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Summary

Continuous treatments (e.g., doses) arise often in practice, but many available causal effect 

estimators are limited by either requiring parametric models for the effect curve, or by not 

allowing doubly robust covariate adjustment. We develop a novel kernel smoothing approach that 

requires only mild smoothness assumptions on the effect curve, and still allows for 

misspecification of either the treatment density or outcome regression. We derive asymptotic 

properties and give a procedure for data-driven bandwidth selection. The methods are illustrated 

via simulation and in a study of the effect of nurse staffing on hospital readmissions penalties.
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1. Introduction

Continuous treatments or exposures (such as dose, duration, and frequency) arise very often 

in practice, especially in observational studies. Importantly, such treatments lead to effects 

that are naturally described by curves (e.g., dose-response curves) rather than scalars, as 

might be the case for binary treatments. Two major methodological challenges in continuous 

treatment settings are (1) to allow for flexible estimation of the dose-response curve (for 

example to discover underlying structure without imposing a priori shape restrictions), and 

(2) to properly adjust for high-dimensional confounders (i.e., pre-treatment covariates 

related to treatment assignment and outcome).

Consider a recent example involving the Hospital Readmissions Reduction Program, 

instituted by the Centers for Medicare & Medicaid Services in 2012, which aimed to reduce 

preventable hospital readmissions by penalizing hospitals with excess readmissions. 

McHugh et al. (2013) were interested in whether nurse staffing (measured in nurse hours per 

patient day) affected hospitals’ risk of excess readmissions penalty. The left panel of Figure 

1 shows data for 2976 hospitals, with nurse staffing (the ‘treatment’) on the x-axis, whether 

each hospital was penalized (the outcome) on the y-axis, and a loess curve fit to the data 

(without any adjustment). One way to characterize effects is to imagine setting all hospitals’ 

nurse staffing to the same level, and seeing if changes in this level yield changes in excess 

readmissions risk. Such questions cannot be answered by simply comparing hospitals’ risk 

of penalty across levels of nurse staffing, since hospitals differ in many important ways that 
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could be related to both nurse staffing and excess readmissions (e.g., size, location, teaching 

status, among many other factors). The right panel of Figure 1 displays the extent of these 

hospital differences, showing for example that hospitals with more nurse staffing are also 

more likely to be high-technology hospitals and see patients with higher socioeconomic 

status. To correctly estimate the effect curve, and fairly compare the risk of readmissions 

penalty at different nurse staffing levels, one must adjust for hospital characteristics 

appropriately.

In practice, the most common approach for estimating continuous treatment effects is based 

on regression modeling of how the outcome relates to covariates and treatment (e.g., Imbens 

(2004), Hill (2011)). However, this approach relies entirely on correct specification of the 

outcome model, does not incorporate available information about the treatment mechanism, 

and is sensitive to the curse of dimensionality by inheriting the rate of convergence of the 

outcome regression estimator. Hirano and Imbens (2004), Imai and van Dyk (2004), and 

Galvao and Wang (2015) adapted propensity score-based approaches to the continuous 

treatment setting, but these similarly rely on correct specification of at least a model for 

treatment (e.g., the conditional treatment density).

In contrast, semiparametric doubly robust estimators (Robins and Rotnitzky, 2001; van der 

Laan and Robins, 2003) are based on modeling both the treatment and outcome processes 

and, remarkably, give consistent estimates of effects as long as one of these two nuisance 

processes is modeled well enough (not necessarily both). Beyond giving two independent 

chances at consistent estimation, doubly robust methods can also attain faster rates of 

convergence than their nuisance (i.e., outcome and treatment process) estimators when both 

models are consistently estimated; this makes them less sensitive to the curse of 

dimensionality and can allow for inference even after using flexible machine learning-based 

adjustment. However, standard semiparametric doubly robust methods for dose-response 

estimation rely on parametric models for the effect curve, either by explicitly assuming a 

parametric dose-response curve (Robins, 2000; van der Laan and Robins, 2003), or else by 

projecting the true curve onto a parametric working model (Neugebauer and van der Laan, 

2007). Unfortunately, the first approach can lead to substantial bias under model 

misspecification, and the second can be of limited practical use if the working model is far 

away from the truth.

Recent work has extended semiparametric doubly robust methods to more complicated 

nonparametric and high-dimensional settings. In a foundational paper, van der Laan and 

Dudoit (2003) proposed a powerful cross-validation framework for estimator selection in 

general censored data and causal inference problems. Their empirical risk minimization 

approach allows for global nonparametric modeling in general semiparametric settings 

involving complex nuisance parameters. For example, Díaz and van der Laan (2013) 

considered global modeling in the dose-response curve setting, and developed a doubly 

robust substitution estimator of risk. In nonparameric problems it is also important to 

consider non-global learning methods, e.g., via local and penalized modeling (Györfi et al., 

2002). Rubin and van der Laan (2005, 2006a,b) proposed extensions to such paradigms in 

numerous important problems, but the former considered weighted averages of dose-

response curves and the latter did not consider doubly robust estimation.
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In this paper we present a new approach for causal dose-response estimation that is doubly 

robust without requiring parametric assumptions, and which can naturally incorporate 

general machine learning methods. The approach is motivated by semiparametric theory for 

a particular stochastic intervention effect and a corresponding doubly robust mapping. Our 

method has a simple two-stage implementation that is fast and easy to use with standard 

software: in the first stage a pseudo-outcome is constructed based on the doubly robust 

mapping, and in the second stage the pseudo-outcome is regressed on treatment via off-the-

shelf non-parametric regression and machine learning tools. We provide asymptotic results 

for a kernel version of our approach under weak assumptions, which only require mild 

smoothness conditions on the effect curve and allow for flexible data-adaptive estimation of 

relevant nuisance functions. We also discuss a simple method for bandwidth selection based 

on cross-validation. The methods are illustrated via simulation, and in the study discussed 

earlier about the effect of hospital nurse staffing on excess readmission penalties.

2. Background

2.1. Data and notation

Suppose we observe an independent and identically distributed sample (Z1, …, Zn) where Z 

= (L, A, Y) has support . Here L denotes a vector of covariates, A a 

continuous treatment or exposure, and Y some outcome of interest. We characterize causal 

effects using potential outcome notation (Rubin, 1974), and so let Ya denote the potential 

outcome that would have been observed under treatment level a.

We denote the distribution of Z by P, with density p(z) = p(y | l, a)p(a | l)p(l) with respect to 

some dominating measure. We let ℙn denote the empirical measure so that empirical 

averages  can be written as ℙn {f(Z)} = ∫ f(z)dℙn(z). To simplify the 

presentation we denote the mean outcome given covariates and treatment with 

, denote the conditional treatment density given covariates with 

, and denote the marginal treatment density with 

. Finally, we use ‖f‖ = {∫ f(z)2dP (z)}1/2 to denote the L2(P) norm, and 

we use  to denote the uniform norm of a generic function f over 

.

2.2. Identification

In this paper our goal is to estimate the effect curve . Since this quantity is 

defined in terms of potential outcomes that are not directly observed, we must consider 

assumptions under which it can be expressed in terms of observed data. A full treatment of 

identification in the presence of continuous random variables was given by Gill and Robins 

(2001); we refer the reader there for details. The assumptions most commonly employed for 

identification are as follows (the following must hold for any  at which θ(a) is to be 

identified).

Assumption 1. Consistency: A = a implies Y = Ya.
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Assumption 2. Positivity: π(a | l) ≥ πmin > 0 for all l ∈ ℒ.

Assumption 3. Ignorability: .

Assumptions 1–3 can all be satisfied by design in randomized trials, but in observational 

studies they may be violated and are generally untestable. The consistency assumption 

ensures that potential outcomes are defined uniquely by a subject’s own treatment level and 

not others’ levels (i.e., no interference), and also not by the way treatment is administered 

(i.e., no different versions of treatment). Positivity says that treatment is not assigned 

deterministically, in the sense that every subject has some chance of receiving treatment 

level a, regardless of covariates; this can be a particularly strong assumption with continuous 

treatments. Ignorability says that the mean potential outcome under level a is the same 

across treatment levels once we condition on covariates (i.e., treatment assignment is 

unrelated to potential outcomes within strata of covariates), and requires sufficiently many 

relevant covariates to be collected. Using the same logic as with discrete treatments, it is 

straightforward to show that under Assumptions 1–3 the effect curve θ(a) can be identified 

with observed data as

(1)

Even if we are not willing to rely on Assumptions 1 and 3, it may often still be of interest to 

estimate θ(a) as an adjusted measure of association, defined purely in terms of observed 

data.

3. Main results

In this section we develop doubly robust estimators of the effect curve θ(a) without relying 

on parametric models. First we describe the logic behind our proposed approach, which is 

based on finding a doubly robust mapping whose conditional expectation given treatment 

equals the effect curve of interest, as long as one of two nuisance parameters is correctly 

specified. To find this mapping, we derive a novel efficient influence function for a 

stochastic intervention parameter. Our proposed method is based on regressing this doubly 

robust mapping on treatment using off-the-shelf nonparametric regression and machine 

learning methods. We derive asymptotic properties for a particular version of this approach 

based on local-linear kernel smoothing. Specifically, we give conditions for consistency and 

asymptotic normality, and describe how to use cross-validation to select the bandwidth 

parameter in practice.

3.1. Setup and doubly robust mapping

If θ(a) is assumed known up to a finite-dimensional parameter, for example θ(a) = ψ0 + ψ1a 
for (ψ0, ψ1) ∈ ℝ2, then standard semiparametric theory can be used to derive the efficient 

influence function, from which one can obtain the efficiency bound and an efficient 

estimator (Bickel et al., 1993; van der Laan and Robins, 2003; Tsiatis, 2006). However, such 

theory is not directly available if we only assume, for example, mild smoothness conditions 

on θ(a) (e.g., differentiability). This is due to the fact that without parametric assumptions 
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θ(a) is not pathwise differentiable, and root-n consistent estimators do not exist (Bickel et 

al., 1993; Díaz and van der Laan, 2013). In this case there is no developed efficiency theory.

To derive doubly robust estimators for θ(a) without relying on parametric models, we adapt 

semiparametric theory in a novel way similar to the approach of Rubin and van der Laan 

(2005, 2006a). Our goal is to find a function ξ(Z; π, μ) of the observed data Z and nuisance 

functions (π, μ) such that

if either  or  (not necessarily both). Given such a mapping, off-the-shelf 

nonparametric regression and machine learning methods could be used to estimate θ(a) by 

regressing  on treatment A, based on estimates  and .

This doubly robust mapping is intimately related to semiparametric theory and especially the 

efficient influence function for a particular parameter. Specifically, if 

 then it follows that  for

(2)

This indicates that a natural candidate for the unknown mapping ξ(Z; π, μ) would be a 

component of the efficient influence function for the parameter ψ, since for regular 

parameters such as ψ in semi- or non-parametric models, the efficient influence function 

ϕ(Z; π, μ) will be doubly robust in the sense that , if either  or 

(Robins and Rotnitzky, 2001; van der Laan and Robins, 2003). This implies 

 so that  if either  or . This kind 

of logic was first used by Rubin and van der Laan (2005, 2006a) for full data parameters that 

are functions of covariates rather than treatment (i.e., censoring) variables.

The parameter ψ is also of interest in its own right. In particular, it represents the average 

outcome under an intervention that randomly assigns treatment based on the density ϖ (i.e., 

a randomized trial). Thus comparing the value of this parameter to the average observed 

outcome provides a test of treatment effect; if the values differ significantly, then there is 

evidence that the observational treatment mechanism impacts outcomes for at least some 

units. Stochastic interventions were discussed by Díaz and van der Laan (2012), for 

example, but the efficient influence function for ψ has not been given before under a 

nonparametric model. Thus in Theorem 1 below we give the efficient influence function for 

this parameter respecting the fact that the marginal density ϖ is unknown.

Theorem 1—Under a nonparametric model, the efficient influence function for ψ defined 

in (2) is , where
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A proof of Theorem 1 is given in the Appendix (Section 2). Importantly, we also prove that 

the function ξ(Z; π, μ) satisfies its desired double robustness property, i.e., that 

 if either  or . As mentioned earlier, this motivates 

estimating the effect curve θ(a) by estimating the nuisance functions (π, μ), and then 

regressing the estimated pseudo-outcome

on treatment A using off-the-shelf nonparametric regression or machine learning methods. 

In the next subsection we describe our proposed approach in more detail, and analyze the 

properties of an estimator based on kernel estimation.

3.2. Proposed approach

In the previous subsection we derived a doubly robust mapping ξ(Z; π, μ) for which 

 as long as either  or . This indicates that doubly robust 

nonparametric estimation of θ(a) can proceed with a simple two-step procedure, where both 

steps can be accomplished with flexible machine learning. To summarize, our proposed 

method is:

1. Estimate nuisance functions (π, μ) and obtain predicted values.

2. Construct pseudo-outcome  and regress on treatment variable A.

We give sample code implementing the above in the Appendix (Section 9).

In what follows we present results for an estimator that uses kernel smoothing in Step 2. 

Such an approach is related to kernel approximation of a full-data parameter in censored 

data settings. Robins and Rotnitzky (2001) gave general discussion and considered density 

estimation with missing data, while van der Laan and Robins (1998), van der Laan and Yu 

(2001), and van der Vaart and van der Laan (2006) used the approach for current status 

survival analysis; Wang et al. (2010) used it implicitly for nonparametric regression with 

missing outcomes.

As indicated above, however, a wide variety of flexible methods could be used in our Step 2, 

including local partitioning or nearest neighbor estimation, global series or spline methods 

with complexity penalties, or cross-validation-based combinations of methods, e.g., Super 

Learner (van der Laan et al., 2007). In general we expect the results we report in this paper 

to hold for many such methods. To see why, let  denote the proposed estimator described 

above (based on some initial nuisance estimators  and a particular regression method in 

Step 2), and let  denote an estimator based on an oracle version of the pseudo-outcome 

 where  are the unknown limits to which the estimators  converge. Then 

, where the second term on the right can be analyzed with 

standard theory since  is a regression of a simple fixed function  on A, and the 

first term will be small depending on the convergence rates of  and . A similar point was 

discussed by Rubin and van der Laan (2005, 2006a).
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The local linear kernel version of our estimator is , where 

 and

(3)

for Kha(t) = h−1K{(t−a)/h} with K a standard kernel function (e.g., a symmetric probability 

density) and h a scalar bandwidth parameter. This is a standard local linear kernel regression 

of  on A. For overviews of kernel smoothing see, e.g., Fan and Gijbels (1996), 

Wasserman (2006), and Li and Racine (2007). Under near-violations of positivity, the above 

estimator could potentially lie outside the range of possible values for θ(a) (e.g., if Y is 

binary); thus we present a targeted minimum loss-based estimator (TMLE) in the Appendix 

(Section 4), which does not have this problem. Alternatively one could project onto a logistic 

model in (3).

3.3. Consistency of kernel estimator

In Theorem 2 below we give conditions under which the proposed kernel estimator  is 

consistent for θ(a), and also give the corresponding rate of convergence. In general this 

result follows if the bandwidth decreases with sample size slowly enough, and if either of 

the nuisance functions π or μ is estimated well enough (not necessarily both). The rate of 

convergence is a sum of two rates: one from standard nonparametric regression problems 

(depending on the bandwidth h), and another coming from estimation of the nuisance 

functions π and μ.

Theorem 2—Let  and  denote fixed functions to which  and  converge in the sense 

that  and , and let  denote a point in the interior of 

the compact support  of A. Along with Assumption 2 (Positivity), assume the following:

(a) Either  or .

(b) The bandwidth h = hn satisfies h → 0 and nh3 → ∞ as n → ∞.

(c) K is a continuous symmetric probability density with support [−1, 1].

(d) θ(a) is twice continuously differentiable, and both ϖ(a) and the conditional 

density of  given A = a are continuous as functions of a.

(e) The estimators  and their limits  are contained in uniformly bounded 

function classes with finite uniform entropy integrals (as defined in Section 5 of 

the Appendix), with  and  also uniformly bounded.

Then
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where

are the ‘local’ rates of convergence of  and  near A = a.

A proof of Theorem 2 is given in the Appendix (Section 6). The required conditions are all 

quite weak. Condition (a) is arguably the most important of the conditions, and says that at 

least one of the estimators  or  must be consistent for the true π or μ in terms of the 

uniform norm. Since only one of the nuisance estimators is required to be consistent (not 

both), Theorem 2 shows the double robustness of the proposed estimator . Conditions 

(b), (c), and (d) are all common in standard nonparametric regression problems, while 

condition (e) involves the complexity of the estimators  and  (and their limits), and is a 

usual minimal regularity condition for problems involving nuisance functions.

Condition (b) says that the bandwidth parameter h decreases with sample size but not too 

quickly (so that nh3 → ∞). This is a standard requirement in local linear kernel smoothing 

(Fan and Gijbels, 1996; Wasserman, 2006; Li and Racine, 2007). Note that since nh = 

nh3/h2, it is implied that nh → ∞; thus one can view nh as a kind of effective or local 

sample size. Roughly speaking, the bandwidth h needs to go to zero in order to control bias, 

while the local sample size nh (and nh3) needs to go to infinity in order to control variance. 

We postpone more detailed discussion of the bandwidth parameter until a later subsection, 

where we detail how it can be chosen in practice using cross-validation. Condition (c) puts 

some minimal restrictions on the kernel function. It is clearly satisfied for most common 

kernels, including the uniform kernel K(u) = I(|u| ≤ 1)/2, the Epanechnikov kernel K(u) = 

(3/4)(1 − u2)I(|u| ≤ 1), and a truncated version of the Gaussian kernel K(u) = I(|u| ≤ 1)ϕ(u)/

{2Φ(1) − 1} with ϕ and Φ the density and distribution functions for a standard normal 

random variable. Condition (d) restricts the smoothness of the effect curve θ(a), the density 

of ϖ(a), and the conditional density given A = a of the limiting pseudo-outcome . 

These are standard smoothness conditions imposed in nonparametric regression problems. 

By assuming more smoothness of θ(a), bias-reducing (higher-order) kernels could achieve 

faster rates of convergence and even approach the parametric root-n rate (see for example 

Fan and Gijbels (1996), Wasserman (2006), and others).

Condition (e) puts a mild restriction on how flexible the nuisance estimators (and their 

corresponding limits) can be, although such uniform entropy conditions still allow for a wide 

array of data-adaptive estimators and, importantly, do not require the use of parametric 

models. Andrews (1994) (Section 4), van der Vaart and Wellner (1996) (Sections 2.6–2.7), 

and van der Vaart (2000) (Examples 19.6–19.12) discuss a wide variety of function classes 

with finite uniform entropy integrals. Examples include standard parametric classes of 

functions indexed by Euclidean parameters (e.g., parametric functions satisfying a Lipschitz 

condition), smooth functions with uniformly bounded partial derivatives, Sobolev classes of 

functions, as well as convex combinations or Lipschitz transformations of any such sets of 
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functions. The uniform entropy restriction in condition (e) is therefore not a very strong 

restriction in practice; however, it could be further weakened via sample splitting techniques 

(see Chapter 27 of van der Laan and Rose (2011)).

The convergence rate given in the result of Theorem 2 is a sum of two components. The 

first, , is the rate achieved in standard nonparametric regression problems 

without nuisance functions. Note that if h tends to zero slowly, then  will tend to zero 

quickly but h2 will tend to zero more slowly; similarly if h tends to zero quickly, then h2 will 

as well, but  will tend to zero more slowly. Balancing these two terms requires h ~ 

n−1/5 so that . This is the optimal pointwise rate of convergence for 

standard nonparametric regression on a single covariate, for a twice continuously 

differentiable regression function.

The second component, rn(a)sn(a), is the product of the local rates of convergence (around A 
= a) of the nuisance estimators  and  towards their targets π and μ. Thus if the nuisance 

function estimates converge slowly (due to the curse of dimensionality), then the 

convergence rate of  will also be slow. However, since the term is a product, we have 

two chances at obtaining fast convergence rates, showing the bias-reducing benefit of doubly 

robust estimators. The usual explanation of double robustness is that, even if  is 

misspecified so that sn(a) = O(1), then as long as  is consistent, i.e., rn(a) = o(1), we will 

still have consistency since rn(a)sn(a) = o(1). But this idea also extends to settings when both 

 and  are consistent. For example suppose h ~ n−1/5 so that , and 

suppose  and  are locally consistent with rates rn(a) = n−2/5 and sn(a) = n−1/10. Then the 

product is rn(a)sn(a) = O(n−1/2) = o(n−2/5) and the contribution from the nuisance functions is 

asymptotically negligible, in the sense that the proposed estimator has the same convergence 

rate as an infeasible estimator with known nuisance functions. Contrast this with non-

doubly-robust plug-in estimators whose convergence rate generally matches that of the 

nuisance function estimator, rather than being faster (van der Vaart, 2014).

In Section 8 of the Appendix we give some discussion of uniform consistency, which, along 

with weak convergence, will be pursued in more detail in future work.

3.4. Asymptotic normality of kernel estimator

In the next theorem we show that if one or both of the nuisance functions are estimated at 

fast enough rates, then the proposed estimator is asymptotically normal after appropriate 

scaling.

Theorem 3—Consider the same setting as Theorem 2. Along with Assumption 2 

(Positivity) and conditions (a)–(e) from Theorem 2, also assume that:

(f) The local convergence rates satisfy 

Then
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where bh(a) = θ″ (a)(h2/2) ∫ u2K(u) du + o(h2), and

for τ2(l, a) = var(Y | L = l, A = a), , .

The proof of Theorem 3 is given in the Appendix (Section 7). Conditions (a)–(e) are the 

same as in Theorem 2 and were discussed earlier. Condition (f) puts a restriction on the local 

convergence rates of the nuisance estimators. This will in general require at least some 

semiparametric modeling of the nuisance functions. Truly nonparametric estimators of π 
and μ will typically converge at slow rates due to the curse of dimensionality, and will 

generally not satisfy the rate requirement in the presence of multiple continuous covariates. 

Condition (f) basically ensures that estimation of the nuisance functions is irrelevant 

asymptotically; depending on the specific nuisance estimators used, it could be possible to 

give weaker but more complicated conditions that allow for a non-negligible asymptotic 

contribution while still yielding asymptotic normality.

Importantly, the rate of convergence required by condition (g) of Theorem 3 is slower than 

the root-n rate typically required in standard semiparametric settings where the parameter of 

interest is finite-dimensional and Euclidean. For example, in a standard setting where the 

support  is finite, a sufficient condition for yielding the requisite asymptotic negligibility 

for attaining efficiency is rn(a) = sn(a) = o(n−1/4); however in our setting the weaker 

condition rn(a) = sn (a) = o(n−1/5) would be sufficient if h ~ n−1/5. Similarly, if one nuisance 

estimator  or  is computed with a correctly specified generalized additive model, then the 

other nuisance estimator would ony need to be consistent (without a rate condition). This is 

because, under regularity conditions and with optimal smoothing, a generalized additive 

model estimator converges at rate Op (n−2/5) (Horowitz, 2009), so that if the other nuisance 

estimator is merely consistent we have rn (a)sn (a) = O(n−2/5)o(1) = o(n−2/5), which satisfies 

condition (f) as long as h ~ n−1/5. In standard settings such flexible nuisance estimation 

would make a non-negligible contribution to the limiting behavior of the estimator, 

preventing asymptotic normality and root-n consistency.

Under the assumptions of Theorem 3, the proposed estimator is asymptotically normal after 

appropriate scaling and centering. However, the scaling is by the square root of the local 

sample size  rather than the usual parametric rate . This slower convergence rate is a 

cost of making fewer assumptions (equivalently, the cost of better efficiency would be less 

robustness); thus we have a typical bias-variance trade-off. As in standard nonparametric 

regression, the estimator is consistent but not quite centered at θ(a); there is a bias term of 

order O(h2), denoted bh(a). In fact the estimator is centered at a smoothed version of the 
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effect curve . This phenomenon is ubiquitous in 

nonparametric regression, and complicates the process of computing confidence bands. It is 

sometimes assumed that the bias term is  and thus asymptotically negligible 

(e.g., by assuming h = o(n−1/5) so that nh5 → 0); this is called undersmoothing and 

technically allows for the construction of valid confidence bands around θ(a). However, 

there is little guidance about how to actually undersmooth in practice, so it is mostly a 

technical device. We follow Wasserman (2006) and others by expressing uncertainty about 

the estimator  using confidence intervals centered at the smoothed data-dependent 

parameter . For example, under the conditions of Theorem 3, pointwise Wald 95% 

confidence intervals can be constructed with , where  is the (1, 1) 

element of the sandwich variance estimate  based on the estimated efficient 

influence function for βh(a) given by

for .

3.5. Data-driven bandwidth selection

The choice of smoothing parameter is critical for any nonparametric method; too much 

smoothing yields large biases and too little yields excessive variance. In this subsection we 

discuss how to use cross-validation to choose the relevant bandwidth parameter h. In general 

the method we propose parallels those used in standard nonparametric regression settings, 

and can give similar optimality properties.

We can exploit the fact that our method can be cast as a non-standard nonparametric 

regression problem, and borrow from the wealth of literature on bandwidth selection there. 

Specifically, the logic behind Theorem 3 (i.e., that nuisance function estimation can be 

asymptotically irrelevant) can be adapted to the bandwidth selection setting, by treating the 

pseudo-outcome  as known and using for example the bandwidth selection 

framework from Härdle et al. (1988). These authors proposed a unified selection approach 

that includes generalized cross-validation, Akaike’s information criterion, and leave-one-out 

cross-validation as special cases, and showed the asymptotic equivalence and optimality of 

such approaches. In our setting, leave-one-out cross-validation is attractive because of its 

computational ease. The simplest analog of leave-one-out cross-validation for our problem 

would be to select the optimal bandwidth from some set  with

where  is the ith 

diagonal of the so-called smoothing or hat matrix. The properties of this approach can be 
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derived using logic similar to that in Theorem 3, e.g., by adapting results from Li and Racine 

(2004). Alternatively one could split the sample, estimate the nuisance functions in one half, 

and then do leave-one-out cross-validation in the other half, treating the pseudo-outcomes 

estimated in the other half as known. We expect these approaches to be asymptotically 

equivalent to an oracle selector.

An alternative option would be to use the k-fold cross-validation approach of van der Laan 

and Dudoit (2003) or Díaz and van der Laan (2013). This would entail randomly splitting 

the data into k parts, estimating the nuisance functions and the effect curve on (k − 1) 

training folds, using these estimates to compute measures of risk on the kth test fold, and 

then repeating across all k folds and averaging the risk estimates. One would then repeat this 

process for each bandwidth value h in some set , and pick that which minimized the 

estimated cross-validated risk. van der Laan and Dudoit (2003) gave finite-sample and 

asymptotic results showing that the resulting estimator behaves similarly to an oracle 

estimator that minimizes the true unknown cross-validated risk. Unfortunately this cross-

validation process can be more computationally intensive than the above leave-one-out 

method, especially if the nuisance functions are estimated with flexible computation-heavy 

methods. However this approach will be crucial when incorporating general machine 

learning and moving beyond linear kernel smoothers.

4. Simulation study

We used simulation to examine the finite-sample properties of our proposed methods. 

Specifically we simulated from a model with normally distributed covariates

Beta distributed exposure

and a binary outcome

The above setup roughly matches the data example from the next section. Figure 2 shows a 

plot of the effect curve  induced by the simulation setup, along with 

treatment versus outcome data for one simulated dataset (with n = 1000).

To analyze the simulated data we used three different estimators: a marginalized regression 

(plug-in) estimator , and two different versions of the proposed local 

linear kernel estimator. Specifically we used an inverse-probability-weighted approach first 

developed by Rubin and van der Laan (2006b), which relies solely on a treatment model 
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estimator  (equivalent to setting ), and the standard doubly robust version that used 

both estimators  and . To model the conditional treatment density π we used logistic 

regression to estimate the parameters of the mean function λ(l); we separately considered 

correctly specifying this mean function, and then also misspecifying the mean function by 

transforming the covariates with the same covariate transformations as in Kang and Schafer 

(2007). To estimate the outcome model μ we again used logistic regression, considering a 

correctly specified model and then a misspecified model that used the same transformed 

covariates as with π and also left out the cubic term in a (but kept all other interactions). To 

select the bandwidth we used the leave-one-out approach proposed in Section 3.5, which 

treats the pseudo-outcomes as known. For comparison we also considered an oracle 

approach that picked the bandwidth by minimizing the oracle risk . In 

both cases we found the minimum bandwidth value in the range  using 

numerical optimization.

We generated 500 simulated datasets for each of three sample sizes, n = 100, 1000, and 

10000. To assess the quality of the estimates across simulations we calculated empirical bias 

and root mean squared error at each point, and integrated across the function with respect to 

the density of A. Specifically, letting  denote the estimated curve at point a in 

simulation s (s = 1, …, S with S = 500), we estimated the integrated absolute mean bias and 

root mean squared error with

In the above  denotes a trimmed version of the support of A, excluding 10% of mass at 

the boundaries. Note that the above integrands (except for the density) correspond to the 

usual definitions of absolute mean bias and root mean squared error for estimation of a 

single scalar parameter (e.g., the curve at a single point).

The simulation results are given in Table 1 (both the integrated bias and root mean squared 

error are multiplied by 100 for easier interpretation). Estimators with stars (e.g., IPW*) 

denote those with bandwidths selected using the oracle risk. When both  and  were 

misspecified, all estimators gave substantial integrated bias and mean squared error 

(although the doubly robust estimator consistently performed better than the other estimators 

in this setting). Similarly, all estimators had relatively large mean squared error in the small 

sample size setting (n = 100) due to lack of precision, although differences in bias were 

similar to those at moderate and small sample sizes (n = 1000, 10000). Specifically the 

regression estimator gave small bias when  was correct and large bias when  was 

misspecified, while the inverse-probability-weighted estimator gave small bias when  was 

correct and large bias when  was misspecified. However, the doubly robust estimator gave 

small bias as long as either  or  was correctly specified, even if one was misspecified.
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The inverse-probability-weighted estimator was least precise, although it had smaller mean 

squared error than the misspecified regression estimator for moderate and large sample sizes. 

The doubly robust estimator was roughly similar to the inverse-probability-weighted 

estimator when the treatment model was correct, but gave less bias and was more precise, 

and was similar to the regression estimator when the outcome model was correct (but 

slightly more biased and less precise). In general the estimators based on the oracle-selected 

bandwidth were similar to those using the simple leave-one-out approach, but gave 

marginally less bias and mean squared error for small and moderate sample sizes. The 

benefits of the oracle bandwidth were relatively diminished with larger sample sizes.

5. Application

In this section we apply the proposed methodology to estimate the effect of nurse staffing on 

hospital readmissions penalties, as discussed in the Introduction. In the original paper, 

McHugh et al. (2013) used a matching approach to control for hospital differences, and 

found that hospitals with more nurse staffing were less likely to be penalized; this suggests 

increasing nurse staffing to help curb excess readmissions. However, their analysis only 

considered the effect of higher nurse staffing versus lower nurse staffing, and did not explore 

the full effect curve; it also relied solely on matching for covariate adjustment, i.e., was not 

doubly robust.

In this analysis we use the proposed kernel smoothing approach to estimate the full effect 

curve flexibly, while also allowing for doubly robust covariate adjustment. We use the same 

data on 2976 acute care hospitals as in McHugh et al. (2013); full details are given in the 

original paper. The covariates L include hospital size, teaching intensity, not-for-profit 

status, urban versus rural location, patient race proportions, proportion of patients on 

Medicaid, average socioeconomic status, operating margins, a measure of market 

competition, and whether open heart or organ transplant surgery is performed. The treatment 

A is nurse staffing hours, measured as the ratio of registered nurse hours to adjusted patient 

days, and the outcome Y indicates whether the hospital was penalized due to excess 

readmissions. Excess readmissions are calculated by the Centers for Medicare & Medicaid 

Services and aim to adjust for the fact that different hospitals see different patient 

populations. Without unmeasured confounding, the quantity θ(a) represents the proportion 

of hospitals that would have been penalized had all hospitals changed their nurse staffing 

hours to level a. Otherwise θ(a) can be viewed as an adjusted measure of the relationship 

between nurse staffing and readmissions penalties.

For the conditional density π(a | l) we assumed a model A = λ(L) + γ(L)ε, where ε has 

mean zero and unit variance given the covariates, but otherwise has an unspecified density. 

We flexibly estimated the conditional mean function  and variance function 

γ(l) = var(A | L = l) by combining linear regression, multivariate adaptive regression splines, 

generalized additive models, Lasso, and boosting, using the cross-validation-based Super 

Learner algorithm (van der Laan et al., 2007), in order to reduce chances of model 

misspecification. A standard kernel approach was used to estimate the density of ε.
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For the outcome regression μ(l, a) we again used the Super Learner approach, combining 

logistic regression, multivariate adaptive regression splines, generalized additive models, 

Lasso, and boosting. To select the bandwidth parameter h we used the leave-one-out 

approach discussed in Section 3.5. We considered regression, inverse-probability-weighted, 

and doubly robust estimators, as in the simulation study in Section 4. The two hospitals 

(<0.1%) with smallest inverse-probability weights were removed as outliers. For the doubly 

robust estimator we also computed pointwise uncertainty intervals (i.e., confidence intervals 

around the smoothed parameter ; see Section 3.4) using a Wald approach based on the 

empirical variance of the estimating function values.

A plot showing the results from the three estimators (with uncertainty intervals for the 

proposed doubly robust estimator) is given in Figure 3. In general the three estimators were 

very similar. For less than 5 average nurse staffing hours the adjusted chance of penalization 

was estimated to be roughly constant, around 73%, but at 5 hours chances of penalization 

began decreasing, reaching approximately 60% when nurse staffing reached 11 hours. This 

suggests that adding nurse staffing hours may be particularly beneficial in the 5–10 hour 

range, in terms of reducing risk of readmissions penalization; most hospitals (65%) lie in 

this range in our data.

6. Discussion

In this paper we developed a novel approach for estimating the average effect of a 

continuous treatment; importantly the approach allows for flexible doubly robust covariate 

adjustment without requiring any parametric assumptions about the form of the effect curve, 

and can incorporate general machine learning and non-parametric regression methods. We 

presented a novel efficient influence function for a stochastic intervention parameter defined 

within a nonparametric model; this influence function motivated the proposed approach, but 

may also be useful to estimate on its own. In addition we provided asymptotic results 

(including rates of convergence and asymptotic normality) for a particular kernel estimation 

version of our method, which only require the effect curve to be twice continuously 

differentiable, and allows for flexible data-adaptive estimation of nuisance functions. These 

results show the double robustness of the proposed approach, since either a conditional 

treatment density or outcome regression model can be misspecified and the proposed 

estimator will still be consistent as long as one such nuisance function is correctly specified. 

We also showed how double robustness can result in smaller second-order bias even when 

both nuisance functions are consistently estimated. Finally, we proposed a simple and fast 

data-driven cross-validation approach for bandwidth selection, found favorable finite sample 

properties of our proposed approach in a simulation study, and applied the kernel estimator 

to examine the effects of hospital nurse staffing on excess readmissions penalty.

This paper integrates semiparametric (doubly robust) causal inference with non-parametric 

function estimation and machine learning, helping to bridge the “huge gap between classical 

semiparametric models and the model in which nothing is assumed” (van der Vaart, 2014). 

In particular our work extends standard nonparametric regression by allowing for complex 

covariate adjustment and doubly robust estimation, and extends standard doubly robust 

causal inference methods by allowing for nonparametric smoothing. Many interesting 
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problems arise in this gap between standard nonparametric and semiparametric inference, 

leading to many opportunities for important future work, especially for complex non-regular 

target parameters that are not pathwise differentiable. In the context of this paper, in future 

work it will be useful to study uniform distributional properties of our proposed estimator 

(e.g., weak convergence), as well as its role in testing and inference (e.g., for constructing 

tests that have power to detect a wide array of deviations from the null hypothesis of no 

effect of a continuous treatment).
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Fig. 1. 
Left panel: Observed treatment and outcome data with unadjusted loess fit. Right panel: 

Average covariate value as a function of exposure, after transforming to percentiles to 

display on common scale.
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Fig. 2. 
Plot of effect curve induced by simulation setup, with treatment and outcome data from one 

simulated dataset with n = 1000.
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Fig. 3. 
Estimated effects of nurse staffing on readmissions penalties.
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