor cells. Consistent with this, pharmacologic inhibi-
tors of either pathway show synergy when combined with 
cytotoxic agents such as chemotherapy or radiation. Thus, 
we propose that IDO and PTEN+ Tregs represent closely 
linked checkpoints that can influence the choice between 
immune activation versus tolerance to dying tumor cells.
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Cross‑presentation of tumor antigens is actively 
suppressed in tumors

In this Focused Research Review, we will address recent 
findings related to two linked hypotheses: The first is 
that immunogenic cross-presentation of tumor-derived 

Abstract  The tumor microenvironment is profoundly 
immunosuppressive. This creates a major barrier for 
attempts to combine immunotherapy with conventional 
chemotherapy or radiation, because the tumor antigens 
released by these cytotoxic agents are not cross-presented 
in an immunogenic fashion. In this Focused Research 
Review, we focus on mouse preclinical studies exploring 
the role of immunosuppressive Tregs expressing the PTEN 
lipid phosphatase, and the links between PTEN+ Tregs and 
the immunoregulatory enzyme indoleamine 2,3-dioxyge-
nase (IDO). IDO has received attention because it can be 
expressed by a variety of human tumor types in vivo, but 
IDO can also be induced in host immune cells of both 
humans and mice in response to inflammation, infection or 
dying (apoptotic) cells. Mechanistically, IDO and PTEN+ 
Tregs are closely connected, with IDO causing activa-
tion of the PTEN pathway in Tregs. Genetic ablation or 
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antigens is actively inhibited in the tumor microenviron-
ment. Although dying tumor cells release many antigens, 
and cell death generates many potentially inflammatory 
signals, the usual outcome is not immune activation but 
merely further immunosuppression and tolerance. We 
hypothesize that one of the main reasons for this failure 
is a dominant tolerizing network that exists within the 
tumor, driven by active inhibitory mechanisms such as 
regulatory T cells (Tregs) activated via the phosphatase 
and tensin homolog (PTEN) lipid-phosphatase pathway 
(PTEN+ Tregs), and the effects of the immunoregula-
tory enzyme indoleamine 2,3-dioxygenase (IDO). Nor-
mally, this suppressive network is dominant. If, however, 
these inhibitory signals can be blocked, then our second 
hypothesis proposes that the tumor milieu can now be 
rapidly reprogrammed into a highly activating and immu-
nogenic microenvironment. In this reprogrammed milieu, 
the same tumor antigens now become spontaneously 
immunogenic.

Blocking the inhibitory mechanisms that underlie 
tumor-induced immunosuppression has become a major 
focus in tumor immunology. To date, however, most 
of the attention has been focused on effector T cells: 
either by blocking T cell-associated checkpoints such as 
CTLA-4 and PD-1, or by adoptive-transfer of pre-acti-
vated effector cells such as CAR-T cells. Less attention 
has been paid to enhancing the upstream process of anti-
gen-presentation by host APCs. However, this upstream 
cross-presentation step is critical. Without effective anti-
gen-presentation, it is not possible to use the full array of 
endogenous tumor neoantigens to activate the host’s own 
T cells.

It is now clear that a robust endogenous host T cell 
response constitutes a major determinant of success in 
conventional checkpoint-blockade therapy [1–7]. In the 
case of adoptive cellular therapy, the collateral recruitment 
of new specificities of endogenous host T cells (“epitope 
spreading”) may likewise be crucial to maintain long-term 
therapeutic response [8]. As proposed by Chen and Mell-
man, in order to create a long-term, self-sustaining immune 
response that cures the tumor, it is critical that the host 
immune response be enlisted to form a spontaneous, self-
amplifying “cancer-immunity cycle” [9]. However, gener-
ating this endogenous T cell response requires activated, 
immunogenic host APCs, plus a receptive, pro-inflamma-
tory tumor milieu. Unfortunately, this is not the usual case 
in tumors, and eliciting such a milieu requires more than 
simply blocking PD-1 or CTLA-4. We propose that it will 
require manipulation of a different set of immune check-
points, focused on the upstream process of immunogenic 
antigen-presentation—factors which are influenced by 
immunosuppressive pathways such as IDO and activated 
Tregs.

Immune response to dying tumor cells is an active 
choice

A synchronous release of tumor antigens occurs during the 
wave of tumor cell death following chemotherapy or radi-
ation. This review will focus on how the immune system 
chooses between activation versus tolerance to this wave 
of dying tumor cells. The key conceptual point proposed 
is that the immune response to antigens from dying tumor 
cells is not determined primarily by the pathway by which 
the tumor cells die, or by the type of chemotherapy deliv-
ered; but rather is dictated by active, external signals deliv-
ered by the local microenvironment. We propose that even 
during apoptosis (a classically “silent” form of cell death) 
the immune system still has the potential to cross-present 
tumor antigens in a robustly immunogenic way—unless 
this is actively suppressed. Conversely, even during classi-
cally “immunogenic” cell death (ICD) [10], the dominant 
suppressive signals within the tumor microenvironment 
may force the immune system to remain unresponsive, and 
prevent activation.

Thus, the response to antigens released by dying tumor 
cells is not fixed and inherent, but rather is a choice dic-
tated by active signals—and these signals can be modified. 
This point becomes critical when immunologic therapy is 
combined with chemotherapy or radiation. Such combina-
tions are a subject of high current interest [10–13], and it 
would have a major clinical impact if the antigens released 
by conventional treatments could be used to stimulate an 
aggressive, synergistic immune response. Although in prin-
ciple this ought to be possible [10], in practice it has been 
very difficult to achieve [12]. Here we discuss recent data 
addressing the hypothesis that one fundamental reason for 
this failure is that the antigen-presenting milieu is normally 
suppressed by inhibitory mechanisms such as IDO and 
PTEN+ Tregs.

Activation of Tregs via the PTEN pathway

Tregs are a major mechanism of immune suppression 
in tumors [14]. While they may suppress effector T cells 
directly, Tregs can also have potent inhibitory effects on 
local APCs as well [15, 16]. At rest, Tregs are not spontane-
ously suppressive [17], so they must receive activation sig-
nals in order to become functional. Treg activation requires 
TCR engagement [18], but it is also highly influenced by 
additional modulating signals from the local milieu, which 
can profoundly affect the functional properties of the acti-
vated Tregs [19]. In the following discussion, we will 
describe data drawn primarily from mouse models of mela-
noma and lymphoma. However, we will also describe data 
from models of constitutive self-tolerance in mice without 
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tumors, suggesting that these pathways represent funda-
mental regulatory mechanisms in the normal immune sys-
tem. We hypothesize that the impact of these findings is not 
restricted to one particular type of tumor, or only to tumor 
cells that happen to express IDO. Rather, we speculate that 
IDO induction and PTEN+ Tregs may represent a more 
fundamental response by the host immune system, elicited 
by any dying cells. These tolerogenic host mechanisms 
become pathologically exaggerated and overexpressed in 
the tumor milieu, but the pathways themselves are basic 
mechanisms of self-tolerance.

We have recently described a Treg activation pathway 
that is triggered when Tregs are stimulated under conditions 
that block signaling via Akt kinase and the mechanistic tar-
get of rapamycin (mTOR) (Fig. 1). Within the tumor micro-
environment, there are multiple signals that can inhibit the 
Akt →  mTOR pathway, including metabolic stress [20], 
the neuropilin-1 receptor [21], and—as shown in the dia-
gram—exposure to DCs expressing the IDO enzyme [22]. 
IDO depletes the essential amino acid tryptophan. In vitro, 
depriving T cells of tryptophan is able to activate the amino 
acid-sensitive general control nonderepressible-2 kinase 
(GCN2) [23, 24]. In addition, the mTOR pathway itself 

is also a major cellular sensor of amino acid sufficiency 
[25]; and in some settings the GCN2 and mTOR pathways 
appear linked [26]. In vivo, the biology of GCN2 is com-
plex. It can be expressed by multiple cell types in addition 
to T cells, and it may be responsive to more than just amino 
acid deprivation [27, 28]. Mice lacking GCN2 are unable 
to respond to induction of IDO by challenge with apop-
totic cells [29]; and GCN2-knockout (KO) mice show an 
autoimmune-prone phenotype similar to IDO-KO mice [29, 
30]. How much of this is due to sensing alterations in tryp-
tophan is currently unknown. However, even simple dietary 
restriction of amino acids in mice can be sufficient to acti-
vate the GCN2 pathway in vivo [27, 31], so total depletion 
of tryptophan is not required to activate GCN2. Thus it may 
be that local reduction of tryptophan in the tumor microen-
vironment by IDO could play a role in activating the GCN2 
pathway in Tregs.

By whatever mechanism, in our in  vitro cell-culture 
models we found that GCN2 was important in allow-
ing IDO to inhibit activity of mTOR kinase complex-2 
(mTORC2) in Tregs, thus preventing the phosphoryla-
tion of Akt on its activating Ser473 site [22]. (Although 
this effect was lost in the absence of GCN2, amino acid 

Fig. 1   Hypothetical model in which Treg activation is controlled by signals affecting the Akt/mTOR pathway, FoxO3 and a feedback loop 
between FoxO3, PD–1 and PTEN. The figure is reproduced from Ref. [71] with copyright permission of the publisher
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insufficiency can also directly inhibit mTORC1, as noted 
above; and mTORC1, Akt and mTORC2 all participate 
in a feedback loop; so the interaction is complex.) Nev-
ertheless, the effect of tryptophan and other metabolic 
stress on Akt activity is an important finding, because Akt 
is emerging as a key control-point for Treg activation in 
tumors [22, 32]. Unlike effector T cells, which require 
Akt signaling for normal activation, excessive Akt activ-
ity in Tregs inhibits their function [33]. More specifically, 
Akt destabilizes the Tregs so that they lose their suppres-
sive activity [22, 34, 35]. As we have shown, these desta-
bilized Tregs may then become “helper-like” cells with 
pro-inflammatory activity [36–38]. Such cells have been 
termed “ex-Tregs” [34, 39, 40], and we have shown that 
they can play an important role as helper cells in anti-
tumor immune responses [37]. Thus, taken together, these 
data suggest that one key consequence of IDO exposure 
during Treg activation is to inhibit Akt, and thus maintain 
the suppressive Treg phenotype (prevent destabilization).

Akt is known to trigger inactivation and degradation of the 
transcription factors Forkhead box O3 (FoxO3) and FoxO1 
[41], both of which are important for Treg function [42]. 
We find that IDO, by inhibiting the mTOR/Akt axis, allows 
Tregs to successfully up-regulate FoxO3 during activation, 
and with it a FoxO3-dependent suppressive program. Part of 
this program includes up-regulation of PD-1 on the activated 
Tregs [22]. When this PD-1 is engaged by its ligands, it acti-
vates the lipid phosphatase PTEN [43]. PTEN then acts to 
inhibit PI3K activity and thus block phosphorylation of Akt 
on its other activating site, at Thr308. Together, the result is a 
positive-feedback loop, as shown in Fig. 1, that maintains the 
sustained inhibition of Akt and expression of FoxO3. Thus, 
we propose that once Tregs undergo initial activation in the 
presence of IDO (or any other upstream signal that inhibits 
the Akt → mTOR pathway), the activated Tregs put in place 
the PTEN-driven feedback loop, which then stably maintains 
the highly suppressive Treg phenotype, as long as PD-1 is 
engaged by its ligands. And, since we have previously shown 
that IDO-activated Tregs potently induce the up-regulation 
of PD-ligand expression on DCs [44], the PD-1 →  PTEN 
feedback loop is likely to remain permanently active in the 
tumor.

Thus, the PD-1  →  PTEN feedback loop offers a 
molecular explanation for our long-standing observation 
that IDO-induced Treg activity becomes strictly depend-
ent on the PD-1/PD-ligand pathway in order to maintain 
suppression [44–47]. Taken together, these data sug-
gest a model in which IDO—or, potentially, a variety of 
other Treg-activating signals in the tumor microenviron-
ment—all converge to trigger a suppressive program in 
the Tregs, driven by PTEN. This implicates the PTEN 
enzyme in Tregs as a previously unsuspected molecular 
target for tumor immunotherapy.

One final point to emphasize from this model is that 
the mTOR/Akt pathway in Tregs, with the downstream 
PD-1 → PTEN feedback loop that it controls, might also 
function as a response pathway for a variety of local envi-
ronmental signals. Using in  vitro models, we found that 
simply inhibiting the mTOR pathway with compounds 
such as rapamycin or PP242 at the time of Treg activation 
was sufficient to trigger the whole PD-1 → PTEN feed-
back loop, and thus confer potent, self-sustaining sup-
pressor activity on the Tregs [22]. In this case, the anti-
gen-presenting cells themselves did not need to express 
IDO, or even create a low-tryptophan signal, as long as 
the in  vitro milieu caused mTOR to be inhibited (e.g., 
by rapamycin). The tumor microenvironment is highly 
stressful and creates multiple conditions that might inhibit 
mTOR in Tregs (e.g., low glucose, low energy stores, dep-
rivation of a variety of amino acids). Even in the specific 
case of IDO, the IDO enzyme in the tumor may not need 
to be expressed by a professional APC, but simply by the 
tumor cells themselves as an “environmental” factor, con-
ditioning the tumor milieu. Although this hypothesis is 
still speculative, it might be that any signal in the tumor 
microenvironment that acts to prevent mTOR signaling 
during Treg activation will have the effect of triggering 
the PD-1 →  PTEN pathway, and thus driving Treg sup-
pressor activity.

Biologic effects of the PTEN pathway in Tregs

PTEN is an important but incompletely understood regu-
lator of T cell activation. Mice with a targeted ablation of 
PTEN in all T cells develop spontaneous lymphomas [48], 
as well as lymphoproliferative disorders and defects in self-
tolerance and autoimmunity [48, 49]. This appears related 
to dysregulated TCR signaling and excessively prolonged 
immune activation [50]. In the Treg lineage, several groups 
including our own have recently studied the functional con-
sequences of targeted deletion of PTEN in Tregs [22, 34, 
51]. Ablation of PTEN rendered Tregs chronically unstable, 
with gradual conversion into pro-inflammatory “ex-Tregs” 
as the mice aged [34]. This was consistent with previous 
reports from our group and others, indicating that Tregs 
are susceptible to loss of suppressor activity and functional 
re-programming under conditions of inflammation [36–39, 
46]. Consistent with the model in Fig. 1, the PTEN path-
way thus appeared to be an important mechanism by which 
the normal suppressive Treg phenotype was stabilized and 
maintained in vivo.

Functionally, the Treg instability resulting from loss of 
PTEN caused mice to progressively develop spontaneous 
lupus-like autoimmunity as they aged [22, 34, 51]. The 
age at which autoimmunity manifested differs between the 
different cre/lox systems used in these studies, but in our 
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particular strain the mice do not become symptomatic until 
late in life. When young, these mice were healthy and fer-
tile. Strikingly, however, we found that even young, healthy 
PTENTreg-KO mice (which had not yet developed autoim-
munity) immediately lost tolerance to self-antigens if they 
were challenged with large numbers of apoptotic cells 
[22]. Control, wild-type mice were unaffected by exposure 
to the same apoptotic cells; but the mice lacking PTEN+ 
Tregs rapidly developed lethal lupus autoimmunity. This 
inability to maintain self-tolerance when challenged with 
apoptotic cells is similar to the defect seen with IDO1-KO 
mice under the same conditions [30]. However, unlike the 
PTENTreg-KO mice, the IDO1-KO hosts only developed 
autoimmunity when directly challenged with apoptotic 
cells, not spontaneously over time. This may reflect the 
wider range of upstream factors such as PD-1 and neuro-
pilin-1 that converge on the PTEN pathway in Tregs, in 
addition to IDO. Taken together, these findings suggested 
that the PTEN pathway in Tregs appeared critical in defin-
ing how the immune system responded to apoptotic cells 
in vivo: immunosuppression and tolerance if PTEN+ Tregs 
were intact; but immune activation and autoimmunity if 
PTEN+ Tregs were absent.

The tumor microenvironment becomes spontaneously 
immunogenic in the absence of PTEN+ Tregs

These findings were from mice without tumors, chal-
lenged with syngeneic apoptotic cells, but we hypoth-
esized that these findings might also have important 
implications for the response to dying tumor cells. As 
mentioned above, we had noted that many of the Tregs in 
tumors constitutively expressed PTEN, and the same cells 
also co-expressed FoxO3 and PD-1. When tumors were 
implanted in PTENTreg-KO hosts, the impact on tumor 
growth was profound [22]. In the absence of the PTEN+ 
Treg population, even aggressive tumors such as B16F10 
were unable to create their usual immunosuppressive 
tumor microenvironment; and instead became sponta-
neously immunogenic, chronically inflamed, and could 
barely grow. The immune response elicited by tumors in 
mice lacking PTEN+ Tregs included spontaneous acti-
vation of host T cells; chronic production of inflamma-
tory cytokines such as IL-6 and IL-12; and (importantly 
for purposes of this discussion) constitutive maturation 
of activated CD103+ dendritic cells within the tumor. 
Thus, the PTEN+ Treg population appeared to coordi-
nately control multiple features of the suppressive tumor 
microenvironment; and, in the absence of these Tregs, the 
tumor milieu was transformed into the type of robustly 
immunogenic microenvironment that would be desirable 
for immunotherapy.

Manipulating the PTEN pathway for therapy

Based on this, we asked whether a similar immunogenic 
milieu could be therapeutically created in wild-type hosts 
simply by destabilizing the PTEN+ Treg population. The 
idea of destabilizing the Tregs in tumors—rather than try-
ing to physically deplete or eliminate them—is potentially 
an attractive concept, because this may represent a point of 
vulnerability for activated Tregs. During activation, Tregs 
must actively work to maintain their suppressive pheno-
type, via pathways such as Ezh2 [52] and the Helios tran-
scription factor [53]. Without this active stabilization, expo-
sure to inflammatory signals such as IL-6 causes Tregs to 
spontaneously down-regulate key transcription factors such 
as Eos/Ikzf4, resulting in transformation of the Tregs into a 
pro-inflammatory “helper-like” phenotype [36, 54].

To test whether Tregs in tumors could be destabilized by 
pharmacologically blocking PTEN, we inhibited the PTEN 
phosphatase enzyme using the orthovanadate drug VO-
OHpic [55]. Many cells can express PTEN, so VO-OHpic 
treatment in  vivo was not selective only for Tregs. How-
ever, effector T cells and inflammatory APCs expressed lit-
tle PTEN during activation, and we were unable to detect 
any direct effect of the PTEN-inhibitor attributable to these 
populations (i.e., when PTEN was selectively ablated in the 
Tregs, then there was no further detectable effect of treating 
the PTENTreg-KO mice with VO-OHpic) [22]. In contrast, 
Tregs appeared to be heavily dependent on the PTEN path-
way, and became sensitive to destabilization when mice 
were treated with the PTEN-inhibitor. The result was that 
when VO-OHpic was combined with even modest doses of 
chemotherapy, we found that the drugs displayed a potent, 
synergistic anti-tumor effect, with rapid activation of the 
immune system and shrinkage of the tumors. This was not 
restricted to transplantable tumors models, since autochtho-
nous melanoma showed the same pattern of immune acti-
vation and regression when treated with VO-OHpic plus 
chemotherapy.

Thus, taken together, the PTEN pathway in Tregs 
appeared to represent a novel and potentially tractable tar-
get for immunotherapy. In wild-type mice, where tumors 
were already established and suppressive at the time of 
treatment, the PTEN-inhibitor drug by itself did not trigger 
spontaneous tumor regression. However, inhibiting PTEN 
rendered the Tregs susceptible to rapid destabilization 
whenever inflammation was created by chemotherapy or 
other immunotherapy—even if that inflammation by itself 
would not have had any anti-tumor effect. Treg destabili-
zation was driven by inflammatory cytokines, specifically 
including the local production of IL-6, as we have previ-
ously described [36]. If Tregs lacked the high-affinity IL-6 
receptor (IL-6RaTreg-KO mice) then they showed no desta-
bilization when treated with VO-OHpic+ chemotherapy, 
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and the treatment lost all effect [22]. All anti-tumor effect 
of PTEN-inhibitor was also lost in Rag-deficient hosts, or 
if CD8+ T cells were depleted, so the synergy between 
chemotherapy and PTEN-inhibitor was strictly immune-
mediated [22].

It remains to be determined whether the PTEN pathway 
plays the same role in human Tregs as in mouse. Patients 
with germline mutations in PTEN have been reported to 
have an increased risk of autoimmunity [56], but interpre-
tation of this finding is complicated by the fact that PTEN 
is expressed in B cells and effector T cells, in addition to 
Tregs. In mouse tumors, we found that PTEN+ Tregs 
co-expressed PD-1 and the C-C chemokine receptor type 
4 (CCR4). A population of activated Tregs with a simi-
lar PD-1+ CCR4+ phenotype has been demonstrated in 
human tumors [14], but whether these are dependent on 
PTEN, and whether they can be destabilized by PTEN-
inhibitor drugs, have not yet been tested. With respect to 
the use of PTEN-inhibitor drugs such as VO-OHpic for 
clinical therapy, none of the existing compounds show 
strict specificity for PTEN (i.e., they may also affect one 
or more other phosphatase enzymes) [57]. However, since 
the desired biologic effect is simply to inhibit PTEN suf-
ficiently to destabilize the highly PTEN-dependent Tregs, 
it may be that exquisite specificity is not required, as long 
as this objective can be met within an acceptable toxicity 
profile.

Characteristics of DCs and T cells in the activated 
tumor microenvironment

Examining the downstream mechanism, the key effect of 
destabilizing PTEN+ Tregs was to transform the tumor 
microenvironment into an activating, pro-inflammatory 
milieu. Prior to treatment, the majority of DCs in tumors 
expressed inhibitory PD-L1, and there was little expres-
sion of costimulatory CD86 or inflammatory cytokines. 
However, within 1–2 days of treatment with PTEN-inhibi-
tor + chemotherapy the number of CD103+ DCs in tumors 
had markedly increased, and these DCs all expressed 
CD80, CD86 and inflammatory cytokines (IL-6 and IL-12); 
while the expression of PD-L1 and PD-L2 was markedly 
reduced.

Consistent with a more immunogenic APC popula-
tion, the effector T cells in the tumor became activated 
[22]. Prior to treatment, tumors contained CD8+ T cells, 
but these were functionally unresponsive: they were 
mostly PD-1+; did not express effector molecules such 
as granzyme B; and were unable to proliferate (anergic/
exhausted). However, within 1–2  days of treatment with 
PTEN-inhibitor  +  chemotherapy, CD8+ T cells in the 
tumor up-regulated CD69 and granzyme B, became able to 

proliferate, and expressed IFNγ and the cell-surface inte-
grin CD103. It is not yet known whether this T cell acti-
vation represents turnover (i.e., replacement of the anergic 
T cells by a new population of activated cells), or in  situ 
re-activation of the formerly anergic T cells. However, the 
rapidity with which this occurred (within 24–48  h) sug-
gested that the responding T cells were not naïve, but must 
have been a pre-existing memory population. In either case, 
destabilizing PTEN+ Tregs triggered a change in the anti-
gen-presenting milieu within the tumor, which led to robust 
T cell activation.

IDO, PTEN+ Tregs and the response to apoptotic 
tumor cells

Physiologic tolerance to apoptotic self‑cells

As mentioned above, IDO is one of the upstream signals 
that can activate PTEN+ Tregs. IDO contributes to mul-
tiple forms of acquired peripheral tolerance (reviewed 
in Ref. [58]), but we hypothesize that the direct link 
between IDO and PTEN+ Tregs might become espe-
cially important when the immune system encountered 
dying tumor cells. In mice without tumors, previous work 
had shown that IDO plays an important and non-redun-
dant role in enforcing tolerance to apoptotic cells [29, 30, 
59]. Exposure to apoptotic cells rapidly up-regulates IDO 
expression [30]; and this IDO was a required signal for 
downstream induction of tolerogenic IL-10 and TGFβ by 
the apoptotic cells, and for recruiting suppressive Tregs 
[29, 59]. When mice lacking the IDO1 gene were chal-
lenged with a wave of apoptotic thymocytes, they were 
unable to maintain the normal tolerance to self-antigens, 
and rapidly developed lupus-like autoimmunity to anti-
gens associated with apoptotic cells [29, 30]. Thus, IDO-
deficient mice had a fundamental defect in tolerance to 
apoptotic cells, which was similar to mice lacking PTEN 
in Tregs, as described above [22]. This is consistent with 
the hypothesis that these two mechanisms form a linked 
system for inhibiting immune responses to dying cells 
in vivo.

Response to apoptotic tumor cells

In the case of tumor cells, injection of apoptotic tumor 
cells into normal mice caused direct activation of local 
IDO in the draining lymph nodes [22]. This occurred 
even in mice with no prior exposure to tumors, and so 
appeared to be a direct effect of the dying cells them-
selves. This IDO signal rapidly activated PTEN+ Tregs 
in draining lymph nodes, and these PTEN+ Tregs then 
suppressed all T cell response to neoantigens present 
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on the apoptotic tumor cells. However, if either IDO or 
PTEN pathways were pharmacologically blocked or 
genetically ablated, then T cells now were able to respond 
robustly to the same tumor cell-associated antigens [22]. 
Thus, the apoptotic tumor cells themselves were intrinsi-
cally immunogenic, but the T cell response was actively 
suppressed by induction of the IDO  →  PTEN+ Treg 
pathway.

This has potentially important implications for the 
immune response to chemotherapy and radiation of 
tumors. These treatments generate large numbers of dying 
tumor cells, but the antigens are released into an unrecep-
tive microenvironment dominated by IDO and PTEN+ 
Tregs. When tested in murine tumor models, combination 
of IDO-inhibitor drugs with chemotherapy or radiation 
showed synergistic anti-tumor effect [60–63]. Quantita-
tively, the effect of inhibiting IDO was not as dramatic 
as the effect of PTEN-inhibition (perhaps consistent 
with the fact that PTEN is also downstream of multiple 
other Treg-activating signals in the tumor, in addition to 
IDO). However, IDO-inhibitor drugs are well-tolerated in 
the clinic, even with prolonged administration [64, 65]. 
Phase II clinical trials combining IDO-inhibitors with 
chemotherapy and/or radiation in pancreatic cancer and 
brain tumors are currently in progress [66–68].

Inhibitors of PTEN are still at the preclinical-devel-
opment stage. Based on the progressive autoimmunity 
seen in PTENTreg-KO mice, it may be that PTEN-inhib-
itor drugs will show more risk of autoimmune toxicity if 
used for prolonged periods. However, if the goal is only 
to enhance the immune response to the transient wave 
of antigens released by chemotherapy or radiation, then 
prolonged administration may not be required. We specu-
late that the critical window of time may be only the few 
days during which cells are dying after the insult. With 
intermittent pulsed therapy, it may be possible to desta-
bilize PTEN+ Tregs in the tumor long enough to break 
tolerance to dying tumors cells, without blocking PTEN 
long enough to trigger spontaneous loss of self-toler-
ance elsewhere. In this regard, it is relevant to note that 
administration of VO-OHpic to mice during chemother-
apy caused extensive destabilization of Tregs inside the 
tumor and associated tumor-draining LNs (both of which 
became inflamed), whereas elsewhere in the same animal 
the Tregs were not destabilized and there was no inflam-
mation in other LNs [22].

One final consideration for PTEN-inhibitor drugs is 
that PTEN is a tumor-suppressor gene, and its loss can 
contribute to malignant transformation. However, the 
oncogenic impact of disrupting a tumor-suppressor gene 
occurs over a prolonged period of time. Short-term inter-
mittent use, such as for pulsed immunotherapy, presents 
much less of a concern [57, 69].

Future implications: combining immunotherapy 
with chemotherapy and radiation

In principle, there is an important translational oppor-
tunity for synergies between standard-of-care cytotoxic 
therapy (chemotherapy and radiation) and active immu-
notherapy [12]. The caveat, however, is that the immuno-
therapy needs to be of a type that targets and successfully 
re-defines the antigen-presenting milieu in the tumor. If 
this can be accomplished—as, for example, with IDO and 
PTEN inhibitors—then there is potential for synergy in 
both directions: the dying tumor cells are now allowed 
to act as an endogenous “vaccine” for the immune sys-
tem [11]; while, conversely, the activated immune system 
becomes a potent additional effector mechanism for the 
chemotherapy and radiation. Hints of the inherent power 
of such an activated immune system are already being 
seen in the form of anecdotal “late-responders” to con-
ventional checkpoint blockade [70]. If this immunologic 
effector arm can be reliably recruited in response to con-
ventional chemotherapy and radiation, then the potential 
for clinical impact would be large.
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