Skip to main content
. Author manuscript; available in PMC: 2018 Sep 1.
Published in final edited form as: J R Stat Soc Series B Stat Methodol. 2016 Sep 30;79(4):1229–1245. doi: 10.1111/rssb.12212

Table 1.

Integrated bias and root mean squared error (500 simulations)

Bias (RMSE) when correct model is:
n Method Neither Treatment Outcome Both
100 Reg 2.67 (5.54) 2.67 (5.54) 0.62 (5.25) 0.62 (5.25)
IPW 2.26 (8.49) 1.64 (8.57) 2.26 (8.49) 1.64 (8.57)
IPW* 2.26 (7.36) 1.58 (7.37) 2.26 (7.36) 1.58 (7.37)
DR 2.23 (6.27) 1.01 (6.28) 1.12 (5.92) 1.10 (6.50)
DR* 2.12 (5.48) 1.00 (5.36) 1.03 (5.08) 1.02 (5.65)
1000 Reg 2.62 (3.07) 2.62 (3.07) 0.06 (1.53) 0.06 (1.53)
IPW 2.38 (3.97) 0.86 (2.94) 2.38 (3.97) 0.86 (2.94)
IPW* 2.11 (3.44) 0.70 (2.34) 2.11 (3.44) 0.70 (2.34)
DR 2.03 (3.11) 0.75 (2.39) 0.74 (2.53) 0.68 (2.25)
DR* 1.84 (2.67) 0.64 (1.88) 0.61 (1.78) 0.58 (1.78)
10000 Reg 2.65 (2.70) 2.65 (2.70) 0.02 (0.47) 0.02 (0.47)
IPW 2.36 (3.42) 0.33 (1.09) 2.36 (3.42) 0.33 (1.09)
IPW* 2.24 (3.28) 0.35 (0.85) 2.24 (3.28) 0.35 (0.85)
DR 1.81 (2.35) 0.26 (0.86) 0.20 (1.21) 0.25 (0.78)
DR* 1.76 (2.27) 0.31 (0.68) 0.24 (1.10) 0.29 (0.64)

Notes: Bias / RMSE = integrated mean bias / root mean squared error; IPW = inverse probability weighted; Reg = regression; DR = doubly robust;

*

= uses oracle bandwidth.