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Abstract

Tuberculosis (TB) is a world-wide health problem with approximately 2 billion people infected 

with Mycobacterium tuberculosis (Mtb, the causative bacterium of TB). The pathologic hallmark 

of Mtb infection in humans and Non-Human Primates (NHPs) is the formation of spherical 

structures, primarily in lungs, called granulomas. Infection occurs after inhalation of bacteria into 

lungs, where resident antigen-presenting cells (APCs), take up bacteria and initiate the immune 

response to Mtb infection. APCs traffic from the site of infection (lung) to lung-draining lymph 

nodes (LNs) where they prime T cells to recognize Mtb. These T cells, circulating back through 

blood, migrate back to lungs to perform their immune effector functions. We have previously 

developed a hybrid agent-based model (ABM, labeled GranSim) describing in silico immune cell, 

bacterial (Mtb) and molecular behaviors during tuberculosis infection and recently linked that 

model to operate across three physiological compartments: lung (infection site where granulomas 

form), lung draining lymph node (LN, site of generation of adaptive immunity) and blood (a 

measurable compartment). Granuloma formation and function is captured by a spatio-temporal 

model (i.e., ABM), while LN and blood compartments represent temporal dynamics of the whole 

body in response to infection and are captured with ordinary differential equations (ODEs). In 

order to have a more mechanistic representation of APC trafficking from the lung to the lymph 

node, and to better capture antigen presentation in a draining LN, this current study incorporates 

the role of dendritic cells (DCs) in a computational fashion into GranSim.

Results—The model was calibrated using experimental data from the lungs and blood of NHPs. 

The addition of DCs allowed us to investigate in greater detail mechanisms of recruitment, 

trafficking and antigen presentation and their role in tuberculosis infection.

Conclusion—The main conclusion of this study is that early events after Mtb infection are 

critical to establishing a timely and effective response. Manipulating CD8+ and CD4+ T cell 
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proliferation rates, as well as DC migration early on during infection can determine the difference 

between bacterial clearance vs. uncontrolled bacterial growth and dissemination.
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agent-based model; multi-compartmental model; tuberculosis; dendritic cells; uncertainty and 
sensitivity analysis

1. Introduction

Tuberculosis (TB) remains one of the main causes of death world-wide and the leading 

cause due to an infectious disease [1]. For such an ancient disease, it is surprising that so 

little is still known about what provides a protective response against infection with 

Mycobacterium tuberculosis (Mtb), the causative agent. When infection occurs with Mtb, 

two main outcomes are observed. One is active disease where the host is unable to contain 

infection, which if left untreated results in death of the host (about 5%–10% of those 

infected). Active disease can occur directly after infection (primary TB), after reactivation 

(see below) or in the case of re-exposure (which is probably the most common pathway 

leading to disease in highly endemic countries). The difference between re-exposure and re-

activation likely plays a role in the immune response observed. The second outcome is latent 

infection. This occurs when the host controls infection, which remains clinically latent even 

though bacteria are still harbored (about 90% of infected) [2]. Latent infection can become 

reactivated if the host is compromised in some way leading to active disease. There is still 

no efficacious vaccine against Mtb, although ~30 vaccines are in various stages of testing 

and clinical trials (http://www.aeras.org/). Long regimens of antibiotics (6–9 months) with 

multiple drugs are needed to control infection. Antibiotics also represent a double-edged 

sword, since they lead to Mtb resistance (which is rapidly increasing), especially due to long 

time regimens that are naturally associated with non-compliance. New treatment and 

prevention strategies are desperately needed to make a major impact on TB morbidity and 

mortality. However, the host-pathogen interactions occurring during Mtb infection are 

complex and span across multiple biological scales, ranging from bacterial and cellular to 

organ to an entire host, making research on TB challenging.

When Mtb bacteria are inhaled into lungs, they are taken up by two types of lung resident 

immune cells that are known generally as antigen-presenting cells (APCs): these are 

macrophages (MΦs) and dendritic cells (DCs). Mtb is preferentially an intracellular 

pathogen, however their growth rate is extremely slow compared to most bacteria (days 

rather than minutes). APCs are typically unable to kill Mtb unless they are in a highly 

activated state, and thus bacteria grow and burst out of these cells, killing their host cell; and 

are taken up by new APCs. This process continues, leading to the development of the 

hallmark of Mtb infection: a granuloma. Granulomas are a collection of host immune cells 

(e.g., macrophages, DCs and T cells) together with bacteria and infected cells, with a 

centralized necrotic region. It is presumed that the organization is an attempt to contain or 

eliminate the infection, but Mtb have evolved mechanisms that permit survival within 

granulomas. Within a single host, several granulomas form in response to the initial 

infection dose, and these granulomas are heterogeneous with variable trajectories, 
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complicating the study of this infection [3–5]. For example, in some hosts none of the 

granulomas are successful at controlling bacterial replication, and those that fail lead to a 

pattern of dissemination and new granuloma formation, resulting in lung destruction and 

active TB. In other hosts, granulomas can all be successful and the host can develop latent 

infection. Thus infection dynamics play out at the scale of granuloma. T cells play a central 

role in protection against TB [6–11], as best exemplified by the dramatic susceptibility of 

HIV+ humans to TB, even in the early stages of HIV infection [12–14]. Other immune cells 

are increasingly shown to play key roles in the immune dynamics of Mtb infection and T 

cells are interdependent on their dynamics.

What has received far less attention are the cells of the early immune response in Mtb 

infection, e.g., DCs, and it is likely that these cells bridge to long-term immunity in 

important and key ways. Figure 1 shows how dynamics occurring in lungs, lymph nodes and 

blood are dynamically linked and each participates in the host-pathogen interactions 

describing Mtb infection. Most experimental studies focus on a single biological (length 

and/or time) scale of interest, e.g., examination of immune cells in blood or a particular 

signaling pathway. To truly understand the complex in vivo immune response to Mtb, it is 

important to integrate information from experiments performed at multiple scales and over 

multiple physiological compartments (lung, blood, lymphatics, and lymph nodes). To 

address this complex disease we thus need a comprehensive and integrative tool to generate 

testable hypotheses about what characterizes an effective immune response to Mtb infection. 

We use a mathematical and computational modeling approach to identify key features of the 

host immune system that can serve as targets for control of infection. We focus specifically 

on the role of dendritic cells as they serve as the link between physiological compartments 

of lungs and lymph nodes (LNs) that generate activated immune cells that can traffic to lung 

granulomas to aid in infection control.

Mathematical/computational models are powerful tools for deciphering the outcomes of 

multiple simultaneous, nonlinear processes. In particular, agent-based models (ABMs) link 

molecular and cellular behavior—and therapeutic interventions aimed at molecules and cells

—with tissue scale outcomes, such as a growing or stable granulomas or containment of 

infection. Excellent reviews on ABMs can be found in [15–18]. Because we are interested in 

individual cellular behavior, ABMs are the appropriate modeling type here.

While we have modeled the host-Mtb response using non-linear ordinary differential 

equation (ODE) systems [19–23], we and others have built ABMs that capture both the 

spatial and temporal dynamics of granuloma formation in the lung [20,22,24–28]. Our 

modeling framework, GranSim, focuses on immune dynamics in the context of bacterial 

dynamics is a hybrid agent-based model (for full details see [29]). We have used GranSim to 

explore drug treatment during Mtb infection [30–32] and performed virtual clinical trials to 

predict optimal treatment strategies [30–35]. Here we explore a version of GranSim that is 

multi-compartment, where the hybrid ABM is connected to two non-linear systems of ODEs 

tracking compartmental models capturing dynamics of blood and lung draining LNs. This 

multi-compartment model was recently used to explore the existence of biomarkers for TB 

[36]. However in that model, we only had a mathematical phenomenological proxy for 

APCs moving from the lung to the LN and similarly a probability function capturing 
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recruitment of T cells from the LN back to the granuloma. Here, we replace the 

phenomenological expressions for these processes by explicitly including DCs in the lung 

model GranSim, and tracking their trafficking from lung to LN where they orchestrate 

priming of T cells. We use our sensitivity and uncertainty analyses techniques to analyze the 

3-compartmental hybrid system and identify which mechanisms are driving different 

granuloma outcomes in the lung [37]. In addition, we derive a way to scale our single 

granuloma lung model to a whole host scale so that we are not only able to calibrate our 

model with data, but also so we are able to compare our results with data derived from non-

human primates (NHP) as we have done previously [36]. Our predictions can be used to 

predict how certain treatments could improve infection outcomes.

2. Materials and Methods

2.1. GranSim: Computational Model of Granuloma Formation and Function in the Lung

The pathologic hallmark of Mycobacterium tuberculosis (Mtb) infection in humans and 

NHPs is the formation of spherical structures, primarily in the lungs, called granulomas. 

Infection occurs after inhalation of Mtb into the lungs. Resident antigen presenting cells 

(APCs) such as MΦs and DCs, take up Mtb and initiate granuloma formation. DCs traffic to 

lung-draining LNs where T lymphocytes are primed. These T lymphocytes migrate to the 

lung and participate in granuloma formation and function (see Figure 1). We have developed 

a hybrid agent-based model (ABM, labeled GranSim) describing in silico cellular (i.e., 

macrophages and T cells), bacterial and molecular behaviors during Mtb infection in three 

physiological compartments: lung (site of infection), draining lymph node (LN, site of 

generation of adaptive immunity) and blood (a measurable compartment) [36].

Our computational model captures single granuloma formation and function in the lung 

[24,25,38,39], while LN and blood compartments [19,40] represent dynamics of the whole 

body in response to infection, i.e., we assume they are well-mixed compartments.

GranSim captures cellular recruitment to lungs, chemotaxis of cells, changes of cell states 

(activation, infection, etc.), cytokine and chemokine secretion, as well as effector T cell 

functions [24,25,38,39,41]. Probabilistic interactions between immune cells and bacterial 

populations are described by sets of rules between immune cells and Mtb in the lung that are 

updated based on new biological data [39,42,43]. We also capture multi-scale events, such as 

tumor necrosis factor (TNF) or interleukin-10 (IL-10) receptor/ligand binding and 

trafficking and intracellular signaling events with ordinary differential equations (ODEs) that 

are solved within each agent [38,39,41–43]. Diffusion of relevant chemokines and cytokines 

is performed by solving the relevant partial differential equations (PDEs) [44]. Each 

simulation follows events over several hundred days, building over time to track thousands 

of individual cells (agents). Based on our recent work [32], we represent the section of lung 

tissue where granuloma typically develops with a larger spatial grid (4 × 4 mm) to better 

capture physiological granuloma sizes (with mean and standard deviation of 2 and 0.5 mm, 

respectively, on a collection of ~500 granulomas, see [32] for details). This new, larger grid 

size comprises a collection of 200 × 200 micro-compartments sized to a macrophage 

diameter of ~20 mm. All of the rules and an executable file for GranSim can be found at 

[29].

Marino and Kirschner Page 4

Computation (Basel). Author manuscript; available in PMC 2017 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2. Multi-Compartment Gransim: Tracking Cell Dynamics in the Lymph Node and Blood

Our unique multi-scale and multi-physiological compartmental, hybrid computational model 

generates in silico data on dynamics of infection in both blood and lymph node, capturing 

formation of independent granulomas in lungs and at the same time T cell profiles in blood. 

In a recent study [36], we easily captured LN and blood dynamics using a 

compartmentalized system of non-linear 31 ordinary differential equations (ODEs), where 

we tracked CD4+ and CD8+ T cells with different memory classes (i.e., Naïve, Effector, 

Central and Effector Memory), both Mtb-specific and non Mtb-specific. Mtb-specific T cells 

represent a generic class of antigen-specific T cells, assuming that all Mtb-specific antigens 

are equally immune-responsive. This system of ODEs can be found in the Supplementary 

File 1.

2.3. Adding DCs to GranSim

In order to have a better representation of APC trafficking from the lung to the lymphatics, 

herein we added a new class of cells to GranSim, namely dendritic cells (DCs). DCs are 

considered professional APCs, since their main task is to sample tissues and blood for 

foreign cells/non-self particles/antigen and, when needed, to traffic to specific organ 

draining lymph nodes to initiate a specific immune response by presenting their findings to 

T cells. The initial number of resident DCs in lungs is based on a fraction 

(percentOfMacInitNumber) of resident macrophages in the lung, and consequently on the 

grid. These numbers are calibrated from experimental staining of healthy lung tissues in our 

previous studies [20,22]. DC recruitment to the lungs is executed with a random probability 

of percentOfMacInitNumber. Once on the grid, we assume that a DC moves and secretes 

cytokines and chemokines similarly to [45,46].

The first major difference between macrophages and DCs in our model is that macrophages 

can take up Mtb and kill their intracellular load, while it has been shown that DCs do not kill 

their intracellular burden [47–49]. Macrophages can do this task more efficiently when 

stimulated by cytokines such as INF-γ. Another major difference between macrophage and 

DC dynamics in our model is that once a DC interacts directly (or indirectly) with Mtb 

antigens, it is labeled as “stimulated”. Mtb antigen stimulation can occur in the following 

ways: (i) DCs uptake Mtb; (ii) Infected Macs are in the DC in the Moore Neighborhood (i.e., 

defined as the grid spaces on a two-dimensional square lattice that are composed of a central 

grid space and the eight grid spaces that surround it) [50]; (iii) Extracellular Mtb are in the 

Moore Neighborhood of a DC and (iv) Dead Mtb are in the Moore Neighborhood (i.e., the 

surrounding 8 grid compartments of a given grid space in the ABM) of the DC.

Once DCs are stimulated, a parameter determines the time of DC exit from the lung and 

allows it to migrate into the lymphatics (exitInterval), which is the conduit to the draining 

LN. In contrast, macrophages never exit the grid, they can only die (via age or by being 

killed a number of different ways (Apoptosis, induced cell death by cytoxic T cells, etc.). 

The lymphatics are represented in the model as a virtual compartment to mimic spatial 

delays during DC trafficking from the site of infection to the LN. After exiting the lung, DCs 

are placed in a queue, where another parameter (exitToLN) tracks the physiological delay 

observed for DCs to reach the draining lymph node. This delay is observed on average to be 
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about a few days to a week in most infections [51]. Once in the LN, DCs perform antigen 

presentation leading to T cell priming and activation as described in [19,36].

2.4. Scaling to Host Feature

When a host is infected with Mtb, not one, but a large number of granulomas form in the 

lungs over time. The median number of granulomas at 4 weeks was 46 ± 21 (range 13–97, n 
= 14 monkeys) [52]. This number is due to the bacterial dose that the host receives, and also 

the ability of bacteria to disseminate in the lung. GranSim currently captures granuloma 

formation and function of a single granuloma during TB infection in the lung. We now 

explicitly introduce a scaling factor (i.e., scalingMDC) to capture TB infection in the whole 

lung. In other words, we multiply the number of DCs migrating to the LN from our single 

granuloma model by scalingMDC to represent multiple granulomas draining DCs into the 

LN. This larger number of DCs is then passed to the ODE system representing the LN-

Blood compartments, where the DC Equation (S1) is pulsed accordingly (see more details 

below). We calibrate this scaled GranSim (that is coupled to the LN and blood ODE model) 

to experimental data derived in the lung and the blood for each non-human primate (NHP). 

The blood data is available longitudinally, while the lung data is taken from many different 

NHP at the time of death (necropsy) over different time, that we collate into a time series 

(see section below on NHP data for a full explanation and also [19]).

We assume that the majority of the granulomas found in the lung at necropsy (i.e., the 

parameter scalingMDC) have developed at the time of initial infection. The scaling to host 

step is performed by multiplying the number of stimulated DCs in our in silico granuloma 

by scalingMDC. The resulting quantity pulses Equation (S1) of the system of ODEs, namely 

the equation capturing DC dynamics (see Supplementary File 1 for all the details on the 

equations cited in the manuscript).

Figure 2 shows an example of the scaling to host procedure with scalingMDC = N. Antigen 

presentation (see Equations (S2) and (S11)) and T cell priming (see Equations (S3)–(S6) and 

(S12)–(S15)) are then performed in the lymph node compartment and many different T cell 

phenotypes are generated and migrate from LN into the blood. Some of these T cells traffic 

through blood and reach the site of infection. This is driven by chemokine gradients and 

many signals induced by infection and inflammation in the lung. Since we only model one 

granuloma in detail (i.e., GranSim), we recruit Effector-(E) and Effector Memory-(EM) T 

cells to GranSim first and update T cell levels in blood. Then, we perform recruitment N−1 

times to mimic recruitment in the remainder of the granulomas in the lung. Recruitment in 

these N−1 granulomas is performed assuming similar recruitment conditions at their 

vascular sources. At the end of each recruitment step, the blood levels are updated reflecting 

the number of E- and EM-T cells that have successfully migrated to the other granulomas.

2.5. Uncertainty and Sensitivity Analysis

We quantify the importance of each host mechanism involved directly and indirectly in the 

infection dynamics using statistical techniques known as uncertainty and sensitivity 

analyses. In our recent published review on uncertainty and sensitivity (US) analyses 

techniques [54], we showed how multidimensional parameter spaces can be globally 
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sampled in a computationally efficient manner by Latin hypercube sampling (LHS) 

algorithms. Correlations between model output and parameter values can then be determined 

using Partial Rank Correlation Coefficient (PRCC), which varies between −1 (perfect 

negative association/correlation between model output and parameters) and +1 (perfect 

positive association/correlation between model output and parameters). A PRCC value of 

zero or close to zero can be interpreted as having no (significant) association/correlation 

between model output and parameters. Statistical tests are available to assess whether a 

PRCC is significantly different from 0, as well as if two PRCCs are significantly different 

(see [37] for a complete review). In this work we specifically address time-dependent 

correlations that can be tracked by plotting time courses of significant PRCCs with respect 

to many outputs classified as contributing to inflammation, infection, adaptive immune 

response and blood/lymph node factors. By combining both of these analysis tools [55–58], 

we guide our understanding as to how and what extent variability in model mechanisms 

captured by parameter values can affect infection outcomes in an ordered fashion. We have 

successfully used this approach in our previous studies, both equation-based (i.e., ordinary, 

partial and delay differential equation systems), as well as agent-based model settings 

[24,25,59–61].

Our computational model is a hybrid model which combines a deterministic system of 

ordinary differential equations with a stochastic agent-based model. Thus we need to address 

both epistemic (or subjective, reducible, type B uncertainty, see [62]) and aleatory (or 

stochastic, irreducible, type A) uncertainty (see [37,62] for details). Epistemic uncertainty is 

driven by input/parameter variation, which is assumed to be constant throughout the in silico 

simulation. Aleatory uncertainty emerges anytime stochastic inputs/parameters are built into 

an in silico simulation. Thus, unless the random generator selects the same seed, a stochastic 

model will always generate different outcomes.

To address epistemic uncertainty we perform 1000 parameter sweeps (i.e., parameter 

samples), while aleatory uncertainty is addressed by performing 10 replications for each 

parameter sweep/combination. This yields 10,000 replications of the model that gives us a 

solid basis for analysis. We then calculate PRCCs with respect of the many outcomes under 

investigation on the mean of the 10 replicates to control for random effects and aleatory 

uncertainty.

Given the multi-compartmental nature of our system, detailed uncertainty and sensitivity 

(US) analyses were applied to our model to explore model dynamics both within the same 

compartment (intra-compartmental/intra-scale) and between different compartments or 

physiological scales (inter-compartmental/inter-scale). Here, we vary 50 parameters total: 8 

initial conditions for T cell memory phenotypes in the blood, 36 parameters in the LN-Blood 

compartment and 6 parameters in the lung compartment (see Tables 1 and 2 for the 

parameters varied and the ranges we used).

We examined the following 16 time points (shown as days post infection) during infection 

progression, chosen to match the time points of the NHP blood data samples, namely 1, 10, 

20, 30, 42, 50, 56, 60, 70, 84, 90, 100, 111, 140, 167 and 200 days. A list of outputs 
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analyzed with the correspondent sensitivity coefficients is shown in Tables 3–5, as well as in 

Figures 5–7.

2.6. Experimental Data: Non Human Primate Lung and Blood Data

For the purpose of model calibration both in the lung and blood compartments, we used the 

dataset described in our recent work [19]. Briefly, for the blood compartment, a total of 58 

cynomolgus macaques (Macacca fasicularis) or non-human primates (NHPs) were 

previously infected with a low dose of Mtb (Erdman strain, ~25–50 CFU). Blood samples 

were taken from 28 NHPs at the following time-points: pre Mtb infection and at days 10, 20, 

30, 42, 56, 90 (or M3, 3 months), 120 (or M4), 150 (or M5) and 180 (or M6) post infection. 

Levels of T cells were measured, and stratified by CD4+ and CD8+ memory sub-

populations based on the surface markers on the cells (expression of CD45RA and CD27, 

namely Naïve-N [CD45RA+ CD27+], Central Memory-CM [CD45RA− CD27+], Effector 

Memory-EM [CD45RA− CD27−] and Terminally Differentiated-TD or Effector-E 

[CD45RA+ CD27−]) For experimental data in the lung, numbers of granulomas and 

numbers of bacteria (referred to as colony forming units, or CFUs) per granuloma were 

collected at necropsy from 43 NHPs. See Supplementary Files 2 and 3.

3. Results

The results will be presented in two main parts. First we show how the updated model was 

calibrated to the experimental data to ensure the model is appropriate for study. In the 

second part we use uncertainty and sensitivity analysis methodologies applied to the 

comprehensive model to investigate and predict mechanisms that drive infection and other 

outcomes during the interplay between Mtb and the host.

3.1. Model Calibration—Lung and Blood Compartments

Our granuloma models were developed, calibrated and validated using extensive data 

primarily from NHPs and humans, and where lacking, from mice 

[21,24,25,34,36,38,39,41,63,64]. We calibrated the current model to NHP experimental data 

in the lung (i.e., bacteria known as colony forming units, or CFU per granuloma) and blood 

(memory T cell levels). Tables 1 and 2 show the ranges used to generate our in silico dataset 

of 3000 model simulations of CFU dynamics in the lung as well as T cell dynamics in the 

blood. Figure 3a shows our model calibration to experimental data on the number of bacteria 

(given as CFU, or colony-forming-units) per granuloma from the lungs of NHPs [32,38,42]. 

GranSim also provides the ability to not only track temporal dynamics of cells and 

molecules but also their spatial distribution, which can be validated directly by experimental 

data that are also provided from NHP granulomas. This allows for comprehensive spatial 

and temporal investigation of mechanisms driving the heterogeneity and variability that is 

observed in granuloma types and their corresponding outcomes (see Figure 3b for examples 

of multiple in silico granuloma snapshots taken from the 3000 simulations and Figure 3 

from [36] for examples of a comparison between a lung granuloma from an NHP with one 

generated from GranSim).
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The current computational model was also calibrated with respect to blood T cell dynamics 

as measured in [36] (see Figure 4). Blood NHP experimental data are compared to median, 

5th and 95th percentiles of our 3000 model simulations in the blood/LN compartments. Due 

to the limited and extremely variable NHP dataset that was available from the blood 

compartment, minimum and extremely variable NHP dataset that was available from the 

blood compartment, minimum and maximum ranges at each time point were chosen across 

all the subjects in order to establish the boundaries of our model simulations. Both the 

interpretation and accuracy of the measures of these different memory phenotypes in vitro 

are still being assessed (see [36] for a complete discussion of the uncertainty and variability 

associated with the NHP blood data and the current state-of-the-art in terms of cell profiling 

and Mtb-specificity). Currently the variability associated with each blood measure is not 

quantifiable experimentally (experiments by our collaborators are in progress in order to 

give us a better understanding of the experimental pure error for each blood assay). Thus, 

our major goal in calibrating blood dynamics was to ensure that our in silico simulations fell 

reasonably within the general behavior of the data (e.g., medians), rather than reproducing 

its large variability (e.g., min/max). Figure 4 illustrates how the model recapitulates the 

experimental data of host cell classes. Specifically, the predictions for the median 

trajectories of the Central Memory phenotypes are only affected for the maximum ranges. 

This can be explained by our uncertainty analysis assumptions. We assumed, a priori, 

uniform probability density functions for all the parameters and initial conditions that we 

varied (see Uncertainty Analysis section), thus we were forced to use conservative ranges for 

the Central Memory initial conditions in order to place the model median initial condition 

close to the median of the experimental data.

3.2. Bacterial, CD4 and CD8 Proliferation Impact Infection Burden at the Granuloma Site

After the model was adequately calibrated to the experimental data, we used it to ask 

questions about mechanisms playing key roles in immune protection, controlled 

inflammation, and in general adaptive immune response magnitude and timing during 

infection. Inflammation is associated with an immune response that is mounted in response 

to an infection. Typically, once infection is reduced and cleared, inflammation subsides. To 

adequately investigate mechanisms driving infection and inflammation, we perform 

uncertainty and sensitivity analysis (US/A) on many outcomes of the model (see Appendix 

B) at different times during the simulations, from the early onset (first 2 months), up to 200 

days post infection. The results for the main mechanisms driving infection (e.g., total 

bacterial burden, or infected cells) are shown in Table 2.

US/A results support a key role for T cell priming and proliferation (in the lymph node) in 

mounting a protective immune response to Mtb infection. In particular, by increasing CD8+ 

T cell proliferation we can impact a large spectrum of host and pathogen immunological 

events, from total levels of infection (e.g., bacterial numbers in the lungs, total infected cells, 

…) and inflammation, to granuloma size and how much central caseation is present in 

granulomas. Table 2 highlights mechanisms/parameters that we found to be significantly 

associated with changes in infection correlates, such as total numbers of infected 

macrophages or numbers of dendritic cells, total bacteria numbers and granuloma size. Not 

surprisingly (as a positive control), higher bacterial numbers and numbers of infected 
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macrophages emerge from increasing bacterial growth rates (intracellular). Increasing rates 

of CD4+ and CD8+ T cell proliferation, as well as rates of CD8+ T cell priming in LN have 

a positive impact on total bacteria in lung (lower levels). The latter three mechanisms 

exemplify the concept of inter-compartmental/inter-scale effects, where mechanisms 

operating in one compartment/organ (LN in our case) are affecting outcomes in a different 

compartment/organ (lung in our case). On the other hand, the significant effect of bacterial 

growth rate on outcomes clearly illustrates an intra-compartmental/intra-scale effect.

Figure 5 shows time courses of the sensitivity indexes (i.e., PRCCs) for some of the outputs 

in Table 2. A vertical dotted line on the plots represents the early events (i.e., first 2 months 

post infection). Some mechanisms/parameters have a significant PRCC only early on during 

infection (e.g., intracellular bacterial growth rate in Figure 5a), while some elicit their 

regulatory effects only late during infection (e.g., CD8+ T cell priming [k11] in Figure 5b). 

Interestingly, the CD8+ T cell precursor proliferation rate [k13] changes their impact on the 

granuloma size over time (Figure 5d).

3.3. Priming and Proliferation in the LN Drives Inflammation at the Site of Infection

Inflammation is when many immune cells and molecules are recruited and secreted at a site 

of infection. This is a double-edged sword in most infections where the influx of mediators 

is helpful to control infection; however, too much inflammation can cause damage to the 

host and so must be tightly regulated. Here, we have many ways to represent inflammation 

in the model. Table 3 and Figure 6 showcase different outputs that we track over time that 

are associated with pro- and anti-inflammatory events at the site of infection of the lung. 

Table 3 shows sensitivities associated to total macrophage activation, total Pet Hot (a proxy 

for metabolically active sites as measured through PET CT scan, see Figure 2 legend herein 

and for details [53,65]), tissue damage (caseation/necrosis), a pro-inflammatory molecule 

(Tumor Necrosis Factor—TNF) and an anti-inflammatory molecule (Interleukin 10—IL-10). 

Typically it is thought that inflammation in tuberculosis, and most diseases, is associated 

with infection. However Table 3 shows only a marginal direct effect of bacterial growth rate 

on inflammation. This suggests the host is mediating most of the inflammation observed.

While higher CD4+ T cell proliferation rates (i.e., k4) in the LN compartment are naturally 

associated with higher levels of macrophage activation (i.e., a necessary step in macrophage 

activation), higher CD8+ T cell proliferation rates (i.e., k13) have a general anti-

inflammatory role, likely due to the higher levels of killing of infected cells and lower levels 

of bacteria. However, the higher cytotoxicity, likely associated with higher CD8+ T cell 

proliferation rates, results in greater tissue damage, as shown by the strong positive 

correlation between k13 and higher levels of central caseation/necrosis within granulomas. It 

is interesting to note how the levels of IL-10 (a typically anti-inflammatory molecule) are 

strongly affected by the different effector T cell chemokine thresholds for recruitment at the 

site of infection as compared to TNF, which is more of a pro-inflammatory molecule. Figure 

6 shows a more comprehensive picture of the impact of many of these mechanisms on 

inflammation dynamics during infection, emphasizing the timing aspect as well: some are 

important early (e.g., chemokine threshold for recruitment, Figure 6a,b) versus later in 

infection progression (e.g., k13 in Figure 6b–d).
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3.4. T Cell Priming, Proliferation and Trafficking Determine the Timing and Magnitude of 
the Immune Response at the Site of Infection and in the Blood

A protective immune response is one where not only is the bacteria cleared or strongly 

contained, but where damage to the host, induced by too much inflammation, is controlled. 

Using our US/A, we characterized key mechanisms driving a protective immune response at 

the site of infection by tracking Mtb-specific T cells as well as dendritic cell dynamics in the 

lung (see Table 4). CD8+ T cell proliferation (k13) shows up again with very strong 

correlations across all outcomes. It is interesting to note how Tγ and Tcyt seem to be 

complementary: high CD8+ T cell proliferation rates mirror lower levels of Tγ cells at the 

site of infection. Regulatory T cells (Tregs) are represented as a fraction of Tγ in the model 

(for the details of the ODE system describing lymph node and blood dynamics, see 

Supplementary File 1), thus both outcomes are affected by the same mechanism (e.g., k4—

CD4 precursor proliferation). Tables 3 and 5 emphasize a key protective role for both 

cytotoxic T-cell and Tγ-cell responses in the lung (Figure 7a,b). However, these results 

suggest a more comprehensive role for CD8+ T cell priming and proliferation in regulating 

not only adaptive immune response magnitude in the blood and at the site of infection, but 

also on DC stimulation/maturation and trafficking. Mechanisms impacting blood outcomes 

are shown in Table 5 and Figure 7c,d. Here we see how most of the mechanisms elicit their 

effect early during infection (first 2 months post infection, as shown by the dotted vertical 

line in Figures 5–7), suggesting that the events happening right after the onset of the 

infection can shape a more protective response in the long term (which is ideal in a chronic 

infection such as tuberculosis).

Delaying trafficking of DCs to lymphatics and ultimately to the LN has a negative impact on 

all the memory T cell phenotypes in the blood (see lungExitInterval and lymphExitInterval 
mechanisms in Table 5 and Figure 7c,d). Again, this impact is important early during 

infection. Higher levels of resident DCs in the lung before infection are also important in 

establishing a more protective role for effector and effector memory T cell phenotypes in the 

blood (see Figure 7c,d). This latter result stresses again how early events are critical to 

establishing an effective and timely response during Mtb infection.

4. Discussion

A key step to mounting a protective immune response to Mtb and to most bacterial infection 

is represented by CD4+ and CD8+ T cell priming in lymph nodes. Facilitating migration of 

dendritic cells from the site of infection to the lymphatics, as well as enhancing trafficking 

of CD4+ and CD8+ effector T cells from the blood to the site of infection represent an 

important mechanism that could impact TB granuloma formation and function, and 

ultimately determine the outcome of TB infection in the host.

This study takes a multi-compartmental approach to studying antigen presentation, T cell 

priming, differentiation and trafficking in the context of TB granuloma formation. To better 

address these mechanisms, we built a new cell type, namely dendritic cell, into our existing 

multi-compartmental agent-based model of TB granuloma formation in the lung coupled to 

blood and lymph node dynamics [36]. This new model formulation allows us to better 

represent and investigate the impact of dendritic cell dynamics [20,22] on important aspects 
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of immunity: antigen presentation, T cell priming, memory T cell generation, and ultimately 

into TB infection progression.

We successfully calibrated the model with non-human primate (NHP) experimental data on 

granulomas and bacterial levels in the lung, as well as longitudinal measures of memory T 

cell levels in the blood. The model is also able to recapitulate typical spatial distribution of 

cells within NHP granulomas in the lung (see Figure 3 in [36]).

The main conclusion of this study is that early events after initial Mtb infection are critical to 

establishing a timely and effective response. Although IFN-γ, macrophage activation and 

CD4+ T cells are necessary for mounting a protective response to Mtb [66], our results 

highlight an equally relevant role for CD8+ T cells, as suggested in previous experimental 

and modeling studies [67–69]. We show how we can lower bacterial burden and 

inflammation at the site of infection by enhancing either CD4+ or CD8+ T cell proliferation 

in the lymph node early on during infection (i.e., within the first 2 months). In some cases 

CD4+ and CD8+ T cells complement each other to achieve protection. For example, high 

CD8+ T cell proliferation rates in the lymph node result in overall lower levels of effector 

CD4+ T cells at the granuloma site (i.e., Tγ cells at the site of infection). In other words a 

larger cytotoxic T cell response (achieved by higher CD8+ T cell proliferation rates) can 

compensate for lower levels of Tγ cells at the site of infection.

Overall, T cell proliferation in the LN and T cell trafficking to the lung determine both the 

timing and magnitude of adaptive response at the site of infection and in the blood. Thus, 

identifying drugs that would enhance these processes could assist in the treatment of 

infection, as has been suggested in tumors [70].

By introducing dendritic cells into the model, we are able to better control both timing and 

magnitude of the mechanisms driving the adaptive T cell responses. In fact, we can 

negatively impact memory T cell phenotypes (both CD4+ and CD8+) by simply delaying 

dendritic cell trafficking to the draining lymph node. However, this outcome can only be 

achieved in the early stages of infection. This conclusion reinforces the working hypothesis 

that the best protective response to Mtb infection has to be mounted very early; otherwise 

the best outcome that can be achieved is a controlled chronic infection.

In the current model formulation, we describe cellular dynamics in the lymph node and 

blood compartments with a sufficient level of detail by a temporal-only representation (i.e., 

ODE system). However, with the introduction of dendritic cells in the model as agents, we 

are now working on implementing different subsets of Mtb-specificity in an ABM 

formulation of LNs [40,71] that can be used to replicate current vaccine clinical trials [72], 

as well as to test innovative immunotherapy strategies already used in cancer [73,74] but 

within the context of TB infection. It is this pairing of mathematical and computer modeling 

with experimental studies that has the greatest potential to push scientific discovery to the 

next level.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

List of parameters and ranges for the computational model. Listed are the baseline parameter 

values used in the lymph node (LN), blood, and ordinary differential equation (ODE) 

compartments along with definitions and references to the values we chose. Those 

parameters marked with a * indicate they were calculated based upon the initial conditions 

of the system and the corresponding LN efflux term. These parameters were not varied 

during Latin hypercube sampling (LHS) experiments as they were constrained by a 

corresponding LN efflux parameter and the assumption that our initial conditions meet 

system homeostasis.

Parameter Value Units Description Reference

α 5.6 × 105 μL
Conversion factor from 

Blood to Ln (max. blood 
volume)

Estimated and [36]

host_Ln [1, 50] count Number of involved lymph 
nodes in the host Estimated

λ [10−5, 10−3] “”

Frequency of 
Mycobacterium 

tuberculosis (Mtb)-specific 
Naïve T cells in the 

blood/LN

[75–77]

scalingMDC [5, 15] Count

Scaling to host factor 
representing the number of 
granulomas developing in 
the whole lung at time of 

infection

[52]

Sn4 * NLN,4 × (α/host_Ln) Cell/μL * day Thymic output of Naïve 
CD4+ T cells

Estimated from 
Uncertainty 

Analysis

Sn8 * NLN,8 × (α/host_Ln) Cell/μL * day Thymic output of Naïve 
CD8+ T cells

Estimated from 
Uncertainty 

Analysis

hs1 25 Cell count Naïve CD4+ T cell 
recruitment half saturation

Estimated from 
Uncertainty 

Analysis

hs4 10 Cell count
Precursor CD4+ T cell 

proliferation half 
saturation

Estimated from 
Uncertainty 

Analysis

hs5 10 Cell count
Precursor CD4+ T cell 

differentiation half 
saturation

Estimated from 
Uncertainty 

Analysis

hs8 40 Cell count
Central Memory CD4+ T 

cell recruitment half 
saturation

Estimated from 
Uncertainty 

Analysis
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Parameter Value Units Description Reference

hs10 25 Cell count Naïve CD8+ T cell 
recruitment half saturation

Estimated from 
Uncertainty 

Analysis

hs11 10 Cell count Naïve CD8+ T cell 
priming half saturation

Estimated from 
Uncertainty 

Analysis

hs13 10 Cell count
Precursor CD8+ T cell 

proliferation half 
saturation

Estimated from 
Uncertainty 

Analysis

hs14 10 Cell count
Precursor CD8+ T cell 

differentiation half 
saturation

Estimated from 
Uncertainty 

Analysis

hs17 157 Cell count
Central Memory CD8+ T 

cell recruitment half 
saturation

Estimated from 
Uncertainty 

Analysis

k1 [5 × 10−3, 1] day−1 Naïve CD4+ T cell 
recruitment rate

Estimated from 
Uncertainty 

Analysis

k2 [10−6, 10−1] day−1 Naïve CD4+ T cell 
Priming rate

Estimated from 
Uncertainty 

Analysis

k3 [10−7, 10−2] day−1 Central Memory CD4+ T 
cell reactivation rate

Estimated from 
Uncertainty 

Analysis

k4 [10−2, 1.2] day−1 Precursor CD4+ T cell 
proliferation rate

Estimated from 
Uncertainty 

Analysis

k5 [0.01, 0.75] day−1
Precursor CD4+ T cell 

differentiation to Effector 
rate

Estimated from 
Uncertainty 

Analysis

k6 0.001 day−1
Precursor CD4+ T cell 

differentiation to Central 
Memory

Estimated from 
Uncertainty 

Analysis

k7 [0.05, 0.75] day−1
Effector CD4+ T cell 

differentiation to Effector 
Memory

Estimated from 
Uncertainty 

Analysis

k8 [0.1, 0.5] day−1 Central Memory CD4+ T 
cell recruitment rate

Estimated from 
Uncertainty 

Analysis

k10 [5 × 10−3, 1] day−1 Naïve CD8+ T recruitment 
cell rate

Estimated from 
Uncertainty 

Analysis

k11 [10−6, 10−1] day−1 Naïve CD8+ T cell 
priming rate

Estimated from 
Uncertainty 

Analysis

k12 [10−7, 10−2] day−1 Central Memory CD8+ T 
cell reactivation rate

Estimated from 
Uncertainty 

Analysis

k13 [10−2, 1.2] day−1 Precursor CD8+ T cell 
proliferation rate

Estimated from 
Uncertainty 

Analysis

k14 [0.01, 0.75] day−1
Precursor CD8+ T cell 

differentiation to Effector 
rate

Estimated from 
Uncertainty 

Analysis

k15 0.001 day−1
Precursor CD8+ T cell 

differentiation to Central 
Memory

Estimated from 
Uncertainty 

Analysis
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Parameter Value Units Description Reference

k16 [0.05, 0.75] day−1
Effector CD8+ T cell 

differentiation to Effector 
Memory

Estimated from 
Uncertainty 

Analysis

k17 [0.05, 0.75] day−1 Central Memory CD8+ T 
cell recruitment rate

Estimated from 
Uncertainty 

Analysis

μ1 0.2 day−1 Effector CD4+ T cell death 
rate [19,20,22,23,36]

μ2 0.04 day−1 Effector Memory CD4+ T 
cell death rate [19,20,22,23,36]

μ3 0.2 day−1 Effector CD8+ T cell death 
rate [19,20,22,23,36]

μ4 0.04 day−1 Effector Memory CD8+ T 
cell death rate [19,20,22,23,36]

μ5 [0.1, 1] day−1 APC death rate [19,20,22,23,36]

μ6 0.1 day−1 Precursor CD4+ T cell 
death rate [19,20,22,23,36]

μ7 0.1 day−1 Precursor CD8+ T cell 
death rate [19,20,22,23,36]

μ8 * 3.93 × 10−4 day−1 Naïve CD4+ T cell death 
rate

μ9 * 2.27 × 10−4 day−1 Naïve CD8+ T cell death 
rate

ρ1 3 × 108 Cell count Precursor carrying capacity [19,20,22,23,36]

Wp4 0.735 “”
Weight factor for Precursor 

CD4+ T in CD8+ T cell 
priming

Estimated from 
Uncertainty 

Analysis

ξ1 * ξ2 × (NLn,nc4/NB,nc4)/α day−1 Naïve CD4 Lymph Influx

ξ2 [0.6, 1] day−1 Naïve CD4 Lymph Efflux
Estimated from 

Uncertainty 
Analysis

ξ3 [2, 5] day−1 Effector CD4 Lymph 
Efflux

Estimated from 
Uncertainty 

Analysis

ξ4 * ξ5 × (CMLn,nc4/CMB,nc4)/α day−1 Central Memory CD4 
Lymph Influx

ξ5 0.489 day−1 Central Memory CD4 
Lymph Efflux

Estimated from 
Uncertainty 

Analysis

ξ6 [2, 5] day−1 Effector Memory CD4 
Lymph Efflux

Estimated from 
Uncertainty 

Analysis

ξ7 * ξ8 × (NLn,nc8/NB,nc8)/α day−1 Naïve CD8 Lymph Influx

ξ8 [0.6, 1] day−1 Naïve CD8 Lymph Efflux
Estimated from 

Uncertainty 
Analysis

ξ9 [2, 5] day−1 Effector CD8 Lymph 
Efflux

Estimated from 
Uncertainty 

Analysis

ξ10 * ξ11 × (CMLn,nc8/CMB,nc8)/α day−1 Effector CD8 Lymph 
Influx
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Parameter Value Units Description Reference

ξ11 [2, 5] day−1 Central Memory CD8 
Lymph Efflux

Estimated from 
Uncertainty 

Analysis

ξ12 [2, 5] day−1 Effector Memory CD8 
Lymph Efflux

Estimated from 
Uncertainty 

Analysis

proliferationTime 8 h Doubling time for cognate 
T cells in the lung [40,71]

maxDivisions 4 − − Max number of divisions 
for T cells in the lung [40,71]

τTγ −CC [1, 20] # molecules Chemokine threshold for 
Tγ recruitment

Estimated from 
Uncertainty 

Analysis

τTγ−TNF [1, 5] # molecules
Tumor necrosis factor 
(TNF) threshold for Tγ 

recruitment

Estimated from 
Uncertainty 

Analysis

τTCyt
–CC [1, 20] # molecules Chemokine threshold for 

Tcyt recruitment

Estimated from 
Uncertainty 

Analysis

τTCyt−TNF [1, 5] # molecules TNF threshold for Tcyt 
recruitment

Estimated from 
Uncertainty 

Analysis

τTreg
−CC [1, 10] # molecules Chemokine threshold for 

Treg recruitment

Estimated from 
Uncertainty 

Analysis

τTreg−TNF [1, 5] # molecules TNF threshold for Treg 
recruitment

Estimated from 
Uncertainty 

Analysis

ProbKillMac [0.05, 0.21] probability Probability of Tcyt to kill 
Macs [19,20,22,23,36]

probKillMacCleanly [0.15, 0.31] probability
Probability of Tcyt to kill 

Macs and all their 
intracellular Mtb load

[19,20,22,23,36]

probApoptosisFasFasL [0.001, 0.02] probability Probability of undergoing 
apotposis induced by Tγ [19,20,22,23,36]

lungExitInterval [6, 144] 10 min

Time it takes a stimulated 
dendritic cell (DC) to exit 

the lung through 
lymphatics

[19,20,22]

lymphaticsExitInterval [6, 40] 10 min
Time a DC takes to traffic 

through the lymphatics and 
reach the lymph node (LN)

[19,20,22]

percentOfMacInitNumber [0.05, 0.25]
%, and used 

as probability 
as well

Percentages of DCs that 
populates the grid initially 
(calculated as a percentage 

of initial resident 
macrophages). It is also 
used for recruitment on 
new DC into the grid, at 
the time a macrophage is 

recruited

[20,22]

growthRateIntMtb [1.0029, 1.0035] 10 min Doubling time of 
intracellular Mtb [23]

growthRateExtMtb [1.00124, 1.0014] 10 min Doubling time of 
extracellular Mtb [23]
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Appendix B

List of all the outcomes of interest analyzed during our uncertainty and sensitivity analysis.

Outcome of Interest Compartment Definition

Inflammation

‘TotalMr’ Lung Total Resting Macrophages

‘TotalDCellMr’ Lung Total Unstimulated Dendritic Cells

‘TotalMa’ Lung Total Activated Macrophages

‘TotPethot’ Lung Total Pet Hot reading from the PET-CT scan

‘NrCaseated’ Lung Number of caseated compartments in the granuloma

‘TNF’ Lung Tumor Necrosis Factor molecues

‘IL10’ Lung Interlukin 10 molecules

Infection

‘TotMtb’ Lung Total Mycobacterium tuberculosis (Mtb) burden

‘IntMtb’ Lung Intracellular Mtb burden

‘ExtMtb’ Lung Extracellular Mtb burden

‘repExtMtb’ Lung Extracellular replicating Mtb burden

‘NonReplExtMtb’ Lung Extracellular non-replicating Mtb burden

‘TotalMi’ Lung Total Infected Macrophages

‘TotalMci’ Lung Total Chronically Infected Macrophages

‘TotalDCellMi’ Lung Total Infected Dendritic Cells

‘TotalDCellMci’ Lung Total Chronically Infected Dendritic Cells

‘LesionSize’ Lung Diameter of the granuloma lesion

Adaptive Immune Response Compartment Definition

‘TγCognate’ Lung Number of Mtb-specific Tγ cells present in the lung

‘TcytCognate’ Lung Number of Mtb-specific Tcyt cells present in the lung

‘TgamRecruitedCognate’ Lung Number of Mtb-specific Tγ cells recruited to the lung

‘TcytRecruitedCognate’ Lung Number of Mtb-specific Tcyt cells recruited to the lung

‘DCellStimulated’ Lung Number of Dendritic Cells that have been stimulated

‘DCellExitedLung’ Lung→lymphatics Number of Dendritic Cells that have left the lung upon 
stimulation

‘DCellExitedLymphatics’ Lymphatics→LN Number of Dendritic Cells that have left the lymphatics to enter 
the lymph node

‘BlN4C’ Blood Concentration of Mtb-Specific Naïve CD4+ T cells

‘BlE4C’ Blood Concentration of Mtb-Specific Effector CD4+ T cells

‘BlCM4C’ Blood Concentration of Mtb-Specific Central Memory CD4+ T cells

‘BlEM4C’ Blood Concentration of Mtb-Specific Effector Memory CD4+ T cells

‘BlN8C’ Blood Concentration of Mtb-Specific Naïve CD8+ T cells

‘BlE8C’ Blood Concentration of Mtb-Specific Effector CD8+ T cells

Marino and Kirschner Page 17

Computation (Basel). Author manuscript; available in PMC 2017 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Adaptive Immune Response Compartment Definition

‘BlCM8C’ Blood Concentration of Mtb-Specific Central Memory CD8+ T cells

‘BlEM8C’ Blood Concentration of Mtb-Specific Effector Memory CD8+ T cells

‘APC’ Lymph node Number of Dendritic Cells in the Lymph Node [LN]

‘LnN4C’ Lymph node Number of Mtb-Specific Naïve CD4+ T cells

‘LnP4C’ Lymph node Number of Mtb-Specific Precursor CD4+ T cells

‘LnE4C’ Lymph node Number of Mtb-Specific Effector CD4+ T cells

‘LnCM4C’ Lymph node Number of Mtb-Specific Central Memory CD4+ T cells

‘LnEM4C’ Lymph node Number of Mtb-Specific Effector Memory CD4+ T cells

‘LnN8C’ Lymph node Number of Mtb-Specific Naïve CD8+ T cells

‘LnP8C’ Lymph node Number of Mtb-Specific Precursor CD8+ T cells

‘LnE8C’ Lymph node Number of Mtb-Specific Effector CD8+ T cells

‘LnCM8C’ Lymph node Number of Mtb-Specific Central Memory CD8+ T cells

‘LnEM8C’ Lymph node Number of Mtb-Specific Effector Memory CD8+ T cells

Abbreviations

The following abbreviations are used in this manuscript:

TB tuberculosis

Mtb Mycobacterium tuberculosis

LN lymph node
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Figure 1. 
Overview of the immune response to Mycobacterium tuberculosis (Mtb) infection. Infection 

begins in lungs and antigen-presenting cells (APCs) such as dendritic cells (DCs) take up 

Mtb and then traffic from lungs to lung draining lymph nodes (LNs) where they prime T 

cells via the process of antigen presentation. This occurs when pieces of Mtb (called 

antigens) are presented on the surface of dendritic cells (DCs) to T cells to activate T cells. 

These T cells migrate back to the lungs via blood, and participate in granuloma formation 

and function, including functions such as activation of macrophages to kill their intracellular 

Mtb [9,15]. Some T cell subsets that have been primed by DCs (cytotoxic CD8+ T cells) can 

kill infected macrophages directly [11,16,17].
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Figure 2. 
Scaling to host methodology. Our in silico model captures single granuloma formation in the 

lung. Panel (A) shows a PET-CT scan of the lung of an infected Non-Human Primate 

(NHP). An important and likely independent driver of Mtb infection outcome is 

inflammation. In vivo 18F-Fluorodeoxyglucose (FDG)-PET/CT signals are used to measure 

the extent of inflammation both in humans [3] and in non-human primates infected with Mtb 

[52,53]. PET-CT scan is an advanced nuclear imaging technique which combines positron 

emission tomography (PET) and computed tomography (CT) into one machine. A PET/CT 

scan reveals information about both the structure and function of cells and tissues in the 

body during a single imaging session. FDG is a PET probe that incorporates into 

metabolically active host cells. FDG avidity is calculated by standardized uptake values 

(SUVs), a measure of the metabolic activity of each granuloma and is corrected for 

granuloma size [53]. The red (“hot”) spots represent inflammation within granulomas 

indicating a number of granulomas are present (image courtesy of Joanne Flynn lab). A 

diagram of our in silico multi-compartment hybrid model is shown in Panel (B). An Agent-

Based Model captures formation of a single granuloma in the lung, while a system of 31 

ordinary differential equations (ODEs) captures the lymph node coupled to the blood 

dynamics of the whole host. Panel (C) illustrates the scaling to host methodology 

implemented to capture recruitment to the other granulomas. Where N−1 granuloma remain 

in the lung with the Nth being the one we model with GranSim.
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Figure 3. 
Computational model calibration: LUNG. (a) Time courses of CFU per granuloma. In red 

are shown NHP experimental data (median, max and min) for colony-forming-units (CFU)/

granuloma (see details in the Supplementary File 2. They are plotted here versus our in silico 

datasets (black) of CFU/granuloma (lung compartment) from our computer simulations of 

3000 granulomas coupled to the blood and LN dynamics). The x-axis shows a time span of 

infection up to 200 days to match the NHP blood data. The y-axis represents bacteria levels 

as CFU/granuloma. The in silico dataset of time courses of CFU/granuloma generated in the 

lung compartment (black circles, with the black solid line representing the median 

trajectory) are plotted together with experimental data on NHP CFU/granuloma (with the 

solid red line representing the median, and the dotted red lines representing the min and max 

values in the NHP data). The median trajectories for both the NHP and in silico data are 

calculated including the granulomas that cleared infection (Mtb < 1), while the min 

trajectories excluded them; (b) Two snapshots of in silico granuloma corresponding to the 

points in the time courses of panel (a)
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Figure 4. 
Computational model calibration (blood compartment). NHP experimental data on blood T 

cell phenotypes (see Supplementary File 3) are plotted here versus the in silico datasets of 

blood T cell phenotypes (blood compartment), from our computer simulations of 3000 

granulomas coupled to the blood and LN dynamics. The x-axis shows a time span of 

infection up to 200 days to match the NHP blood data. The y-axis represents cells/cm3. (a–

h) In silico dataset of 3000 time courses of 8 T cell classes generated in the blood 

compartment (black solid line [mean] and black dashed lines [5th and 95th percentiles]) 

compared to experimental data on T cell phenotypes in the blood of Mtb-infected NHPs (red 

dashed lines with red open circles, representing the min and max). For the minimum and 

maximum of the NHP data we chose the lowest and highest values at any time point across 

all the NHPs. In silico predictions are displayed as median (black solid line) and minimum 

and maximum (dashed black lines). We show Naïve CD4+ T cells (a) and CD8+ T cells (e); 

Central Memory CD4+ T cells (b) and CD8+ T cells (f); Effector CD4+ T cells (c) CD8+ T 
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cells (g) and Memory CD4+ T cells (d) and CD8+ T cells (h). The in silico data have been 

obtained by summing the respective Mtb-specific and non Mtb-specific equations of the 

blood compartment of the computational model [36].
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Figure 5. 
Time courses for Partial Ranked Correlation Coefficient (PRCC) of mechanisms/parameters 

affecting infection outcomes as they relate to Table 2. Each curve plotted is days post 

infection (up to 200 days) on the x-axis and PRCC values on the y-axis (that vary between 

−1 and 1). The PRCCs plotted are only ones that were significant (i.e., p < 10−3) and with an 

absolute value greater than 0.3. Outcomes shown are (a) total Mtb, (b) total infected 

macrophages, (c) total infected dendritic cells and (d) granuloma size. Compare with Table 2 

results. Parameter definitions: k4 [CD4+ T cell precursor proliferation in the LN], k13 

[CD8+T cell precursor proliferation in the LN], :chemokine threshold for Tγ cells 

recruitment to the lung, τTreg−TNF: TNF threshold for Treg cells recruitment to the lung, k11: 

Naïve CD8 priming (see Appendix A for details on the parameters).
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Figure 6. 
Partial Ranked Correlation Coefficient (PRCC) time courses of mechanisms/parameters 

affecting inflammation outcomes. Each plot has days post infection (up to 200 days) on the 

x-axis and PRCC values on the y-axis (between −1 and 1). The PRCCs plotted are the only 

ones that resulted significant (i.e., p < 10−3) and with an absolute value greater than 0.3. 

Outcomes shown are a) total Pet Hot, (b) TNF, (c) IL-10 and (d) total activated 

macrophages. Parameter definitions: —chemokine threshold for Tγ recruitment, 

Tcyt−CC—chemokine threshold for Tcyt recruitment, τTreg−CC—chemokine threshold for 

Treg recruitment, k2—Naïve CD4+ T cell priming, k4—CD4+ T cell precursor proliferation, 

k13—CD8+ T cell precursor proliferation, k14—CD8+ T cell differentiation to effector, 

k11—Naïve CD8+ T cell priming (see Appendix A for details on the parameters).
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Figure 7. 
Partial Ranked Correlation Coefficient (PRCC) time courses of mechanisms/parameters 

affecting adaptive immune response in the lung and blood compartments. Each plot has days 

post infection (up to 200 days) on the x-axis and PRCC values on the y-axis (between −1 

and 1). The PRCCs plotted are the only ones that resulted significant (i.e., p <10−3) and with 

an absolute value greater than 0.3. Outcomes shown are Mtb-specific Effector T cells in the 

lung ((a) CD4+ T cells and (b) CD8+ T cells) and in the blood ((c) CD4+ T cells and (d) 
CD8+ T cell). Parameter definitions: k2—Naïve CD4+ T cell priming, k4—CD4+ T cell 

precursor proliferation, k13—CD8+ T cell precursor proliferation, k14—CD8+ T cell 

differentiation to effector, k11—Naïve CD8+ T cell priming, λ: Frequency of Mtb-specific 

Naïve T cells in the blood/LN, μ5: half-life of Mature DCs in the LN (see Appendix A for 

details on the parameters.)
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Table 1

Initial conditions. These values are based on the experimental data collected and published in our previous 

work [36]. The values and references for the scaling parameters (i.e., α, λ and host_LN (lymph node)) are 

given in Appendix A.

Variable Value Units Description

APC 0 Cell count Antigen presenting cell proxy in the lymph node

NLn,4 NB,4 × (α/host_Ln) Cell count Mtb-specific LN Naïve CD4+ T cell

PLn,4 0 Cell count Mtb-specific LN Precursor CD4+ T cell

EMLn,4 0 Cell count Mtb-specific LN Effector Memory CD4+ T cell

CMLn,4 0 Cell count Mtb-specific LN Central Memory CD4+ T cell

NB,4 [255, 610] × λ Cell/mm3 Mtb-specific Blood Naïve CD4+ T cell

EB,4 0 Cell/mm3 Mtb-specific Blood Effector CD4+ T cell

CMB,4 0 Cell/mm3 Mtb-specific Blood Central Memory CD4+ T cell

EMB,4 0 Cell/mm3 Mtb-specific Blood Effector Memory CD4+ T cell

NLn,8 NB,8 × (α/host_Ln) Cell count Mtb-specific LN Naïve CD8+ T cell

PLn,8 0 Cell count Mtb-specific LN Precursor CD8+ T cell

EMLn,8 0 Cell count Mtb-specific LN Effector Memory CD8+ T cell

CMLn,8 0 Cell count Mtb-specific LN Central Memory CD8+ T cell

NB,8 [255, 610] × λ Cell/mm3 Mtb-specific Blood Naïve CD8+ T cell

EB,8 0 Cell/mm3 Blood Effector CD8+ T cell

CMB,8 0 Cell/mm3 Blood Central Memory CD8+ T cell

EMB,8 0 Cell/mm3 Blood Effector Memory CD8+ T cell

NLn,nc4 NB,nc4 × (α/host_Ln) Cell count Non-Mtb-specific LN Naïve CD4+ T cell

CMLn,nc4 CMB,nc4 × (α/host_Ln) Cell count Non-Mtb-specific LN Central Memory CD4+ T cell

NB,nc4 [255, 610] × (1− λ) Cell/mm3 Non-Mtb-specific Blood Naïve CD4+ T cell

EB,nc4 [47, 254] × (1 − λ) Cell/mm3 Non-Mtb-specific Blood Effector CD4+ T cell

CMB,nc4 [83, 300] × (1 − λ) Cell/mm3 Non-Mtb-specific Blood Central Memory CD4+ T cell

EMB,nc4 [50, 255] × (1 − λ) Cell/mm3 Non-Mtb-specific Blood Effector Memory CD4+ T cell

NLn,nc8 BN,nc8 × (α/host_Ln) Cell count Non-Mtb-specific LN Naïve CD8+ T cell

CMLn,nc8 CMN,nc8 × (α/host_Ln) Cell count Non-Mtb-specific LN Central Memory CD8+ T cell

NB,nc8 [100, 672] ×(1 − λ) Cell/mm3 Non-Mtb-specific Blood Naïve CD8+ T cell

EB,nc8 [43, 317] × (1 − λ) Cell/mm3 Non-Mtb-specific Blood Effector CD8+ T cell

CMB,nc8 [36, 262] × (1 − λ) Cell/mm3 Non-Mtb-specific Blood Central Memory CD8+ T cell

EMB,nc8 [11, 156] × (1 − λ) Cell/mm3 Non-Mtb-specific Blood Effector Memory CD8+ T cell
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