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Abstract

Dexterous continuum manipulators (DCMs) have been widely adopted for minimally- and less-

invasive surgery. During the operation, these DCMs interact with surrounding anatomy actively or 

passively. The interaction force will inevitably affect the tip position and shape of DCMs, leading 

to potentially inaccurate control near critical anatomy. In this paper, we demonstrated a 2D 

mechanical model for a tendon actuated, notched DCM with compliant joints. The model 

predicted deformation of the DCM accurately in the presence of tendon force, friction force, and 

external force. A partition approach was proposed to describe the DCM as a series of 

interconnected rigid and flexible links. Beam mechanics, taking into consideration tendon 

interaction and external force on the tip and the body, was applied to obtain the deformation of 

each flexible link of the DCM. The model results were compared with experiments for free 

bending as well as bending in the presence of external forces acting at either the tip or body of the 

DCM. The overall mean error of tip position between model predictions and all of the 

experimental results was 0.62±0.41mm. The results suggest that the proposed model can 

effectively predict the shape of the DCM.
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I. Introduction

Minimally invasive procedures are popular in current clinical diagnoses and treatments 

because of improved safety and faster recovery as compared to open surgery [1]. Typically, 

such surgeries require specific tools such as biopsy forceps or ring curettes to enter a small 

space and perform the surgery. Traditional rigid tools cannot provide enough flexibility and 

maneuverability to reach all necessary targets without adversely interacting with the 

surrounding tissue.

In this paper, we focus on two motivating minimally invasive lesion-removal applications in 

confined anatomical space. Each procedure—treatment of osteolysis and skull base surgery

—utilizes a dexterous continuum manipulator (DCM) with a large lumen for manipulation 

and tool insertion. The less invasive treatment of osteolysis (defected bone tissue) behind the 

acetabular cup during hip revision surgery is performed through the screw holes of the well-

fixed acetabular implant [2]. Conventional rigid tools only allow removing less than 50% of 

the defected tissues [3]. At the skull base, cholesterol granulomas in the petrous apex will 

cause hearing loss without complete removal. Drainage and ring curettes are usually used 

cooperatively to perform the aeration; conventionally, an unsteerable drainage tube and a 

rigid curette inserted through the limited entry port cannot perform complete removal. The 

performance of both motivating minimally invasive surgeries is limited because the 

reachable workspace through the small entry port is severely restricted by a rigid tool.

Previously, we have developed a notched DCM with a large lumen machined with a series of 

compliant joints to assist these two typical surgeries [2]–[4], where the skull base surgery is 

taken as an example shown in Fig. 1. Preliminary kinematic models of the variable-curvature 

DCM described free space movement with acceptable accuracy [5]. However, the empirical 

kinematic model was not accurate in the presence of external forces. Previous work [6] 

developed a physical model assuming revolute joints to describe the deformation of DCM. 

However, this did not effectively capture friction, only worked well for the bending phase, 

and underestimated the hysteresis. The hysteresis, likely caused by the friction in the 

bending and unbending cycle described in [7], should be addressed carefully. Rather than a 

kinematic model, a mechanical model may be more suitable to predict DCM deformation, 

especially in the presence of tendon interaction and external forces.

The literature documents several mechanical models using the principle of virtual work [8], 

[9], Cosserat rod theory [10], [11], and other approaches [12], [13] without considering the 

friction. Kato et al. [14] built a model to describe the deformation of an endoscope 

considering the friction force. However, these modeling methods mainly focus on robots 

with a continuum rod or tube as the backbone significantly different from our DCM with 

notched tube as the backbone and cannot be used directly to describe our notched DCM with 

compliant joints. Du et al. [15] designed a similar manipulator with V-shaped units, and 

proposed a kinematic model based on Timoshenko beam theory, but did not explore the 
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effects of friction force and external forces. York et al. [16] designed a needle-sized robot 

and built a static model with friction force to describe only the free bending. To our 

knowledge, the existing literature lacks models of notched DCMs with compliant joints 

subjected to the tendon force, friction force, and external forces and did not predict the 

hysteresis of DCM.

In this paper, we propose a partition method for notched DCMs with compliant joints and 

then build a general and comprehensive 2D mechanical model for tendon actuated DCMs. 

The model considers the geometric structure to describe the deformation accurately in the 

presence of tendon interaction and external forces. Section II reviews the DCM and its 

workspace and capabilities. Section III introduces a partition approach for the notched 

DCM. Section IV reviews Cosserat rod theory and calculates the parameters for general 

flexible and rigid links, and describes the particular mechanical model. Section V presents 

the experimental results to validate the proposed model. Section VI discusses the sources of 

error, and illustrates the variation of notches. Finally, Section VII presents the conclusions. 

The main contribution of this paper is the development of a general modeling approach for 

notched 2D DCMs including the tendon force, friction force, and external force.

II. Overview of DCM With Compliant Joints

A. Structure

The 2D DCM was first developed in [2] for less invasive removal of osteolysis, and later was 

extended for skull base surgery (Fig. 1). The DCM is made of two superelastic nitinol tubes, 

which are cut axially through the outer wall of the inner tube and the inner wall of the outer 

tube to create a through channel. They are then assembled with an interference fit and cut 

using electrical discharge machining (EDM) to create crossed notches, thereby forming 

compliant joints. Actuation tendons are inserted inside the through channels and fixed to the 

tip of the DCM. When the actuation tendon is pulled or released, the DCM is bent or 

recovered.

B. Workspace and Payload Capability

Previously, we showed that a kinematic model with pin joints at the center of compliant 

joints has an acceptable accuracy for the treatment of osteolysis application [5]. Based on 

this, a group theoretic convolution framework was adapted to describe the workspace [17]. 

Assuming arbitrary external forces and no self-collisions, the workspace approximates a 

banana-shaped distribution covering about 1200mm2 [17]. This workspace is for a particular 

pose of the base of the DCM; when integrated with a robotic arm, the workspace can be 

increased by translating and rotating the base of the DCM.

Given a specific notch pattern and length as described in [2], the DCM applied 1N tip force 

on a stationary object when its tendon was pulled 25N. As a very conservative estimate, the 

payload capability at the tip of DCM, therefore, can be larger than 1N.
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III. Partition Approach of DCM with Compliant Joints

Consider a notched DCM with 2N+1 compliant joints, such as that (N=13) described in 

Section II for example. It has a series of rectangular crossed notches with round corners to 

create compliant joints (Fig. 2). Our approach partitions the DCM into both flexible and 

rigid links and uses beam theory to calculate the deformation of flexible links. The 

computed deformation of each link approximates the deformation of the DCM. We assume 

the DCM is built from three interconnected sections: tip, mid, and base (Fig. 2). Each 

section is composed of a left rigid link (RLi), and flexible links (J2N−1 and Ui): the tip 

section includes J2N−1; the mid-section includes U-shaped link Ui; the base section includes 

U0. Each typical U-shaped link Ui includes both a right link (denoted as RRi+1) and flexible 

links (denoted J2i−1 and J2i).

Because the half circle structure (Fig. 2, near the cross section D-D) is shared by two 

flexible links, we partition the DCM at each joint by using two cutting planes: parallel to Y 

axis in {G} (Fig. 2) and going through the middle points of the left and right half circles. 

This choice of portioning defines the largest flexible link possible. The deduction of α, the 

angle between the cutting plane and the notch plane (Fig. 2), is introduced in Section IV-B 

(1). Notably, J2i−1, J2i and RRi+1 can be integrated into a single U-shaped link Ui (Table I).

IV. Mechanical Model With Tendon Actuation And Parameters Calculation

Based on the partition, we aim to use beam theory to describe the deformation of flexible 

links (Part B–F). The D-H method will integrate the rigid links and define the kinematics of 

the three sections to obtain the whole DCM deformation (Part G).

A. Review of Classic Cosserat Rod Theory

Cosserat rod theory is a good choice to model the links because it considers the shear and 

axial force, especially for short beams like the flexible links (Fig. 2). For classic Cosserat 

rod beam theory, ordinary differential equations (ODEs) are derived from the rod 

kinematics, equilibrium equations, and constitutive laws [10], [11]. For an arbitrary arc 

length s of the beam, the homogeneous transformation matrix from the base is:

(1)

For the typical U-shape link Ui in Fig. 2:

(2)

where vi(s) and ui(s) are linear rate and angular rate of change of gi(s), expressed as follows:
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(3)

Here, Kse(s) and Kbt(s) are the stiffness matrices for shear/extension and bending/torsion 

respectively.

(4)

where E is the Young’s modulus and G is the shear modulus; A(s) is the area of the cross 

section; Ixx (s) and Iyy(s) are the second moments of area; Jzz(s) is polar moment of inertia. 

Because the DCM only deforms in the bending plane, EIyy(s) = +∞ and EJzz(s) = +∞.

If an external force or moment is applied at the mid-point of an arbitrary segment, then ni(s) 

and mi(s) (Eq. 2–3) in the left and right side of the specific arc length, σ, can be calculated 

as follows:

(5)

Here, FBRi is an external force at any point (denoted as Point B); lBRi is the moment at Point 

B; and lFBRi is the moment resulting from FBRi.

According to Eq. 2, given the structural parameters and the boundary conditions, the ODEs 

can be solved. The critical structural parameters for flexible and rigid links, , 

Ixx(s) and A(s) will be discussed and calculated in Subsection B–D. The boundary 

conditions for each section will be given in Subsection F.

B. Geometrical Parameters of Flexible Links - J2i−1 and J2i

The DCM can only deform in the 2D bending plane, so we can project J2i−1 to the bending 

plane (Fig. 3(a)).

(1) Determination of cutting plane and parameters—In order to determine the 

cutting plane, we choose the middle point of circular notch  as one point in the 

cutting plane and then calculate the angle α between the cutting plane and notch plane (Fig. 

3(a)). We make two assumptions: 1) the neutral axis of flexible link lies at the structural 

center; 2) the tangent vector of the neutral axis is perpendicular to the beam cross section at 

the initial reference configuration before the deformation.

Gao et al. Page 5

IEEE ASME Trans Mechatron. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



With regard to the first segment (Fig. 3(a)), de is defined as . Points 

for the base edge and top edge at the coordinate {Li} with respect to the arc length s of 

neural axis are expressed as

(6)

(7)

where t = s / st (0 ≤ s ≤ st, 0 ≤ t ≤ 1), ls is the height of second segment. Based on the 

assumption 1, the neutral axis can be calculated as .

Based on the assumption 2, the unit tangent vector denoted as  of neutral axis 

and the unit tangent vector denoted as  of the cross section should conform to 

 at  where s = 0, so de can be calculated. The curvature of 

neutral axis can be derived as

(8)

By integrating the arc length, st can be calculated as

(9)

Next the angle α between the notch plane and cutting plane (Fig. 3(a)) can be calculated as

(10)

which finally defines the location of cutting plane.

The second segment with arc length w and height ls is a straight line, so the curvature 

. Due to the rotational symmetry to the first segment, the curvature of the third 

segment is . Then, for J2i−1, , the angular rate of change of g(s) in Eq. 3, 

can be expressed as Eq. 11 and its linear rate of change is .
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(11)

Also due to the mirror symmetry, the angular and linear rate of change for J2i is  and 

.

(2) Calculate I(s) and A(s)—The moment of inertia I(s) and cross sectional area A(s) are 

used to calculate the stiffness (Eq. 4). Because the deformation only happens in the bending 

plane, the stiffness along the Y and Z axes are Iyy (s) = (s)Izz = +∞.

The cross section for the first segment is the intersection of Section A-A and DCM forming 

an elliptical ring (Fig. 3(c)). We simplify this cross section to a parallelogram. The first 

segment has two symmetric flexible parts to Y-Z plane in the local coordinates {Ei}, and its 

moment of inertia, I1(s), and area, A1(s), are calculated as:

(12)

The third segment has rotational symmetry to the first segment, therefore, its moment of 

inertia is I3 (s) = I1 (2 · st + w − s) and its cross-sectional area is A3 (s) = A1 (2 · st + w − s).

The cross section of the second segment is a rectangle. This segment’s moment of inertia 

and cross-sectional area are  and A2 (s) = b2 (s) · ls respectively. Here, 

ls is the height of the cross section, and b2 (s) is the width of the cross section.

The moment of inertia and the cross-sectional area of the whole link J2i−1 can be expressed 

as follows:

(13)

C. Geometrical Parameters of Rigid Links- RRi+1

We assume the rigid link, RRi+1, has a rotational and shear stiffness of +∞, and RRi+1 ’s 

curvature is first-order continuous with respect to its arc length. Therefore, the rigid link, 

RRi+1 in the link Ui (one link in the mid-section) is defined as an arc starting at P and ending 

at Q with an infinite stiffness (Fig. 3(b)).
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The curvature, κPQ, at Point P and Q is the same as  in Eq. 8. Point B (Fig. 3(b)) is the 

mid-point of the arc with an unknown curvature, κB. We linearize the curvature at any 

specific arc length s as:

(14)

(15)

Projecting the half arc  onto the Z axis (Fig. 3(b)), we can obtain the Eq. 15. Then 

substitute Eq. 14 to Eq. 15, κB can be calculated, as well as κr(s). The arc length, sr, is 

derived by integrating inverse curvature (Eq. 14) from P to B.

Deriving Eq. 14 defines the curvature with respect to the specific arc length in Eq. 16. The 

resulting angular rate of change of g(s) with respect to s can be expressed in Eq. 17.

(16)

(17)

D. Geometrical Parameter of U-shaped Links - Ui

As shown in Table I, each typical link, Ui, is composed of J2i−1, J2i and RRi+1. We denote 

the structural parameter of Ui as follows:

(18)

(19)

Finally, we derive the structural parameters of each link, which are used in Eq. 3–4 when 

solving the ODEs in Eq. 2.
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E. Model Assumptions and DCM Configuration

The proposed mechanical model assumes: 1) deformation only occurs in the bending plane 

(X-Z plane), meaning the rotational stiffness along the X/Z axis is +∞; 2) the clearance 

between the tendon and the channel is ignored; 3) the tendon is defined as a string, which 

cannot resist bending and/or torsion; and 4) the non-actuating cable is not tensioned and 

imparts neither force nor friction on the DCM. These assumptions will be used in the 

following deductions.

We consider a typical section configuration with odd compliant joints (Fig. 2). To be more 

general, there are four types of section configurations with even or odd compliant joints.

F. Tendon Coupled Model

We use Cosserat rod theory to describe each section, given the proximal tendon force, 

external force and enough boundary conditions, the deformation of each link can be solved, 

then the whole deformation of DCM can be derived. In order to build the real boundary 

conditions, the tendon interaction will be illustrated below.

(1) The tip section—Fig. 4(a) shows the bending plane of the tip section, where the start 

and end coordinates of the flexible link are defined as {O2N−1} and {O2N}.

a) Tendon interaction at P2N+2: The tendon is fixed at P2N+3, then goes through the 

channel and notch, and interacts with the rigid link RLN+1 at P2N+2 and P2N+1 (Fig. 4). The 

interaction at P2N+1 is only applied to the rigid part RLN, affecting the deformation of the 

next beam in the mid-section, not J2N−1 or UN in the tip section. The N-th beam therefore, is 

subjected to F2N+1 at P2N+2.

b) Section property and boundary conditions: For J2N−1 in Fig. 4(a), the total arc length 

sl is 2 · st + w, where st can be calculated in Eq. 9. Then the initial parameters are defined as 

 and  in Eq. 11.

The boundary conditions, two at s = 0 and two at s = st (for Eq. 2), for the top section are 

defined as follow:

(20)

where pN(0) and RN(0) are the position and orientation at the s = 0 ; nN(sl) and mN(sl) are 

the internal force and moment at the s = sl. Here Fe and le are the external force and moment 

applied at the rigid link RLN+1, rO2NP2N+2 and rO2NPE are the distance for the point of force 

to {O2N}.
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So given Eq. 23 and the distal tendon force F2N+1, the ODEs in Eq. 2 can be solved to derive 

the beam configuration.

(2) The mid-section—The mid-section is composed of a series of U-shaped link Ui. The 

bending plane of Ui in the mid-section starts at O2i−1 and ends at O2i (Fig. 5(a)).

a) Tendon interaction at P2i+3 and P2i+2: The tendon interacts with RLi+1 at P2i+3 and 

P2i+2 respectively, assuming that the tendon channel in the rigid link remains straight (Fig. 

5). Since the friction force is proportional to the normal force, we assume no friction for the 

tendon inside the rigid link channel. Only the contact points at the border of the channel 

have a normal force component and, therefore, friction force. Take P2i +2 as an example: we 

assume that the direction of normal force lies in the middle of two tendon tensions −F2i+2 

and F2i+1, then the friction force is perpendicular to the normal force. If we denote the angle 

between −F2i+2 and z2i+2 as β2i+2, then the angle between Ff2i+2 and z2i+2 is β2i+2/2. So we 

can obtain the free body diagram of RLi+1 and tendon at P2i+2 (Fig. 5(b)). Similarly we can 

also get the free body diagram of RL i+1 and tendon at P2i+3 (P2N+1). The force balance 

equations for the tendons are:

(21)

where Ff2i+3 and Ff2i+2 are the friction force; and Fn2i+3 and Fn2i+2 are the normal force. 

Thus, Ui is subjected to Fn2i+3, Ff2i+3, Fn2i+2 and Ff2i+2. It is noticeable that F2i+3 is equal 

to F2N+1.

b) Section property and boundary conditions: The total length of Ui is sl = 4·st + 2·ls 

+sr(Fig. 5(a)). ODEs are the same with Eq. 2, where i=1~N−1, and the reference 

configuration  and  can be obtained from Eq. 18–19. The boundary conditions are

(22)
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Here in the right side of ni(sl), the first term is the force transformed from the last link, the 

middle terms are the forces at P2i+3 and P2i+2, the last term is the external force applied at 

RLi+1; while in the right side of mi(sl), term I is the moment transformed from the last link, 

term II is the moment transformed from the force in the last link, terms III and IV are the 

moments from the forces at P2i+3 and P2i+2, term V is the external moment applied at RLi+1. 

And rO2iP2i+3 and rO2iP2i+2 are the distances for the point of force to O2i.

Given Eq. 22, the ODEs in Eq. 2 can be solved when we substitute Eq. 21 for Eq. 22. 

Therefore, the normal force, friction force and beam configuration can be derived.

(3) The base section—Fig. 5(a) with i=0 also shows the bending plane of base section, 

where the start point and end point of flexible link are defined with O−1 and O0. The tendon 

interacts with the rigid link at P2 and P3. So the elastic link is subject to the normal force 

Fn2 and Fn3, and the friction force Ff2 and Ff3. This section has the same boundary 

conditions with Eq. 22 where i=0. As shown in Fig. 5(b), F0 is the proximal force we 

usually apply, whose magnitude can be solved as

(23)

where β1 the angle between −F1 and F0.

G. DCM Kinematics

Because we have assumed that the DCM is composed of a series of interconnected left rigid 

links (RLi) and flexible links (J2N−1 or Ui). A series of transformation matrices based on the 

D-H method define the homogenous matrix from the tip to the base as

(24)

Here,  and  are the tip position and orientation in the global coordinates {G}; 

terms I–III are the transformation matrices of base section, mid-sections and tip section, 

respectively;  is the transformation matrix of each link Ui in the mid-section 

expressed using Eq. 25, which can be derived from the solution of each link in Subsection F- 

(1)–(3);  is the transformation matrix of each left rigid link RLi.

(25)
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According to the above deduction, given the distal tendon force F2N+1, Eq. 25 can be derived 

by numerically solving the statics of each section of DCM, finally the proximal force F0 can 

be calculated using Eq. 23, and the shape of DCM can be calculated using Eq. 24 based on 

kinematics, respectively.

H. Consideration of Friction Force

We consider both static and kinetic friction. Subramani et al. [18] proposed a method for 

modeling the friction force in catheter-like manipulators. We extend their method to match 

the structure of our DCM. Here we use a Coulomb model of the friction force. We assume 

that the static friction coefficient equals the kinetic friction coefficient, μc, which is constant 

for all the cases.

In our model when the DCM is bent, we assume the friction force is always toward the base 

section with the kinetic friction +μc · Fni. Before starting to release the tendon, it is assumed 

that there is no relative movement between the tendon and the channel, and the friction force 

at the contact point remains +μc · Fni.

When the DCM starts to unbend by releasing the tendon tension, the direction of the friction 

force at all contact points will not change to −μc ·Fni immediately. The tension of the tendon 

will release from the proximal to the distal end. Therefore, the friction force gradually 

changes from the first contact point P1 (Fig. 5(b) with i=0) to the last contact point P2N+1 

(Fig. 4(b)) point by point. At the m-th contact point, before the start of relative movement 

between the tendon and channel, it will stick to the original position only with the change of 

static friction starting from +μc · Fni; while when it starts to slide along the channel, the 

direction of friction force will become negative, then the friction force will be −μc ·Fni. After 

the relative slide occurs at all the contact points, the friction force of all the contact points 

will be −μc · Fni. So for all the contact points, the friction forces will be

(26)

where i is the i-th contact point (i =1~ 27), m is the m-th contact point which has the 

transition situation; η is a coefficient indicating the change of static friction before the 

relative movement. By adjusting η, the friction force is calculated, then the boundary 

conditions in Subsection F can be derived.

V. Experimental Validation and Results

Young’s modulus of nitinol is highly nonlinear with temperature and dependent on 

manufacturing processes; additionally, the developed model assumes an infinite stiffness for 

the rigid links. Therefore, we calibrated an equivalent Young’s modulus and friction 

coefficient using an experimental setup described in the following subsection. We performed 

experiments to compare the model with experimental deformations of the DCM for the 
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following scenarios: 1) with tip force only, 2) with tendon force only, and 3) with tendon 

force and external tip/body force.

A. Experimental Setup

The DCM was fixed to a magnetic support block. The actuation tendon, a 0.25mm steel 

stripe (McMaster, USA), was attached to the distal tip of the DCM. The proximal side of the 

tendon was attached to a force sensor (Futek LSB200, USA) fixed to the linear stage (M-

UMR8.25A, Newport, USA) with 0.01mm accuracy. A CMOS camera (PixeLINK PL-

B774F, USA) was mounted on an optical platform table.

During the experiments, the linear stage was controlled manually to pull/push the tendon 

with a slow speed (nearly <0.06mm/s) to guarantee a quasi-static scenario, and the tendon 

force was transferred to the computer using the data acquisition card. When the force 

reached a desired value, the DCM image was captured by the camera. The images were then 

processed to calculate the shape of the DCM using a 2D/3D registration method [19]. A 

DCM made from nested nitinol tubes with 14 pairs of notches [2] was used for the 

experiments.

B. Calibration of the Equivalent Young’s Modulus

To find the equivalent Young’s modulus E in Eq. 4 for the DCM, we carried out six groups 

of experiments with a series of weights - 10g, 20g, 50g, 70g, 100g and 150g. Each weight 

was applied from the tip at the position [−0.5dt,0,0] in the local coordinates {O2N+1}. Each 

group was repeated ten times. Next, using the model described in Section IV, we found an 

equivalent Young’s modulus that provided the best match between the simulated DCM 

shapes and the experimental results by minimizing the errors shown below.

(27)

Here  is the Euclidean distance between the experimental results and simulation 

results at the k-th point of the n2-th shape in the n1-th group; etotal is the sum of errors. The 

deformation shape of the DCM was measured at its centerline.

The experiments with 20g, 70g and 150g were used to implement the optimization approach, 

finally determining an equivalent Young’s modulus 22GPa. Then the experiments with 10g, 

50g, and 100g were used to provide the test data. Results indicate that the model with the 

equivalent Young’s modulus can predict the shapes with the mean error 0.40±0.18mm.

C. Calibration of the Friction Coefficient

The tendon was tensioned from 0 to 13N in 1N increments. Next, the tendon was released 

back to 0N in 1N decrements. The procedure was repeated 5 times. We determined a best 

friction coefficient that minimized the Euclidean distance as described in Eq. 27.
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The experimental shapes with tendon force from 1N to 13N in 2N increments for the 

bending and unbending cycles were used to determine the best friction coefficient of 0.66. 

Then the experimental shapes with tendon force from 0N to 12N in 2N increments were 

used to test the model. Shape comparison for the calibration and test are shown in Fig. 7. 

The total mean error was 0.61±0.43mm. We observed that during the bending phase, the 

DCM shape changed gradually with the gap between the shapes increasing uniformly. 

During the unbending phase, the gap between shapes did not decrease uniformly. From Fig. 

7, the shape at 13N is not a typical circle with constatnt curvature. This agrees with the 

analysis of Murphy et al. [20].

D. Tendon Force Distribution Along the Channel

The shape of the DCM during the free bending and unbending cycles is different (Fig. 7). 

This might be due to the friction force affecting the tendon distribution and leading to the 

different deformation for each joint during the bending/unbending cycle. Simulation results 

for tendon force distribution Fi(i =0–27) (defined in Section IV-F) along the 27 segments 

from the proximal to the distal end of the DCM during the bending/unbending cycle suggest 

tendon force profiles are significantly different when comparing loading (DCM bending) 

and unloading (DCM recovery) cycles (Fig. 8). During the loading cycle, the force profile 

from the proximal to distal segment simultaneously increases along all segments. However, 

during the unloading cycle, the tendon force reduces incrementally (one segment at a time) 

from the proximal to the distal segment. When the maximum force 13N is applied to the 

tendon in the proximal end, the force in the proximal end is more than twice the force in the 

distal end.

E. Experiments with the External Tip Force and External Force on the DCM Body

We performed the experiments incorporating an external force. The weight, 50g, was hung 

from the tip of the DCM (Fig. 9(a)). The tendon was pulled from 0N to 10N five times in 1N 

increments. Results are shown in Fig. 9(b). The total mean error was 0.75±0.42mm. The 

weight, 100g, was hung from the 7-th flexible link (Fig. 9(c)); the weight application was at 

the point qE15, which can be transformed to the neutral axis of flexible link at Point Q 
defined in Fig. 3(b). Since the force was applied to the beam body, Eq. 5 was considered to 

reflect this additional force. In the experiment, the tendon force varied from 0N to 8N in 1N 

increments five times (Fig. 9(d)). The total mean error was 0.83±0.44mm.

VI. Discussion

A. Sources of Error

Results in Section V show that the proposed model can predict the shape of the DCM with 

high accuracy. The model was relatively accurate for all three scenarios discussed in Section 

V. The following describes some of the main sources of error:

1. The friction model utilizing Coulomb friction assumes that the coefficient of 

static friction equals that of kinetic friction μc; this has shown good accuracy 

when predicting the deformation, but is still not accurate enough to describe the 

Gao et al. Page 14

IEEE ASME Trans Mechatron. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



real situation. Advanced friction models, such as the Dahl or LuGre models [21], 

show the potential to describe the friction more accurately.

2. The assumption that the friction coefficient between the sharp corner and cable is 

the same at each contact point is not appropriate due to possible inconsistent 

contact conditions resulting in different μc at contact points. Ideally, friction 

would be reduced as much as possible using a PTFE-coated cable or potential 

ultrasonic vibration technology [22].

3. The wider discrepancy between model and experimental data in some cases 

when the DCM is subject to a tip force (Fig. 9(b)) may result from the tendon-

channel gap. This gap changes the contact conditions and relative angles, β2i+1 

and β2i+2 (Fig. 5(b)), between the tendon and the rigid link, especially in the 

almost straight configuration. This, in turn, impacts the propagation of tendon 

force from the tip to the base, therefore leading to the inaccurate deformation of 

the entire DCM. One potential solution is to use a larger diameter cable 

decreasing the tendon-channel gap; however, such a cable must remain flexible 

enough to bend with the DCM.

B. Variation of Notches

The partition approach and mechanical model in this paper are also suitable for other 

compliant joints such as pattern B & C shown in Fig. 10. Pattern B is with more general 

compliant joints created by the adjacent crossed and angular notches; while Pattern C is the 

one transformed from Pattern B by moving the left notches to the left of centerline and the 

right notches to the upper right when decreasing w and ls. Both of the patterns can also be 

analyzed by the partition method and mechanical model proposed in Section III–IV. The 

partitioned rigid and flexible links are shown in Fig. 10. In addition, the calibration approach 

in Section V can also be adopted to derive the equivalent Young’s modulus and friction 

coefficient.

VII. Conclusion

The paper proposed an effective partition approach and derived a mechanical model of any 

tendon driven notched DCM with compliant joints. This model predicted the deformation of 

the DCM in the presence of the tendon force, external tip force, and the body force and/or 

combinations therein. It also shows the potential to describe the DCM with varying notches.

The comparison of experiments and simulations showed that the model can predict the shape 

of the DCM accurately during free bending/unbending and loaded bending/unbending 

cycles. Results indicated that the mean tip error of all the experiments was 0.62±0.41mm, 

about 1.77±1.17% of the total manipulator length. The model and its simulation results 

enabled an explanation of the hysteresis. The effect of varying friction coefficients was also 

discussed and evaluated.

The model developed in this paper can be used to design or optimize the DCM and/or 

associated similar tools. It can be used for model-based external force prediction based on 
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intrinsic force sensing technology and control of the DCM with compliant joints. Also, the 

effects from the friction force can also be compensated for in the control algorithm.
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Fig. 1. 
DCM integrated with a robotic arm for an example application to skull base surgery [4]: (a) 

DCM attached to a robotic arm; (b) DCM path to the petrous apex through the tympanic 

bone for skull base surgery; (c) the straight and bent DCM with large lumen. Also shown is 

the location of compliant joints; (d) lesion (red color) removal using a 2D phantom of a 

cross section of petrous apex, where DCM is interacting with the boundary of phantom.
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Fig. 2. 
Diagram of partition method: The cutting planes are defined and the red and black parts 

stand for the flexible links and the rigid links, respectively.
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Fig. 3. 
Diagram of flexible link (red color), rigid link (green color) and the flexible link’s cross 

section: (a) Projection of flexible link to the bending plane; (b) Projection of rigid link to the 

bending plane: the blue line indicates the virtual neutral axis with arc length, sr. P and Q are 

the intersection points between the neural axis and two cutting planes with the angle, 2α; (c) 

Diagram of cross section for the flexible link, J2i−1.
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Fig. 4. 
Diagram of tip sections coupled with the tendon: (a) shows the projection of tip section; (b) 

show the free body diagrams of tendon at P2N+2 and the sharp corners P2N+1, where β2N+1 

is denoted as the relative angle between two segments of tendon.
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Fig. 5. 
Diagram of mid-section coupled with the tendon: (a) shows the mid-section with Ui; (b) 

show the free body diagrams of tendon at the sharp corners- P2i+2 and P2i+1, where β2i+2 

and β2i+1 are denoted as the relative angle between two segments of tendon.
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Fig. 6. 
Experimental Setup: DCM, CMOS camera, linear sliding stage was fixed to the optical table 

to avoid the vibration; the tendon was fixed to the force sensor and then actuated gradually 

to keep the quasi-static scenario.
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Fig. 7. 
Shape comparison between the model data and experimental data with free bending and 

unbending phases: (a) shows the applied force; (b) shows the comparison with free bending 

phase; (c) shows the comparison with unbending phase.
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Fig. 8. 
Display of tendon force distribution along the channel when DCM is bent and unbent
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Fig. 9. 
Shape comparison between the model data and experimental data with the external tip force: 

(a) & (c) show the applied force; (b) & (d) show the shape comparison.
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Fig. 10. 
Variation of notches: Pattern B shows the DCM cut off by the cross angular notch; Pattern C 

shows the DCM cut off by the uncrossed and symmetrical V-shaped notch.
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TABLE I

Description of separated links

Link J2i−1 J2i RRi+1 Ui

Projection & 
neural axis

Angular rate of 
change

u;j*(s) −u;j*(s)

IEEE ASME Trans Mechatron. Author manuscript; available in PMC 2018 February 01.


	Abstract
	I. Introduction
	II. Overview of DCM With Compliant Joints
	A. Structure
	B. Workspace and Payload Capability

	III. Partition Approach of DCM with Compliant Joints
	IV. Mechanical Model With Tendon Actuation And Parameters Calculation
	A. Review of Classic Cosserat Rod Theory
	B. Geometrical Parameters of Flexible Links -
J2i−1 and
J2i
	(1) Determination of cutting plane and parameters
	(2) Calculate I(s) and A(s)

	C. Geometrical Parameters of Rigid Links-
RRi+1
	D. Geometrical Parameter of U-shaped Links -
Ui
	E. Model Assumptions and DCM Configuration
	F. Tendon Coupled Model
	(1) The tip section
	a) Tendon interaction at
P2N+2
	b) Section property and boundary conditions

	(2) The mid-section
	a) Tendon interaction at P2i+3 and
P2i+2
	b) Section property and boundary conditions

	(3) The base section

	G. DCM Kinematics
	H. Consideration of Friction Force

	V. Experimental Validation and Results
	A. Experimental Setup
	B. Calibration of the Equivalent Young’s Modulus
	C. Calibration of the Friction Coefficient
	D. Tendon Force Distribution Along the Channel
	E. Experiments with the External Tip Force and External Force on the DCM
Body

	VI. Discussion
	A. Sources of Error
	B. Variation of Notches

	VII. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	TABLE I

