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Abstract

The revolution in individualized therapy for patients with advanced NSCLC has seen the 

emergence of a number of molecularly targeted therapies for distinct patient molecular subgroups. 

Activating anaplastic lymphoma kinase (ALK)-gene rearrangement has been detected in 3%–7% 

of NSCLC cases, and the ALK inhibitor crizotinib is now an approved treatment for patients with 

tumors harboring this event. However, resistance to ALK-targeted therapies is a ubiquitous 

problem in the management of advanced ALK-positive NSCLC, and can be mediated by 

secondary kinase mutations or the activation of compensatory alternative oncogenic drivers. New, 

more potent ALK inhibitors such as ceritinib (LDK378), alectinib (CH5424802), and AP26113, 

are now emerging, together with an increased knowledge of the molecular basis of resistance. 

There is therefore a need to evaluate the optimal clinical application of these new agents, either as 

sequential therapies, and/or in combination with other targeted agents, to combat resistance and 

prolong survival in patients with ALK-positive NSCLC. The remarkable clinical activity of ALK 

inhibitors also emphasizes the importance of optimal diagnostic testing algorithms, to ensure that 

all eligible patients receive these breakthrough therapies.
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Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide, with a dismal 5-year 

overall survival of approximately 18% [1]. Non-small cell lung cancer (NSCLC) accounts 

for 85% of cases, and >70% are diagnosed with advanced disease [2]. The 21st century has 

witnessed a revolution in treatment for advanced NSCLC from a one-size-fits-all to a 

personalized approach. Traditionally, histologic subtypes have dictated the choice of 

chemotherapy, but now key oncogenic driver mutations are known, and there are increasing 

data regarding genetic alterations allowing adenocarcinomas to be further classified into 

clinically relevant molecular subtypes which predict response to novel agents. The first 

clinically relevant molecular alterations to be characterized were epidermal growth factor 
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receptor (EGFR) mutations that respond to tyrosine kinase inhibitors (TKIs). Recently, the 

discovery of translocations, involving the anaplastic lymphoma kinase (ALK) gene has 

driven the investigation of novel treatment options for the 3%–7% of patients with NSCLC 

whose tumors harbor this event [3]. Crizotinib, the first-in-class small molecule ALK 

inhibitor, gained US Food and Drug Administration (FDA) approval for the treatment of 

ALK-rearranged (ALK-positive) NSCLC in 2011. In this review, we discuss the discovery of 

and testing for ALK rearrangements in NSCLC, and review data on crizotinib, upcoming 

agents, and trials for this patient population.

Discovery of ALK fusion genes

Oncogenic addiction is the phenomenon whereby tumor cells depend on an oncogene for 

survival and proliferation, making them attractive therapeutic targets [4]. The rearrangement 

of the ALK gene represents such a dependency in NSCLC. First reported as a fusion gene in 

a small proportion of anaplastic large cell lymphomas (ALCLs) [5], ALK rearrangement 

was subsequently discovered in NSCLC [6, 7], mostly in adenocarcinomas [8-11]. The most 

common alteration involves inversion on chromosome 2, leading to fusion of the protein 

encoded by the echinoderm microtubule–associated protein-like 4 (EML4) gene with the 

intracellular portion of the receptor tyrosine kinase encoded by the ALK gene [6, 12]. This 

EML4–ALK fusion protein constitutively activates a number of signaling cascades (Figure 

1) [13]. These pathways promote initiation, progression, and survival of NSCLC [13, 14]. 

Four other ALK fusion proteins are also associated with NSCLC [15-18]. Several studies 

suggest that ALK rearrangements are largely independent of EGFR and KRAS mutations 

[19-24].

Optimal screening strategy

A subset of patients with NSCLC may possess clinicopathologic features that predict ALK-

positivity. Most studies quoting a higher incidence of ALK-positivity involved patients who 

were light/never smokers (chance of carrying mutation 20% vs. 2% in smokers), were 

younger in age (median age 54 vs. 64 years for the ALK-negative [ALK wild-type] 

population), had acinar/signet ring histology, and had transcription termination factor 1 

(TTF-1)-positive histology [8, 10, 25-29]. Furthermore, if we understand EGFR and ALK 
alterations to be mutually exclusive, the presence of an activating EGFR mutation or 

response to EGFR TKIs may predict for ALK-negative status[30]. However, ALK 
rearrangements are not entirely restricted to non-smokers or certain age groups. In the 

absence of strong data suggesting predictive factors, current National Comprehensive 

Cancer Network (NCCN) guidelines suggest screening all patients with advanced non-

squamous NSCLC and patients with squamous disease if they are never smokers or were 

diagnosed based on small biopsy specimens [31]. The remarkable clinical activity of ALK 

inhibitors emphasizes the importance of testing for these mutations and ensuring that 

eligible patients receive appropriate targeted therapy.

Optimal testing modality

The discovery of ALK rearrangement and its potential as a therapeutic target triggered the 

co-development of diagnostic assays. The current FDA-approved break-apart fluorescence in 
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situ hybridization (FISH) assay (AbbVie, Inc.), was clinically validated in Phase I/II trials 

involving crizotinib [10, 32]. The cut-off point for a positive result is >15% of tumor cells 

positive in ≥50 cell nuclei [10, 21]. The test can be performed on formalin-fixed paraffin-

embedded specimens, and detects novel ALK fusion genes by targeting the tyrosine kinase 

domain of ALK, independent of the fusion partner [33]. Disadvantages include the need for 

specialized expertise to both perform the test and interpret the results, a risk of false 

negatives due to subtle splitting of colored signals, and associated costs [30, 33].

Other screening methods being evaluated include reverse transcription polymerase chain 

reaction (RT-PCR) assays and immunohistochemistry (IHC). Sanders et al. used multiplexed 

RT-PCR to detect 5 known EML–ALK variants, identified in 9% of specimens [34]. RT-

PCR is highly sensitive and specific but requires high-quality RNA (unobtainable from 

many archived samples), and only detects known fusion variants, with the consequent 

potential of false negative results (in the setting of novel fusion genes), and lacks clinical 

validation.

ALK-directed IHC is an attractive alternative to FISH and may soon become an established 

diagnostic algorithm. IHC is quick, affordable, can be performed on a variety of tumor 

specimens, and also facilitates histologic comparison. Currently, the low degree of ALK 

expression in NSCLC makes the use of this technique challenging. More sensitive 

techniques using ALK monoclonal antibodies are being investigated. Yi et al. correlated IHC 

with FISH using the ALK1 antibody, and found >90% sensitivity and specificity when 2/3+ 

scores were considered IHC positive [35]. However, the poor transcriptional activity of 

EML–ALK in NSCLC leads to low staining intensity, and may impact the reliability of this 

assay [17, 36]. Results obtained using 5A4 and D5F3 antibodies have been more 

encouraging, and studies have suggested a sensitivity and specificity of 95%-100% for IHC 

using the 5A4 antibody [37-39]. One study supported a scoring algorithm in which ALK 

IHC scores of 0, 1, and 3+ were highly compatible with FISH results, while a score of 2+ 

was variable [37]. In another study, correlation between an IHC score of 0 with negative 

FISH status and between an IHC score of 1+ with positive FISH status were observed [39]. 

Both of these studies propose a two-tier system for evaluating ALK with an initial IHC 

screening followed by FISH assay for IHC 1+ and/or 2+ specimens. The D5F3 monoclonal 

antibody provided a sensitivity and specificity of 100% and 99%, respectively, using ALK 

FISH as gold standard [36]. The lack of clinical validation of these techniques prevents their 

widespread approval; nonetheless, an automated IHC companion diagnostic ALK assay 

(Ventana Medical Systems, Inc.) has now been launched in Europe [40]. The break-apart 

FISH assay remains the US standard and recommended testing strategy.

Treatment of ALK-positive lung cancer

The majority of ongoing trials involving ALK-positive patients are in the metastatic/

advanced setting and this is therefore the focus of this review. Future trials will be needed in 

order to evaluate ALK inhibitors and other novel agents for early stage lung cancer 

treatment.
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Chemotherapy

Retrospective analyses indicate that ALK status does not predict chemotherapy response [8, 

27, 29]. Patients with ALK-positive NSCLC do not benefit from EGFR TKI therapy [29, 41, 

42], and this decreased responsiveness highlights the mutual exclusivity of ALK 
rearrangements and EGFR mutations. Gandara et al. evaluated the expression of thymidylate 

synthase (TS) in 63 patients with ALK-positive lung adenocarcinoma and 1698 patients with 

ALK-negative disease. TS gene expression was low in ALK-positive tumors compared with 

ALK-negative tumors, supporting a rationale for pemetrexed therapy for ALK-positive 

NSCLC [43]. Retrospective analyses have evaluated the differential activity of pemetrexed 

in patients with ALK-positive NSCLC [44, 45]. In one study, multivariate analysis, adjusting 

for age, sex,smoking status, histology, line and type of therapy, ALK-positivity was 

associated with prolonged PFS on pemetrexed (hazard ratio 0.36) [45]. In contrast, a large 

multicenter, retrospective analysis did not support these findings, and the median PFS of 

ALK-positive patients treated with single-agent pemetrexed or non-platinum/pemetrexed 

combination was similar to that of ALK-negative patients. In the same series, among 

patients undergoing first-line platinum/pemetrexed therapy, the median PFS in patients with 

ALK-positive tumors was 7.3 months compared with 5.4 months for wild-type tumors. 

However, patients who were never/light smokers had a similar PFS to the ALK-positive 

group [46].The retrospective nature of the analysis, and the finding of improved sensitivity 

to chemotherapy among non-smoking patients [47], make interpretation of the data difficult.

ALK-targeted therapy

Preclinical studies have shown that ALK fusion gene products are oncogenic drivers of 

transformation, and ALK has therefore been extensively explored as a therapeutic target. 

Clinical investigation of crizotinib began as a c-Met inhibitor in patients with various 

malignancies. The subsequent discovery of ALK gene rearrangement in NSCLC, and 

promising results in patients with NSCLC, led to the addition of an expansion cohort to 

include this population, in which a response rate of 61% was seen, with a median PFS of 9.7 

months [10, 48]. The singe-arm Phase II study PROFILE 1005 showed a comparable overall 

response rate (ORR) of 60% and median PFS of 8.1 months [32].A Phase III trial, PROFILE 

1007, comparing crizotinib with standard chemotherapy in the second-line setting resulted in 

an improved ORR (65% vs. 20%), a shorter time to response (6.3 vs. 12.6 weeks), and an 

improved median PFS (7.7 vs. 3.0 months) with crizotinib. Overall survival benefit was not 

demonstrated on interim analysis, and this was likely related to crossover (64% of patients 

on chemotherapy crossed over to crizotinib after progression) [49]. In all these studies, 

toxicities were acceptable, with some visual disturbances, gastrointestinal side effects, 

fatigue, and edema. The PROFILE 1014 study is designed to answer the question of the 

superiority of crizotinib over front-line platinum/pemetrexed combination chemotherapy 

(NCT01154140). Despite the absence of mature randomized data, the NCCN panel 

recommends crizotinib in a front-line setting in advanced ALK-positive NSCLC [31]. 

However, in clinical practice, systemic chemotherapy may be started before genotyping 

results are available. Berge et al. reported that PFS benefit from crizotinib appears higher 

than with pemetrexed in patients with advanced ALK-positive NSCLC [50]. Pemetrexed 

exposure did not affect outcome with crizotinib; however, PFS benefit from pemetrexed was 

less after crizotinib use (4.5 months) compared with before crizotinib use (6 months).
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Progression on crizotinib and emergence of resistance

Unfortunately, about 40% of ALK-positive patients show intrinsic resistance to crizotinib 

[10, 32, 48], while others derive dramatic responses initially but develop resistance within 12 

months [51, 52]. Proposed mechanisms of acquired resistance include target gene alteration/

amplification (≈30% of cases) and up-regulation of alternate cell-signaling pathways. One 

study describes four different mutations in the ALK tyrosine kinase (ALK-TK) domain that 

confer various degrees of resistance to crizotinib [51]. Most common is the L1196M amino 

acid substitution, similar to the gatekeeper mutations observed in EGFR (T790M) and BCR–
ABL genes (T315I), originally identified as an independent mutation in a tumor from a 

patient with ALK-positive NSCLC [53]. Some other mutations, such as G1202R and 

S1206Y, are located close to the crizotinib-binding site on the ALK-TK domain and 

decrease the affinity of crizotinib for ALK, while the 1151T insertion may affect the affinity 

of ALK for ATP, conferring strong crizotinib resistance [51]. Additional studies have also 

identified novel mutations in the ALK-TK domain that predict for crizotinib resistance [52, 

54]. Other mechanisms implicated in resistance include target gene amplification, with 

increase in ALK gene rearrangement copy numbers without a documented mutation [52] 

and up-regulation of alternate pathways including EGFR activation, and c-KIT amplification 

[51]. A recent study also suggests EGF-mediated HER family activation as a mechanism of 

ALK-TKI resistance [55]. There may be diverse and multiple mechanisms involved in 

resistance even within an individual patient, and these factors have emerged as major 

roadblocks in the transformative clinical impact of the ALK inhibitors.

Therapeutic advances in the setting of resistance

The identification of resistance mechanisms provides groundwork for the development of 

new ALK inhibitors to combat crizotinib resistance, including the development of 

combination therapies to attack bypass track pathways.

Novel ALK inhibitors

Next-generation ALK inhibitors currently under clinical evaluation include ceritinib 

(LDK378; Novartis), AP26113 (ARIAD), alectinib (CH5424802/RO5424802; Chugai/

Hoffmann-La Roche), and ASP3026 (Astellas). Other agents are in earlier stages of 

development (Table 1).

Ceritinib is an oral ALK inhibitor with 20-fold greater preclinical potency than crizotinib, 

and activity against crizotinib-resistant mutations [56]. Ceritinib shows marked antitumor 

activity against both crizotinib-sensitive and crizotinib-resistant ALK-rearranged xenograft 

tumors [57]. An ongoing Phase I trial includes 130 patients with advanced cancers harboring 

genetic alterations in ALK [58]. Preliminary results have shown that in 114 patients with 

ALK-positive NSCLC treated with ceritinib ≥400 mg/day, the ORR and median PFS were 

58% and 7.0 months, respectively. Significant clinical benefit was noted even in the 

crizotinib-pretreated group (n=80), including an ORR of 56%. Ceritinib was tolerated up to 

the maximum tolerated dose of 750 mg/day with primarily gastrointestinal side effects such 

as nausea, diarrhea, and vomiting (Table 1). Based on the encouraging results observed with 

this agent, the FDA granted it Breakthrough Therapy designation for the treatment of 
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patients with ALK-positive metastatic NSCLC who have progressed on or are intolerant to 

crizotinib [59]. This status is intended to help expedite the drug's development and review, 

with Phase II trials currently underway [60]. Two Phase III trials comparing ceritinib with 

single-agent chemotherapy after progression on a platinum-based doublet and crizotinib 

(NCT01828112), and with a pemetrexed-platinum doublet in a first-line setting 

(NCT01828099) are currently recruiting patients.

Alectinib (CH5424802/RO5424802) is a potent ALK inhibitor that also targets the ALK 

L1196M gatekeeper mutation in vitro [61]. In a Phase II study in 46 Japanese patients with 

ALK-positive, crizotinib-naïve NSCLC, the objective response rate was 93.5%, including 2 

(4%) complete responses and 41 (89%) partial responses; 40 of 46 patients continued to be 

on trial at the time of data reporting [62]. Adverse events included dysgeusia and increased 

aspartate aminotransferase (Table 1): visual disorders were rare and gastrointestinal 

toxicities were mild. Preliminary data from a Phase I study (n=45) in crizotinib-refractory 

patients indicated an ORR of 59% [63].

AP26113 is a dual ALK/EGFR inhibitor that also overcomes crizotinib resistance mediated 

by L1196M and other mutations in preclinical models [64, 65]. In a Phase I/II study in 

patients with advanced malignancies, preliminary responses have been reported in 13/21 

(62%) patients with ALK-positive NSCLC, including responses in both crizotinib-naive and 

crizotinib-pretreated patients [66]. Phase II expansion cohorts will enroll both crizotinib-

naïve and crizotinib-resistant patients [67].

These data indicate that new ALK inhibitors improve responses in patients who have 

progressed on crizotinib. For secondary mutations, knowledge of the precise resistance-

inducing mutation may be important in selecting future salvage therapies since some 

crizotinib-resistance mutations have been found to show cross-resistance to other ALK 

inhibitors [68].

Alternative targets and combination therapies

With regards to alternative signaling pathways, ALK regulates downstream signaling such as 

the RAF/MEK/ERK and PI3K/AKT/mTOR pathways [13]. Combining targeted therapy 

against these pathways may help overcome crizotinib resistance; for example, combining an 

ALK inhibitor with a MEK, mTOR or EGFR inhibitor upfront may be explored.

Heat-shock protein 90 (Hsp90) is a molecular chaperone that facilitates correct folding and 

maturation of oncogenic client proteins, including ALK [69].The Hsp90 inhibitor ganetespib 

(Synta), exhibits single-agent activity against ALK-positive tumors in preclinical and 

clinical studies, with activity in resistant cells [54, 70]. In a Phase II study, the Hsp90 

inhibitor retaspimycin (Infinity) demonstrated clinical activity in three heavily pretreated 

patients with ALK-positive NSCLC, two of whom had partial responses and the third had 

prolonged stable disease (7.2 months) [71]. Thus, Hsp90 inhibitors may represent an 

alternative strategy to overcome crizotinib resistance. Differential sensitivity of ALK-fusion 

variants to ALK inhibitors correlates with fusion protein stability [72], and combining 

Hsp90 and ALK inhibitors has provided synergistic cytotoxicity.[72] Clinical studies are 
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underway involving AT13387 (Astex) plus crizotinib (NCT01712217) and AUY922 

(Novartis) plus ceritinib (NCT01772797).

Although ALK-positive tumors are unresponsive to EGFR inhibitors, activation of a 

secondary pathway such as EGFR is a recognized resistance mechanism. Therefore, EGFR 

TKIs may improve sensitivity to crizotinib in combination regimens by targeting signaling 

pathways that contribute to resistance [51].

Clinical challenges in ALK inhibitor therapy – central nervous system (CNS) 

metastasis

Although some current data does not support an inherent propensity of ALK-positive 

NSCLC for CNS spread, [73] it has been encountered in the setting of progression after 

crizotinib therapy, and likely related to poor cerebrospinal fluid (CSF) penetration of the 

drug despite good systemic control [74]. In one reported case of CNS metastasis, the CSF 

concentration of crizotinib was 0.62 ng/mL, compared with a serum concentration of 237 

ng/mL [75]. A retrospective study evaluating ALK inhibition after therapy for 

oligoprogressive NSCLC showed CNS to be the first site of progression in 46% of patients 

with ALK-positive disease [76]. In such patients, continuation of crizotinib after local 

therapy provided ongoing benefit. Otterson et al. showed that patients may be able to 

continue with crizotinib for a period of time following clinically documented progression 

[77]. Another retrospective analysis found that 30% of patients with ALK-positive NSCLC 

with isolated CNS failure on crizotinib were able to resume therapy after completion of 

radiotherapy, and continued to receive crizotinib for ≥4 more months without disease 

progression [78]. Thus, continuing ALK inhibitor therapy in such patients may be a valid 

option. Notably, favorable effects on brain metastases have been reported for alectinib [62, 

63], ceritinib,[58] and AP26113 [66]. Combined high-dose pemetrexed and crizotinib also 

showed activity in an isolated case with miliary CNS metastases, suggesting that the 

synergistic effect of this combination may be beneficial in treating patients with ALK-

positive NSCLC and brain metastases [79].

Conclusions

The emergence of targeted treatment options for ALK-positive NSCLC has revolutionized 

the care of patients with this disease. However, resistance to approved treatment often 

develops, and more research is required to further understand the molecular events 

associated with ALK-positive NSCLC as well as mechanisms of resistance. Future work will 

not only focus on optimal diagnosis and treatment at earlier stages of disease, but also on 

rational combinations of effective agents and the ideal sequence of therapy, particularly as 

more next-generation agents obtain regulatory approval. In addition, optimal supportive care 

and toxicity management is essential for patients who may hopefully live longer on 

sequential treatment.
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Figure 1. 
Signaling cascades activated by the EML4-ALK fusion protein.
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