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Local Cellular Responses to Titanium Dioxide
from Orthopedic Implants
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Abstract
We evaluated recently published articles relevant to the biological effects of titanium dioxide (TiO2) particles on
local endogenous cells required for normal bone homeostasis, repair, and implant osseointegration. Structural char-
acteristics, size, stability, and agglomeration of TiO2 particles alter the viability and behavior of multiple bone-related
cell types. Resulting shifts in bone homeostasis may increase bone resorption and lead to clinical incidents of
osteolysis, implant loosening, and joint pain. TiO2 particles that enter cells (through endocytosis or Trojan horse
mechanism) may further disrupt implant retention. We propose that cellular responses to titanium-based nanopar-
ticles contribute to pathological mechanisms underlying the aseptic loosening of titanium-based metal implants.
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Introduction
Total joint arthroplasty (TJA) is the definitive treat-
ment for severely damaged synovial joints (e.g., symp-
tomatic osteoarthritis1,2). As the number of TJA
patients in the United States rises from an estimated
7 million,3,4 demands for revision TJA will concur-
rently increase. Indications for revision TJA include
septic and aseptic etiologies (e.g., dislocations, polyeth-
ylene wear, wear-induced osteolysis, implant loosen-
ing, and adverse local tissue reactions5,6), whereas the
causes of such complications often go undetected
(e.g., latent periprosthetic joint infections), and mech-
anisms remain unidentified.7 Poor surgical technique
and implant design cause implant failure, yet 10–15%
of patients experience aseptic implant failure despite
well-designed implants and meticulous surgical tech-
nique.8–10 We propose that the release of titanium
nanoparticles may contribute to aseptic implant loos-
ening by negatively influencing periprosthetic skeletal
repair cells.

Implant materials can corrode, degrade, and wear
(i.e., tribocorrosion), adding particles to the intraartic-
ular joint space that may impede healing of bone–
implant interfaces.11–13 Metal implants are naturally
protected from extensive corrosion by a surface oxide
layer, but mechanical stress can overwhelm the protec-
tive capacity of this layer and result in the release of
harmful metallic particles.14 Particles that enter the
joint space, periprosthetic bone, surrounding soft tissues,
and distal tissues15–17 cause aseptic implant loosening,18

adverse local tissue reactions,19 and/or systemic toxici-
ty,20 all of which can lead to significant patient discom-
fort and inconvenience. Nonmetal and metal particles
likely have a synergistic effect toward implant loos-
ening; however, concentration-dependent patterns of
localized tissue/joint damage caused by debris release
have not been clearly established and may vary greatly
by patient.

The adverse effects of metallic orthopedic particles
are of great increased interest, in part, because of the
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large-scale recalls of metal-on-metal implants that have
had significant economic costs to the healthcare indus-
try.21–23 For example, cobalt and chromium particles
disrupt cells locally and have been implicated in sys-
temic disorders such as hypothyroidism, cardiomyopa-
thy, or neuroocular disease.19,20,24,25 Although titanium
alloys are thought to be biologically inert,26 they may be
a source of titanium dioxide (TiO2) particles that in-
fluence human cells. The potential effects of TiO2 par-
ticles need to be further investigated, particularly in
the microenvironment of mesenchymal skeletal re-
pair cells within synovial joints, where the largest tita-
nium implants are typically applied.27 Specifically, the
biological, physical, and chemical interactions between
TiO2 nanoparticles and endogenous bone-forming cells
(e.g., osteoblasts, osteocytes) need to be characterized to
better formulate strategies that reduce nanoparticle-
based implant loosening. This review examines recent
findings on the cellular effects of TiO2 nanoparticles
in the peri-implant joint microenvironment. Specifi-
cally, particle size, aggregation, structure, uptake, and
endocytosis, as well as the intra- and extracellular ef-
fects of titanium particle exposure, are discussed within
the context of cell viability, behavior, and phenotypic
change.28,29 Findings that facilitate a focus on clinically
relevant information that could be eventually translated
into novel prophylactic and therapeutic options for
minimizing aseptic orthopedic implant loosening are
highlighted.

Characteristics of Tribocorrosion-Produced
Titanium Particles
Orthopedic implants form a passivating superficial
TiO2 film that can prevent extensive corrosion.14 How-
ever, implant wear degrades this TiO2 layer, resulting
in depassivation, bare metal exposure, repassivation,
and corrosion30,31 (Fig. 1). In vivo corrosion and wear
of titanium implants can, therefore, produce a diverse
group of TiO2, inorganic metallic salts, as well as free
metal ions.32 Tribocorrosion-produced TiO2 particles
are mineral oxides that exist in different phases, most
commonly rutile and anatase,33–35 which can be harm-
ful to some cell types. Similar to concentration and ex-
posure time, critical relationships between size, phase,
and stability likely influence the cytotoxicity of parti-
cles36–38 (Table 1).

Particle sizes need to be considered independently
regarding their potential effects on aseptic implant
loosening.15,34,39,40 In addition, TiO2 nanoparticles ag-
gregate in the extracellular space or perinuclear cyto-

sol,29,41,42 causing agglomerations that may be part of
the cytoprotective response of cells to the presence
of nanoparticles. Most biological characterizations of
nanomaterial–cell interactions have focused on parti-
cles smaller than 100 nm and demonstrated surface
area-related effects that increase as particle sizes de-
crease.39 At smaller particle diameters, the surface
area-to-volume ratio increases and surface properties
exert a more dominant influence on bioreactivity.34,40

Therefore, ultrafine particles may exhibit different prop-
erties than larger, coarse particles34 or particle agglomer-
ations, which emphasizes the importance of accurately
characterizing particle size distributions in clinical sam-
ples used for diagnosing aseptic implant loosening. Par-
ticle size not only affects nanoparticle–cell interactions
but also influences the transportability of particles within
a joint and throughout the body.

Although a combination of differently sized particles
may be present in vivo, their distribution is heterogeneous.
For example, Maloney et al.15 found that >90% of parti-
cles were <1000 nm in digested peri-implant tissues.
Examination of lymphatic, splenic, and hepatic tissues
from TJA patients has also shown that most disseminated
particles were <1000 nm in size.17 Smaller particles
enter cells more easily by phagocytosis and should be
considered more bioreactive.43,44 Furthermore, the ability
of nanoparticles to aggregate may increase their observed
size.29,42,45–47 Agglomerates are often found in vitro, but
they may be quite unstable and dissociate into their con-
stituent nanoparticles in vivo.34 Equally important to
aseptic loosening is the recirculation of dissociated par-
ticles within synovial joints, causing catalytic cytotoxic
effects and/or adverse local tissue reactions (e.g., pseu-
dotumor formation). The cell cycle responses to the
presence of nanoparticles (e.g., endocytosis, apoptosis)
will provide relevant opportunities for therapeutic inter-
vention strategies that minimize their negative effects.

Cellular Uptake and Cytotoxicity
of TiO2 Nanoparticles
The primary mechanism of TiO2 nanoparticle cellular
uptake is thought to be endocytosis.29,48–50 Using phar-
macological inhibitors of endocytosis, Cai et al.29 demon-
strated a relationship between particle size and mode of
endocytosis. Specifically, small (14 nm) particles were
taken in by caveolae, whereas larger (74 and 196 nm)
particles were taken in by clathrin-coated pits.29 To
further confirm the role of endocytosis, an adenosine
triphosphate (ATP)-dependent process, these au-
thors inhibited ATP production through application
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of NaN3 in combination with reduced temperature
(4�C) and found a significant decrease in the uptake
of 14 nm particles (to 16.73% at 4�C; 26.28% when ex-
posed to NaN3).29 However, alternative pathways to endo-
cytosis and the entry of nanoparticles into cells still need
to be considered, as many other forms of cellular mem-
brane transport are energy dependent and potentially
useful for reducing any harmful effects of nanoparticles.

In addition to TiO2 nanoparticles observed within
endosomes, unbound nanoparticles have been discov-
ered in the cytosol,48,51 likely from degraded endosomes.
Alternatively, nanoparticles may be transported through
membrane pores, specific transporters, or a Trojan horse
effect48,49,52 (Fig. 2). Regarding a possible Trojan horse
effect, TiO2 nanoparticles form a core of biocomplexes
rich in calcium and phosphorus that in principle remain

Component 1 Third BodyComponent 2

Wear Particles
Surface Passivating 

Layer

Legend

Adhesive Wear Abrasive Wear

Third- Body Wear Fatigue Wear

Corrosive Wear (Tribocorrosion)

FIG. 1. Types of wear/corrosion that contribute to TiO2 nanoparticle release after orthopedic implant
placement. Corrosive wear: a corrosive layer forms on the surface of metal implants. Adhesive wear: atomic
forces between two surfaces can exceed the strength of one or both surface(s). Relative movement of the
two surfaces generates particles of multiple sizes. Abrasive wear: with two materials of different hardness, the
softer material will generate particles through mechanical stress exerted by the harder surface. Third-body
wear: a third body becomes embedded between two articulating surfaces and additional particles are
generated along the path of third body movement. Fatigue: shear stress and/or strain can exceed the fatigue
limit of a material, releasing particles.
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undetected by cells. Association of biocomplexes with
glycoproteins such as fetuin A (alpha-2-HS-glycoprotein
[AHSG]) would further facilitate endocytosis. As bio-
complexes dissociate within cells, the TiO2 nanoparticles
are released into the cytosol where they may provoke cy-
totoxic responses.52 Although membrane ATPases and
transporters (e.g., natural resistance-associated macro-
phage proteins) have been characterized for other
metal ions,53,54 titanium-specific transporters are not
known. Upon entry into cells, TiO2 nanoparticles have
size-dependent mechanisms (extracellular and intracel-
lular processes) that influence cell growth, protein pro-
duction, and cellular phenotypes that may initiate (or
accelerate) aseptic loosening.

A size–toxicity relationship has been described for
some nanoparticles (e.g., CuO, Ag) and cells, such
that smaller nanoparticles are more harmful, yet for
TiO2 the evidence remains inconclusive. A study of
rat neonatal calvarial osteoblasts compared the effects
of anatase phase TiO2 of various sizes (ranging from
14 to 196 nm) and found no significant differences
in cellular morphology among treatments.29 Larger par-
ticles and aggregations may remain in the cytosol and
interfere with cellular processes.29,55 A later investigation
of rat mesenchymal stem/stromal cells (MSCs) com-
pared 14, 108, and 196 nm diameter particles and
found that cell viability, proliferation, cell cycle progres-
sion, cell adhesion, and cell migration decreased with

FIG. 2. A Trojan horse mechanism as a proposed mechanism for the internalization of TiO2 nanoparticles.
(A) TiO2 nanoparticles can form biocomplexes consisting of a TiO2 core surrounded by ions such as calcium
and phosphorus that associate with proteins. (B) The surrounding shell of calcium, phosphorus, and protein hides
TiO2 nanoparticles from cell surface receptors. Once internalized, biocomplexes dissociate and TiO2 nanoparticles
can spread throughout the cytosol to effect cellular functions and homeostasis. This Trojan horse mechanism
may also be involved in clathrin- and caveolae-mediated endocytosis of TiO2, although it remains unclear
whether TiO2 nanoparticles can enter cells without a Trojan horse (or similar) mechanism (indicated by ? in figure).
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increasing nanoparticle size.42 Consistent with work on
other cell lines,56,57 osteogenic differentiation was re-
duced in cells exposed to larger nanoparticles,42 suggest-
ing that particle size and agglomeration chemistry
may influence cell biology and/or aseptic loosening pro-
cesses. In addition to modulating cell behavior, TiO2

nanoparticles can directly affect cell viability. Increases
in regulated cell death among osteoblast lineage cells
have been observed after exposure to nano- and micro-
particles.45,50,51,58–61 Mitochondrial and cell membrane
permeability both increase in the presence of TiO2 par-
ticles, suggesting significant cell stress.58,62 Investigations
involving human MSCs, osteoclasts, and histiocytic lym-
phoma cells have confirmed similar responses,41,60,63,64

yet the current challenge is to define how these cells in-
teract with other peri-implant cell types such as preos-
teoblasts and osteoblasts.

TiO2 nanoparticles likely induce apoptosis through
both direct and indirect mechanisms.65,66 The induction
of apoptosis across a number of cell types suggests a uni-
versal mechanism of dose-related DNA damage and ox-
idative stress.41,63,64,67,68 TiO2 nanoparticles may also
react with membrane components, leading to reactive
oxygen species, leakage of Ca2+, Ca2+-dependent endo-
nuclease activation, and apoptosis.63 Documented high
concentrations of TiO2 nanoparticles that cause direct
genotoxicity and apoptosis20,37,63,69–73 provide a logical
starting point for in vitro experiments, which should re-
veal the dose-dependent mechanisms responsible for
TiO2-related processes of aseptic orthopedic implant
loosening. TiO2 nanoparticle localization within the nu-
cleus has not been widely documented, but particle ag-
gregates have been observed in the perinuclear
region.20,29,37,41,42,46,62,63,69–74 This indicates an indirect
mechanism of genotoxicity related to cellular stress.
However, localization of TiO2 has only been reported
in one study of periodontal ligament cells,75 whereby par-
ticles may have transported through nuclear pores or
fused vesicles into the nucleus, a phenomenon previously
described for Ag nanoparticles.75,76 Cell-specific observa-
tions of nanoparticle accumulation within the nucleus
and organelles will help identify which cells are most vul-
nerable to TiO2 exposure and the possible mechanisms of
nanoparticle incursion into joints after TJA.

Interpretation of reported nanoparticle sizes can be
particularly difficult given the irrepressible tendency
of these nanoparticles to agglomerate. Of note is the
possibility that interstitial void spaces among loosely
aggregated nanoparticles may provide adequate sub-
strates for the attachment and functionalization of or-

ganic molecules (Fig. 2). Nonetheless, reported individual
particle sizes may be misleading if aggregations are fre-
quently formed. As bioreactivity is widely believed to
be related to surface area, aggregations of nanoparticles
may, therefore, exhibit different toxicity and abilities to
enter cells than their constituent particles. The poten-
tial for nanoparticle aggregations to dissolve in vivo com-
plicates the correlation between in vivo and in vitro data.
Studies that incorporate both approaches in conjunction
with clinical samples and data will yield useful informa-
tion to guide clinical approaches that reduce aseptic im-
plant loosening rates.

Indirect Effects of TiO2 Exposure on Cell Viability
Indirect effects of titanium particle exposure on cell via-
bility have also been proposed. For example, extraction of
conditioned media from human MSCs exposed to sub-
micron titanium was cytotoxic to naive human MSCs
and induced apoptosis in the absence of particles. How-
ever, dilution of the conditioned media to a 1:1 ratio
abolished this effect, suggesting a critical concentration
of signaling factors.60 TiO2 particle-induced apoptosis
also exhibits both dose and time dependency. Although
the translation of these findings to in vivo systems is
less obvious, the identification of thresholds indicates
dysregulation of cellular regulatory mechanisms after a
critical concentration is surpassed.60

Importantly, cellular apoptosis in reaction to TiO2

nanoparticles is the result of both direct and indirect
processes. TiO2 first causes oxidative stress and di-
rect injury to cells, and subsequently accelerates
the inflammatory cascade by paracrine cytokine re-
lease, which is followed by increased apoptosis.
However, TiO2 particles do not always induce oxidative
stress and cell death in stress-tolerant cells (e.g., endo-
thelial cells).77,78 Yet in the presence of significant cellu-
lar stress, tissue necrosis can contribute to cell death. For
example, histiocytic lymphoma cells (U937) show mor-
phological characteristics consistent with both apoptosis
and necrosis.64

Other researchers have suggested that rutile-
structured TiO2 particles induce apoptosis, whereas
anatase-structured TiO2 particles may increase ne-
crosis.79 Importantly, experimental knockouts of key
apoptosis molecules (e.g., Bak and Bax) exhibit signifi-
cant cell death in the presence of TiO2, clearly high-
lighting the important contribution of necrosis.80–82

Apoptosis (programmed cell death) and necrosis (non-
specific cell death) together provide complementary
mechanisms to detrimentally impact peri-implant
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tissues and cells, and may compound complications of
aseptic orthopedic implant loosening.

Bone-Related Effects of TiO2 Exposure
Consistent with patterns of osteolysis and/or peri-
prosthetic fractures observed in patients with aseptic
loosening, TiO2 particles are known to increase bone
resorption.83–85 Specific consequences of TiO2 nano-
particle exposure to osteoblasts include increased
cell death, mitochondrial membrane permeability,
lactate dehydrogenase release, and gene expression alter-
ations (e.g., TNFSF11).29,58,62 Preosteoblasts (MC3T3-
E1) may be particularly sensitive to TiO2 nanoparticles,
as they exhibit decreased proliferation even at extremely
low concentrations (20 lg/mL).58,62 In contrast, fibro-
blastic (L929) cells maintain normal cell proliferation
rates until exposure to higher concentrations of TiO2

(>500 lg/mL).62 Heterogeneity in the responses of dif-
ferent cell types to elevated TiO2 concentrations make
the assessment of in vivo consequences challenging,
particularly when multiple cell types interact to form
healthy bone tissue and a well-fixed orthopedic implant.

Osteogenic differentiation of human MSCs into
osteoblasts is suppressed by exposure to submicron
Ti particles.60,61 In addition, human MSCs exposed
to TiO2 exhibit structural alterations (e.g., deregulated
actin skeleton formation, decreased integrin-binding
sialoprotein expression, diminished collagen Type I
(COL1A1), and integrin-binding bone sialoprotein
(IBSP) production, inhibited ECM formation), de-
creased cellular viability, and slower cellular prolifera-
tion.45,60,61 TiO2 may be both cytotoxic to osteoblast
precursors and inhibit the formation of new osteoblasts,
thus preventing new bone formation and hindering im-
plant fixation. Nonetheless, the identification and timing
of events that lead to aseptic implant loosening need to
be better contextualized within a framework of mea-
sured TiO2 particle release in vivo.

TiO2 particle exposure may also increase the secretion
of matrix proteases by osteoblasts. For example, coarse
TiO2 particles (4.5 lm mean size) increased the expres-
sion of genes related to metallopeptidase activity (e.g.,
Mmp2 and Mt10) in preosteoblasts (MC3T3-E1), but
did not alter Timp2 expression.86 Metallopeptidase inhib-
itors such as TIMP act as negative feedback regulators on
the activity of metalloproteases87 and increase bone re-
sorption. Further compounding bone resorption, the pro-
teolytic activity of MMP2 protein may be increased in the
presence of TiO2 particles.83 In summary, larger particles
alter extracellular processes, smaller particles enter cells to

disrupt intracellular processes, and the viability of endog-
enous skeletal repair cells can be modulated by direct and
indirect mechanisms of TiO2 exposure.

Conclusions
Investigations on the effects of tribocorrosion-produced
TiO2 particulate debris on musculoskeletal tissues
and cells remain critical given the absolute number
of titanium-based surgical implants used in TJA pro-
cedures every year. TiO2 nanoparticles have been dem-
onstrated to alter cell viability, behavior, as well as
extracellular and intracellular processes. Resulting
shifts in bone homeostasis may increase bone resorp-
tion and explain clinical findings of osteolysis, loosen-
ing, and pain. Future investigations are necessary to
identify effects on cells (intra- and extracellular) and
better characterize TiO2 nanoparticle behavior in vivo.
This remains especially challenging because of technical
limitations that preclude accurate measurements of
TiO2 nanoparticles in human tissues and cells. How-
ever, the findings presented in this review suggest that
TiO2 may be an important contributor to aseptic ortho-
pedic implant loosening. Further characterization of in-
flammatory processes and adverse cellular behaviors
upon exposure to multiple sizes of TiO2 particles should
yield targets for clinical interpretation and guide novel
intervention strategies.
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