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Summary

Obesity and type-2 diabetes are associated with tissue-inflammation and metabolic defects in fat 

depots. Foxp3+regulatory T(Treg) cells mediate T-cell tolerance, thereby controlling tissue 

inflammation. However, the molecular underpinnings how environmental stimuli interlink T-cell 

tolerance with adipose tissue function remain largely unknown. Here, we report that cold exposure 

or beta3-adrenergic receptor (ADRB3) stimulation induces T-cell tolerance in vitro and in murine 

and humanized models. Tolerance induction was verified by CD4+T-cell-proteomes revealing 

higher protein expression of Foxp3 regulatory networks. Specifically, Ragulator-interacting protein 

C17orf59, which limits mTORC1 activity, was upregulated by either ADRB3-stimulation or cold-

exposure, and therefore might enhance Treg induction. By loss and gain-of-function studies, 

including Treg depletion and transfers in vivo, we demonstrated that a T-cell-specific Stat6/Pten 

axis links cold-exposure or ADRB3 stimulation with Foxp3+Treg induction and adipose tissue 

function. Our findings open new avenues in understanding tissue-specific T-cell tolerance and the 

design of precision concepts toward personalized immune-metabolic health.

TOC Blurb

Inflammatory processes in metabolically active tissues are believed to contribute to the 

development of obesity and type-2 diabetes. We here report that immunesuppressive regulatory T 

cells represent key components of the molecular interface connecting environmental influences 

with functional integrity of adipose tissue in mice and men. Specifically, we find that a T cell-

specific Stat6/Pten signaling axis links cold exposure or adrenergic stimuli with regulatory T cell 

activity and adipose tissue function, offering novel molecular approaches toward personalized 

immune-metabolic health.

Introduction

Obesity and type-2 diabetes (T2D) represent one of the most severe health threats of modern 

society. Although inflammation is critically associated with obesity and T2D (Hotamisligil, 

2006), the functional interplay between adipose tissue and immune cells remains 

incompletely understood. Adipocytes can be divided into classes of white, brown and beige 

cells (Kissig et al., 2016; Rosen and Spiegelman, 2014). Metabolic disease is differentially 

associated with local fat depots, with visceral white adipose tissue (visWAT) being 

especially prone to obesity-associated inflammation (Rosen and Spiegelman, 2014). 

Adipocytes are surrounded by several immune cell types (Kanneganti and Dixit, 2012; 

Mathis, 2013), and there is evidence that crosstalk between adipose and immune cells is 

important during cold exposure (Qiu et al., 2014).
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Recently a critical function of fat-residing effector and regulatory CD4+T lymphocytes in 

adipose-immune crosstalk has been reported (Bapat et al., 2015; Cipolletta et al., 2012; 

Feuerer et al., 2009). In particular, a subset of Foxp3+regulatory T (Treg) cells was identified 

to have a pivotal role for the maintenance of visWAT homeostasis (Cipolletta et al., 2012; 

Feuerer et al., 2009; Mathis, 2013). Tregs mediate T cell tolerance and are important to 

control immune inflammation locally. Orchestration of the Treg population residing in 

visWAT is carried out in part by PPAR-γ (Cipolletta et al., 2012; Panduro et al., 2016). 

PPAR-γ collaborates with Foxp3 to impose the transcriptional profile characteristic of 

visWAT Tregs on naïve CD4+T cells (Cipolletta et al., 2012).

Immune cell type, numbers and function dramatically change in visWAT in response to 

overnutrition. Specifically, Treg frequencies are severely reduced and are accompanied by 

increased inflammation. One study reported that brown adipose tissue (BAT) from female 

C57Bl/6 mice hosts Tregs with a transcriptome different from that of their splenic 

counterparts (Medrikova et al., 2015). However, in spite of multiple studies examining T cell 

responses in visWAT, our understanding of Treg function in subcutaneous white adipose 

tissue (scWAT) and BAT remains limited.

To interfere with metabolic impairments in obesity, cold exposure has gained considerable 

interest as one major determinant of energy expenditure, as recent studies uncovered cold-

inducible BAT in adult humans (Cypess et al., 2013; Saito et al., 2009). This is important 

since cold acclimation is known to provide beneficial effects on whole-body and skeletal 

muscle insulin sensitivity in patients with obesity and T2D (Hanssen et al., 2015). Intense 

research efforts have therefore focused on stimulating BAT energy expenditure through 

activation of the beta3-adrenergic receptor (ADRB3), which is expressed on human 

adipocytes and other tissues including human peripheral blood mononuclear cells (Cypess et 

al., 2013; Yu et al., 2007). Recently, the ADRB3 agonist mirabegron (Malik et al., 2012; 

Takasu et al., 2007) was reported to stimulate human BAT thermogenesis (Cypess et al., 

2015).

In order to interfere with inflammatory conditions, cold exposure or short term 

cryostimulation presumably activates the same ADRB3 and have been implemented in 

clinical settings e.g., in rheumatoid arthritis or multiple sclerosis (Guillot et al., 2014). 

Preliminary studies indicated an increase in anti-inflammatory cytokine production upon 

short-term cryostimulation (Klimek et al., 2011; Lubkowska et al., 2011).

However, it remains unknown whether cold exposure or adrenergic signals might modulate 

local adaptive immune responses such as effector and regulatory CD4+T cells. Additionally, 

insights into the mutual crosstalk between local T cells and adipose tissue, especially in BAT 

and scWAT remain limited. Such insights into the role of tissue-specific Treg induction and 

function will be critical for the development of precision interventions limiting tissue-

specific inflammation to support adipose tissue function.

Here, we report that environmental stimuli such as cold exposure or ADRB3 stimulation 

induce T cell tolerance in vitro and in murine and humanized in vivo models. Diet-induced 

thermogenesis by short-term exposure to a high-caloric challenge likewise increased 
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Foxp3+Treg frequencies and induction in BAT. We used CD4+T cell proteomes to 

demonstrate tolerance induction and higher protein expression of Foxp3 regulatory 

networks. Specifically, the Ragulator-interacting protein C17orf59, which limits mTORC1 

activity, was upregulated by both ADRB3 stimulation and cold exposure, and therefore 

might enhance Treg induction. Using a series of T-cell-specific and adipose-related loss and 

gain of function studies, including Treg depletion, transfers, and expansion in vivo, we 

demonstrated that a T cell-specific Stat6/Pten axis links cold exposure or ADRB3 

stimulation with Foxp3+Treg induction and adipose tissue function.

Results

BAT and scWAT harbor more CD4+CD25+Foxp3+Tregs than visWAT

To investigate frequencies, functional characteristics and induction of Foxp3+Tregs from 

different fat depots we used young lean Balbc Foxp3 GFP reporter mice (3–6 weeks of age). 

A set of exclusion markers permitted the direct identification of a CD4+T cell subset purified 

from three fat depots (Fig. 1A). The percentages of locally-residing Foxp3 GFP+Tregs 

purified from fat depots of young lean animals were higher in BAT and scWAT than in 

visWAT (Tregs in BAT vs. visWAT, P=0.0015; Tregs in scWAT vs. visWAT, P=0.0003, Fig. 

1B+C). We likewise identified higher ratios of human Foxp3/CD4 mRNA in scWAT from 

lean individuals when compared to their visWAT (Figure S1A).

Treg induction is more efficient in T cells from BAT and scWAT than from visWAT

Next, to determine Foxp3+Treg induction capacities in accordance with their localization in 

different fat depots, we purified naïve CD4+CD44lowCD25−Foxp3GFP−T cells from BAT, 

scWAT and visWAT of Balbc Foxp3 GFP reporter mice. Our findings are in line with 

recently emerging evidence demonstrating the presence of naïve CD4+CD25−T cells in 

various non-lymphoid tissues (Kim, 2007; Lewis et al., 2008). For in vitro Treg induction, 

we used protocols mimicking subimmunogenic T cell receptor (TCR) stimulation without 

TGFβ and premature withdrawal of TCR stimulation (Sauer et al., 2008; Serr et al., 2016). 

We compared in vitro Treg induction capacities between naive 

CD4+CD25−CD44lowFoxp3GFP− T cells from different fat depots. Treg induction was most 

efficient using naïve T cells purified from BAT and scWAT (induced CD4+CD25+Foxp3high 

Tregs [% of CD4+T cells] BAT: 26.5±0.6 vs. scWAT: 16.0±0.9; Fig. 1D+E). Significantly 

lower frequencies of induced Foxp3+Tregs were obtained when naïve CD4+T cells from 

visWAT were used (induced CD4+CD25+Foxp3high Tregs [% of CD4+T cells] visWAT: 

9.6±0.9, P<0.01, Fig. 1D–F). Optimal Foxp3+Treg induction was found to require the 

subimmunogenic delivery of strong-agonistic TCR ligands to naïve CD4+T cells (Daniel and 

von Boehmer, 2011; Daniel et al., 2011; Gottschalk et al., 2010). The most efficient de novo 
Foxp3+Treg induction is achieved in those T cells that proliferate the least (Kretschmer et 

al., 2005). We observed a lower proliferative potential in T cells from BAT and scWAT when 

compared to visWAT (CD4+Ki67+T cells (mean fluorescence intensity (MFI)) BAT: 

2050±50 vs. scWAT: CD4+Ki67+T cells: 3025±75 vs. visWAT: CD4+Ki67+T cells: 

4235±45, P<0.01, Fig. S1B).
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We next asked whether these different adipose tissue environments would likewise infer 

metabolic programs onto local T cells and affect their differentiation and function. CD4+T 

cells purified from BAT and scWAT of lean mice harbored significantly decreased 

percentages of depolarized mitochondria when compared to cells from visWAT (Fig. S1C). 

These data support the notion that CD4+T cells residing in BAT and scWAT possess a lower 

glycolytic activity than visWAT derived T cells. This observation is consistent with the lower 

proliferative potential of BAT and scWAT-derived T cells (Fig. S1B) and their higher de 
novo Treg induction potential (Fig. 1E+F).

Cold exposure enhances Treg induction in adipose tissue T cells

Since brown/beige fat thermogenesis is stimulated by environmental cold, we next 

investigated the effects of cold exposure on local Treg frequencies and induction (staining 

examples are in Fig. S1D). Cold acclimation (1 wk at 8°C) significantly increased 

frequencies of Foxp3+Tregs purified from inguinal lymph nodes of mice (Fig. 1G+H). 

Importantly, short-term cold acclimation (24 h at 4°C) likewise induced a significant 

enhancement of Foxp3+Tregs in T cells from BAT, scWAT and visWAT 

(CD4+CD25+Foxp3+T cells [% of CD4+T cells] BAT: 7.4±0.6 vs. BAT after cold: 11.6±0.8, 

P<0.001; scWAT: 7.2±0.2 vs. scWAT after cold: 15.9±0.6, P<0.001, visWAT: 4.9±0.3 vs. 

visWAT after cold: 8.8±0.4, P<0.001, Fig. 1I). When we purified naïve CD4+T cells from 

respective fat depots after 24 h of cold and subjected them to in vitro Treg induction assays, 

Treg induction capacities were significantly enhanced (CD4+CD25+Foxp3+T cells [% of 

CD4+T cells] BAT: 32.5±1.2 vs. BAT after cold: 61.1±2.2, P<0.01; scWAT: 30.3±3.2 vs. 

scWAT after cold: 43.3±2.4, P=0.0098; visWAT: 11.9±0.5 vs. visWAT after cold: 24.4±1.6, 

P<0.001, Fig. 1J)

Beta-adrenergic stimulation enhances Treg induction in vitro

The data on Treg induction of fat-residing T cells upon cold-exposure prompted us to 

investigate the role of ADRB3 agonists on local T cell tolerance. Previous studies as well as 

in silico analyses (Heng et al., 2008) suggested expression of Adrb3, which encodes for the 

beta-3 adrenergic receptor, in human and murine lymphocytes (Yu et al., 2007). 

Accordingly, we found low mRNA expression levels of Adrb3 in murine CD4+T cells (Fig. 

S1E).

ADRB3 stimulation induces Tregs in vitro

When we next tested the specific ADRB3 agonist CL-316243 (CL) for Treg induction in 
vitro using naïve CD4+T cells from Balbc Foxp3 GFP reporter mice, it became clear that at 

low picomolar doses, the ADRB3 agonist significantly enhances Treg induction 

(CD4+CD25+Foxp3+T cells [% of CD4+T cells] control: 35.9±0.7 vs. + CL [0.01 nM]: 

45.1±1.0, P<0.001, Fig. S1F+G). Likewise, in naïve CD4+T cells purified from respective 

fat depots of young Balbc mice, low-dose CL-treatment enhanced Treg induction most 

efficiently in T cells from BAT and scWAT as compared to visWAT (Fig. S1H+I). Higher 

non-subimmogenic concentrations of ADRB3 agonists can promote cellular proliferation 

thereby reducing Treg induction efficacy from naïve CD4+T cells.
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ADRB3 blockade reduces Treg induction in vitro and in vivo

CL-mediated increased Treg induction was reduced by co-incubation with an ADRB3 

antagonist (cyanopindolol (Cya)) (CD4+CD25+Foxp3+T cells [% of CD4+T cells] +CL 

[0.001 nM]: 23.3±0.8 vs. + CL [0.001 nM] +Cya [0.1 nM]: 16.7±0.5, P<0.001, Fig. S1J). 

Moreover, in vivo, Treg induction potential was enhanced in naïve CD4+T cells from CL-

treated mice (CD4+CD25+Foxp3+T cells [% of CD4+T cells] BAT: 12.9±1.0 vs. BAT + CL 

in vivo: 21.0±0.8, P<0.001) and reduced upon co-treatment with an ADRB3 antagonist (Fig. 

S1K).

ADRB3 stimulation induces Treg cells in vivo

Application of an ADRB3 agonist to young Balbc Foxp3 GFP reporter mice in vivo (2 d at 1 

mg/kg i.p.) enhanced Foxp3 expression in CD4+T cells from inguinal lymph nodes and from 

fat (Fig. 2A–D; negative staining controls in Fig. S1L). Treg induction with naïve CD4+T 

cells was most prominently increased in T cells isolated from BAT and scWAT as compared 

to visWAT (Fig. 2E).

ADRB3 stimulation induces human T cell tolerance in vitro and in humanized mice

Limited TCR stimulation in vitro (Sauer et al., 2008; Serr et al., 2016) in the presence of low 

doses of the human ADRB3 agonist mirabegron significantly enhanced human Treg 

induction (CD25++Foxp3high [% of CD127lowCD25++CD4+T cells]: control: 46.6±1.1 vs. 

+Mira [0.1 nM]: 59.3±0.6, P<0.001, Fig. S2A).

To assess in vivo relevance, we investigated human Treg induction in humanized NSG mice 

in accordance with previously established procedures (Serr et al., 2016) (Fig. S2B). 

Humanized mice were treated with mirabegron for 3 d (1 mg/kg, i.p.) which significantly 

increased frequencies of human CD4+CD127lowCD25highTregs 

(CD4+CD127lowCD25highTregs [% of CD4+T cells]: control: 1.9±0.5 vs. +Mira: 4.9±1.0, 

P=0.0319, Fig. S2B+C). Moreover, purified naïve human CD4+T cells from mirabegron-

treated humanized animals had improved Treg-induction capacities in vitro (Fig. S2C–G).

T cell tolerance is impaired in the absence of beta-ARs in vivo

To mechanistically dissect these findings, we next analyzed mice lacking all three beta-

adrenergic receptors (Bachman et al., 2002) and observed significantly decreased Treg 

frequencies in inguinal lymph nodes and subcutaneous fat depots (Fig. 2F–H). As one 

possible means to explain this reduced Treg abundance in comparison to WT mice, 

Foxp3+Tregs residing in scWAT of betaless mice showed significantly reduced proliferative 

potential as assessed by Ki67 expression (Fig. S2H). Likewise, Treg induction potential 

using naïve CD4+T cells from fat depots of betaless mice was reduced when compared to 

WT animals (Fig. 2I). Treg induction assays using naïve CD4+T cells from betaless mice 

and ADRB3 agonists or antagonists indicated no effect on tolerance induction (Fig. S2I).

ADRB3-stimulation-induced Tregs are required for adipose tissue function

To investigate the importance of Tregs in adipose tissue function upon ADRB3 stimulation 

in vivo, we next performed loss-of-function experiments. ADRB3 stimulation in vivo (CL 
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for 3 d at 1 mg/kg, i.p.) induces genes relevant for BAT function (Fig. S3A). In a first set of 

loss-of-function studies, Tregs were depleted in Balbc Foxp3 GFP reporter mice prior to the 

start of ADRB3 stimulation by the use of established procedures involving anti-CD25 

antibody application (Setiady et al., 2010) (Fig. 3A). Treg-depleted mice (control stainings 

for efficacy of Treg depletion in adipose tissue in Fig. S3B) and control animals were 

injected with CL (3 d at 1 mg/kg, i.p.). In control mice without Treg depletion, thermogenic 

genes (Ucp1, Ppargc1a, Prdm16 and Cidea) were induced in BAT after ADRB3 agonist 

treatment. This induction by ADRB3 stimulation was blunted in mice with Treg depletion 

(Fig. 3C). Accordingly, upon ADRB3 stimulation, we found the β-oxidation genes (Acox1 
and Ascl1) as well as lipolysis-related genes (Lpl, Lipe) to be upregulated in BAT, and again, 

this induction was not seen in mice with depleted Tregs (Fig. 3C). Moreover, in contrast to 

control mice treated with ADRB3 stimuli in vivo, BAT tissue of Treg-depleted CL-treated 

mice had significantly increased Il6 (Fig. 3C). Further analyses of BAT tissue revealed a 

significant decline of Plin1, Cycs, P2rx5, Glut1 and Adipoq in Treg-depleted CL-treated 

mice (Fig. S3C) thereby underlining a role of Foxp3+Tregs in regulating lipolysis and 

thermogenesis in BAT. In a second set of loss-of-function studies, we used C57Bl/6 Foxp3 

DTR mice (Kim et al., 2007) and diphtheria toxin-mediated Treg depletion to confirm the 

results seen from Treg-depleted animals using anti-CD25 antibodies. Accordingly, upon 

ADRB3 stimulation Treg-depleted Foxp3 DTR mice (Fig. 3B+D) exposed to cold (4°C for 

24 h) had a significant reduction in thermogenic genes including Ucp1, Ppargc1a, and Cidea 
and in β-oxidation genes such as Acsl1 in BAT while Il6 levels mildly increased (Fig. 3D, 

control stainings for Treg depletion in Fig. S3D). Treg loss of function likewise mildly 

impacted scWAT function accompanied by a decline in Pparg, P2rx5, Cidea and Lipe (Fig. 

3E). Moreover, in visWAT, upon DT-mediated Treg depletion and cold exposure we found 

expression levels of Adipsin, Pparg, Ppargc1a, P2rx5, Plin1 and Lipe to be decreased while 

Il6 was significantly upregulated (Fig. 3F).

Foxp3+Tregs regulate adipose tissue function

Next, to directly assess the role of Foxp3+Tregs in regulating adipose tissue function, we 

performed gain-of-function experiments by in vivo transfers of Foxp3GFP+Tregs into 

respective Balbc recipient mice (i.v. or i.p. transfer). First, analyses of BAT function one wk 

after transfer revealed a significant enhancement of thermogenic genes (Ucp1, Adrb3, 

Ppargc1a, Prdm16 and Cidea) in BAT (Fig. 3G). Consistent with this, we found increased 

levels of mRNA of β-oxidation genes (Acox1 and Ascl1) as well as of lipolysis-related 

genes (Lpl, Lipe) in BAT after Treg transfer (Fig. 3G). Additionally, we observed Plin1, 

Cycs, P2rx5, Glut1 and Adipoq to be enhanced in BAT tissue upon Treg transfer (Fig. S4A). 

Mild changes upon Treg transfer were also seen in scWAT tissue with Ppara, Prdm16, Cpt1b 
and Glut1 being upregulated (Fig. S4B). The Treg-mediated improvement of BAT function 

(thermogenic capacity and lipolytic function) upon Treg transfer (Fig. 3G) was equal, or 

partially superior to, what occurred with ADRB3 agonist treatment in vivo.

To more specifically address the impact of Foxp3+Tregs in modulating white adipose tissue 

function we employed in situ expansion of Foxp3+Treg cells using subcutaneous injections 

of IL-2–mAb complexes (3 d, 6 μg per injection, s.c.) as a second gain-of-function model. 

These complexes cause a selective expansion of Foxp3+Treg cells (Daniel et al., 2010; 
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Webster et al., 2009). Upon Foxp3+Treg expansion we found a significant enhancement of 

thermogenic genes (Ucp1, Ppargc1a, Prdm16 and Cidea) in scWAT, accompanied by 

increased levels of β-oxidation (Acox1 and Acsl1) and lipolysis-related genes (e.g. Lipe and 

Plin1, Fig. S4C+D), together with an increased expression of P2rx5, Pparg, Ppara and 

Adipsin.

Gain-of-function experiments by Treg expansion also mildly impacted visWAT metabolic 

function. Specifically, we observed upregulation in genes related to differentiation (Pparg 
and Adipsin), browning (Cd137) as well in genes related to lipolysis (Acox1, Lipe, Lpl, 
Plin1) (Fig. S4E). In addition to the upregulation seen for Pparg and P2rx5 following Treg 

gain-of-function, the significant increase in Adipsin expression seen in BAT, scWAT and 

visWAT upon Treg expansion further point to an impact of Foxp3+Tregs in regulating 

adipocyte differentiation (Fig. S4F).

Local Foxp3+Treg induction is impaired in the absence of UCP1

The thermogenic activity of brown fat cells relies, to a great extent, on uncoupling protein 1 

(UCP1), a protein that is localized on the inner membrane of mitochondria. Upon activation, 

UCP1 catalyzes the leak of protons across the mitochondrial membrane (Fedorenko et al., 

2012), which uncouples oxidative respiration from ATP synthesis while the resulting energy 

derived from substrate oxidation is dissipated as heat. To further dissect the question, 

whether the fat thermogenic response causes Treg activation or whether Treg activity is 

required for thermogenic responses we used UCP1-ablated (UCP1ko) mice. The percentages 

of locally-residing CD4+CD25+Foxp3+Tregs purified from fat depots of young UCP1ko 

mice were reduced in BAT and scWAT while marginal or no changes were seen in visWAT 

(Fig. S5A+D). Likewise, de novo Treg induction was lower in naïve CD4+CD25−T cells 

purified from BAT and scWAT of UCP1ko mice when compared to WT T cells (Fig. S5B

+E). The reduced Treg percentages and their lower Treg induction potential were 

accompanied by a higher proliferative potential in local CD4+CD25−T cells from UCP1ko 

mice when compared to littermates (Fig. S5C,F,G), both ex vivo and upon TCR stimulation 

during Treg induction in vitro. These data support the notion of a mutual crosstalk between 

immune cells and adipose tissue in that the local tissue environment impacts T cell 

differentiation and function, which in turn can influence tissue function and organismal 

homeostasis (Panduro et al., 2016).

Pathological activation of adipose tissue by exposure to high-caloric challenge 
differentially affects Foxp3+Tregs in BAT, scWAT vs. visWAT

To examine pathological environmental conditions in which these pathways are activated we 

focused on high-caloric challenge by exposure to high fat/high sugar (HFHS) diet. High-

caloric diets were demonstrated to also induce BAT thermogenesis (Rothwell and Stock, 

1979), which was shown to depend on UCP1 function (Feldmann et al., 2009).

A 2 wk challenge of HFHS diet to 6 wk-old Bl6 Foxp3 GFP reporter mice or 8 wk-old 

Balbc Foxp3 GFP reporter mice resulted in a significant enhancement of 

CD4+Foxp3GFP+Tregs residing in BAT (Fig. S6A+B). Mild changes in Treg percentages 

were seen in scWAT, while the short-term high-caloric challenge resulted in a significant 
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decline in Treg percentages in visWAT (Fig. S6A+B). An exposure to HFHS diet for 8 wk 

did not alter Treg ratios in BAT and scWAT of B6 Foxp3 GFP reporter mice; in accordance 

with earlier studies (Cipolletta et al., 2015; Cipolletta et al., 2012) indicating local Treg 

expansion in visWAT in this age group (~14 weeks of age), we found higher ratios of Tregs 

during standard diet. In contrast to Tregs residing in BAT and scWAT Tregs in visWAT were 

severely reduced by exposure to HFHS diet (Fig. S6C). Long term exposure to HFHS diet 

for 16 wk left CD4+CD25+Foxp3+Tregs in BAT unaltered and only mildly reduced them in 

scWAT of Balbc mice, while Foxp3+Tregs in visWAT were significantly reduced by high-

caloric challenge (Fig. S6D).

In accordance with the increase seen in BAT-residing Tregs seen upon a 2 wk HFHS diet 

challenge, Treg induction potential of naïve CD4+T cells was likewise significantly 

enhanced (Fig. S6E–G).

To address the question whether a diet-induced thermogenic response causes Treg activation 

or whether Treg activity is required for responses in adipose tissue we again used a model of 

Treg depletion by anti-CD25 antibody application. Treg depletion prior to exposure to a 1 

wk challenge of HFHS diet resulted in a significant decline in thermogenic genes in BAT 

such as Ucp1, Ppargc1a, Pparg, Ppara and Prdm16 (Fig. S6H). Additionally, in Treg-

depleted mice β-oxidation genes (Ascl1) as well as lipolysis-related genes (Lipe) were 

reduced. Furthermore, we found Cycs, P2rx5 and Adipsin to be downregulated in BAT of 

Treg depleted mice (Fig. S6I). The responses seen upon Treg depletion and exposure to a 

HFHS diet in scWAT were more heterogeneous, while Treg depletion promoted a significant 

decline in Pparg, Prdm16 and Acsl1 (Fig. S6J).

Stat6 expression is higher in T cells from BAT and scWAT as compared to visWAT

Next, we aimed to identify potential signaling molecules that can impinge on the functional 

interplay between T cell tolerance induction and adipose tissue function. When comparing 

the gene expression patterns of murine CD4+T cells from young Balbc Foxp3GFP reporter 

mice at room temperature in a pilot experiment, we observed higher levels of transcripts 

encoding the transcription factor Stat6 in BAT compared to WAT (Fig. 4A).

Treatment with an ADRB3 agonist (2 d CL at 1 mg/kg i.p.) resulted in increased Stat6 
expression in CD4+T cells (Fig. 4B; see quantification in Fig. S7A). Moreover, in vivo cold 

exposure induced Stat6 mRNA expression in CD4+T cells as assessed by RT-qPCR analyses 

(Fig. 4C). When we validated Stat6 expression levels in fat-residing CD4+T cells of Balbc 

Foxp3GFP reporter mice, we observed higher expression in CD4+T cells from BAT when 

compared to scWAT or visWAT (Fig. 4D). In vivo cold exposure (4°C, 24 h) and ADRB3 

stimulation (3 d CL at 1 mg/kg i.p.) likewise induced phosphorylation of Stat6 at position 

pY641 in CD4+T cells from inguinal lymph nodes as seen from immunofluorescence 

analyses (Fig. 4E–G). Moreover, the percentage of cells that are p-Stat6-positive (and the 

MFI of the entire population) was increased in pre-activated CD4+T cells after ADRB3 

stimulation for 15 min in vitro (CL, 100 nM, Fig. 4H).

Stat6 has been implicated in exerting critical functions in promoting cold-induced 

remodeling of fat. For instance, cold-induced expression of Ucp1 in scWAT was reported to 
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be severely decreased in Stat6−/− (Stat6ko) mice (Qiu et al., 2014). From an immunological 

perspective, Stat6 promotes Th2 and Th9 immunity (Goenka and Kaplan, 2011). However, 

recent studies pointed to a positive role for Stat6 as a second required signal in antigen-

specific Treg induction (Chapoval et al., 2010; Pillemer et al., 2009; Sanchez-Guajardo et 

al., 2007), while in Stat6VT transgenic mice the constitutive activation of Stat6 increased the 

percentages of peripheral Tregs (Sanchez-Guajardo et al., 2007).

Induction of adipose tissue Tregs is impaired in the absence of Stat6

When we analyzed ex vivo Treg frequencies, as well as the Treg induction potential of naïve 

T cells purified from fat depots of BALB/c Stat6ko (Gessner et al., 2005; Kaplan et al., 

1996) and WT animals, we observed local Treg ratios (BAT: CD4+CD25+Foxp3+T cells [% 

of CD4+T cells] WT: 10.5±0.7 vs. Stat6ko: 5.2±0.5, P<0.001; scWAT: WT: 7.7±0.9 vs. 

Stat6ko: 3.2±0.3, P=0.0003, Fig. 4I–K) and their induction to be significantly blunted in the 

absence of Stat6 (CD4+CD25+Foxp3+T cells [% of CD4+T cells]: BAT: WT: 26.1±1.0 vs. 

Stat6ko: 13.4±0.9, P<0.001; scWAT: WT: 16.0±0.9 vs. Stat6ko: 10.8±0.5, P<0.001, Fig. 4I–

K).

In a second approach, a pharmacological Stat6 inhibitor significantly reduced Treg induction 

using naïve CD4+T cells from inguinal lymph nodes of BALB/c Foxp3 GFP reporter mice 

(Fig. S7B).

Treg induction by ADRB3 stimulation requires Stat6

Treg induction using Stat6ko mice was unaffected by ADRB3 stimulation/blockade in vitro 
(Fig. S7C+D) or in vivo (CL 1 mg/kg, i.p., 3 days, Fig. 4L). Since T cell-specific Stat6ko 

mice are not available for loss-of-function studies, we used in vivo T cell transfer 

experiments to assess T cell intrinsic effects relevant for Treg induction. We purified naïve 

CD4+T cells from either WT or Stat6ko animals and transferred them into congenic BALB/c 

hosts to permit re-identification of transferred cells. In addition, mice were treated for 3 d 

with CL at 1 mg/kg, i.p. in vivo. Re-analysis of transferred cells revealed that in accordance 

with previous studies, Treg induction capacities in vivo in polyclonal TCR repertoires were 

low, although we found frequencies of induced Tregs to be significantly reduced in 

transferred T cells from Stat6ko mice (CD4+CD25+Foxp3+T cells [% of CD4+T cells] WT: 

3.8±0.9 vs. Stat6ko: 1.5±0.3, P=0.0200, Fig. S7E). To dissect the question whether the 

impairment of T cell tolerance seen in fat depots of Stat6ko mice links with alterations in 

adipose tissue function, we next examined metabolic regulation in fat depots of Stat6ko mice 

upon ADRB3 stimulation in vivo. In contrast to WT mice (Fig. S3A), in Stat6ko mice 

ADRB3 stimulation in vivo (3 d CL, 1 mg/kg i.p.) did not increase genes important for BAT 

function (no upregulation was seen for Ucp1, Ppargc1a, Cidea, Ascl1, Plin1, Lipe and 

P2rx5), while ADRB3 stimulation in the absence of Stat6 significantly reduced mRNA 

abundance of Pparg (p=0.0117) and Adipsin (P=0.0388) (Fig. S7F). Genes related to 

thermogenesis, lipolysis and adipose differentiation were likewise unaffected by ADRB3 

stimulation in scWAT from Stat6ko animals, while ADRB3 stimulation significantly reduced 

mRNA abundance of Ucp1, Pparg, Lipe, Adipsin and P2rx5 in visWAT of Stat6ko mice 

(Fig. S7G, H).
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In vivo Treg induction is enhanced in the presence of a constitutively active Stat6

In gain-of-function experiments, we used mice with a constitutively active Stat6 expressed in 

T cells (Bruns et al., 2003; Sehra et al., 2008) (Stat6VT+ vs. Stat6VT− littermates). We 

identified increased frequencies of Foxp3+Tregs in inguinal lymph nodes 

(CD4+CD25+Foxp3+T cells [% of CD4+T cells] Stat6VT−: 11.7±0.5 vs. Stat6VT+: 

20.6±2.1, P=0.0007, Fig. 4M). Ex vivo Treg frequencies from adipose tissue of Stat6VT+ 

mice showed a higher variability but were found to be increased when compared to 

Stat6VT− littermates (Fig. 4N).

Concerning adipose tissue function, in the steady state, without ADRB3 stimulation or cold 

exposure, Stat6VT+ mice presented with increased mRNA abundance of Pparg, Adipsin and 

P2rx5 in adipose tissue (Fig. S7I–K).

T cell tolerance in BAT is enhanced by Pten

Given the impairment of local tolerance induction in UCP1ko animals we next focused on 

Pten, which has been implicated in positively regulating BAT tissue function; e.g. by 

promoting Ucp1 expression (Ortega-Molina et al., 2012). Animals with overexpression of 

Pten presented with a hyperactive BAT and harbored increased Ucp1 levels in BAT (Ortega-

Molina et al., 2012). Moreover, Pten has been critically implicated in the regulation of T cell 

tolerance (Sauer et al., 2008; Shrestha et al., 2015). We observed increased expression levels 

of Pten in CD4+T cells purified from BAT and scWAT of Balbc mice (Fig. 5A). In 

accordance with the results seen for Stat6 expression, in vivo cold exposure induced a 

significant increase in Pten expression levels of CD4+T cells (Fig. 5B). In CD4+T cells from 

inguinal lymph nodes of Stat6ko mice, we found Pten expression levels to be mildly 

downregulated when compared to WT animals (Fig. 5C).

As a gain-of-function approach we used Pten overexpressing animals (PtenTg). Such mice 

had significantly increased frequencies of Foxp3+Tregs residing in inguinal lymph nodes, 

BAT and scWAT when compared to WT animals (BAT: CD4+CD25+Foxp3+T cells [% of 

CD4+T cells] WT: 9.6±0.2 vs. PtenTg: 12.7±0.2, P<0.001; scWAT: WT: 4.9±0.5 vs. PtenTg: 

10.1±0.3, P<0.001; Fig. 5D+E). Moreover, the Treg induction potential was significantly 

enhanced in naïve CD4+T cells of PtenTg animals (BAT: CD4+CD25+Foxp3+T cells [% of 

CD4+T cells] WT: 23.3±1.2 vs. PtenTg: 31.0±0.9, P=0.0010; scWAT: WT: 16.9±0.9 vs. 

PtenTg: 23.3±1.3, P=0.0052, Fig. 5F).

Levels of Pten overexpression varied in CD4+T cells from PtenTg animals (~4 to ~40-fold). 

Mice with higher levels of Pten overexpression (~40-fold over WT) harbored significantly 

increased frequencies of Foxp3+Tregs in all adipose tissues including visWAT (Fig. S7L).

No further increase in Treg induction in vitro was observed upon ADRB3 stimulation using 

naïve CD4+T cells from PtenTg animals (Fig. 5G). In addition, ADRB3 stimulation in vivo 
(3d CL at 1 mg/kg i.p.) did not alter Treg frequencies in adipose tissue of PtenTg mice (Fig. 

5H). Moreover, application of a Pten inhibitor significantly reduced Treg induction in vitro 
using naïve CD4+T cells from inguinal lymph nodes of WT mice (Fig. 5I+J).
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Cold exposure or ADRB3 stimulation in vivo induces a tolerogenic proteome signature in 
CD4+T cells

Next, we used an unbiased approach to assess involved signaling pathways in CD4+T cells 

upon cold exposure or low dose ADRB3 stimulation. To this end, we performed quantitative 

mass spectrometry-based proteomics (Meissner and Mann, 2014) to evaluate proteome 

compositions in CD4+T cells upon in vivo cold acclimation of mice (8°C for one wk) or 

treatment with ADRB3 agonist (3 d CL at 1 mg/kg, i.p.). We identified 5,031 proteins in 

sorted CD4+T cell proteomes of mice that were either exposed to cold or treated with CL in 
vivo, compared to control animals housed at room temperature or treated with NaCl, 

respectively. To verify tolerance induction upon cold exposure or ADRB3 stimulation in 
vivo at the protein level, we focused on proteins associated with selected GeneOntology 

terms Biological Function (GOBP) related to negative regulation of immune responses/

effector responses, as well as Treg induction and Foxp3 regulatory networks. Unsupervised 

hierarchical clustering conditions revealed up-regulation of several GO terms related to Treg 

induction upon cold exposure or ADRB3 stimulation in vivo among them Stat6 and Foxp3 

(Fig. 6A+B). Similarly, several proteins of the Foxp3 regulatory network were found to be 

mildly up-regulated upon cold exposure or ADRB3 stimulation (Fig. 6C+D). Next, to 

address the relevance of Stat6 for linking ADRB3 stimulation with T cell tolerance induction 

in an unbiased setting we examined proteome compositions in CD4+T cells from Stat6ko 

mice with or without ADRB3 stimulation in vivo (CL for 3 d at 1 mg/kg, i.p.). We identified 

2,827 proteins in sorted CD4+T cell proteomes of Stat6ko mice that were treated with CL in 
vivo, compared to control mice treated with NaCl, respectively. Unsupervised hierarchical 

clustering conditions showed that in the absence of Stat6 upon ADRB3 stimulation in vivo 
several GO terms related to Treg induction were rather downregulated, among them Foxp3 

(Fig. 6G). Overall, these data highlight that in Stat6-competent animals either cold exposure 

or ADRB3 stimulation in vivo support a tolerogenic proteome signature in CD4+T cells in 

accordance with identified increased Treg frequencies and the induction of Foxp3 regulatory 

networks (Fig. 6A–D).

ADRB3 stimulation or cold-exposure enhances fatty acid oxidation in CD4+T cells

CD4+T cells purified from mice that have been subjected to cold exposure or else treated 

with CL in vivo had upregulated proteins involved in enhancing fatty acid oxidation (FAO) 

such as Acsl4 and Cpt1a, as well as downregulation of proteins involved in negatively 

regulating FAO such as Acadvl and Acadl (Fig. 6A,B,E), thereby further supporting Treg 

induction and function (Chang and Pearce, 2016; MacIver et al., 2013; O’Sullivan and 

Pearce, 2015).

ADRB3 stimulation or cold-exposure increases C17orf59 protein expression in CD4+T cells

Next, we combined both the cold/RT and the CL/NaCl datasets and performed pairwise 

comparison of the CD4+T cells. Besides the mild upregulation of the Foxp3 regulatory 

network, we identified C17orf59 as one of the most prominently upregulated proteins in 

CD4+T cells upon treatment with either ADRB3 agonist or cold in vivo (Fig. 6E for 

combined datasets, Fig. 6F for CL treatment only). C17orf59 was recently reported to 

function as a Ragulator-interacting protein that inhibits mTORC1 activity through its 

Kälin et al. Page 12

Cell Metab. Author manuscript; available in PMC 2018 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interaction with Ragulator at the lysosome (Schweitzer et al., 2015). In accordance with 

previous studies (Daniel and von Boehmer, 2011; Sauer et al., 2008), inhibition of mTORC1 

can directly enhance Foxp3+Treg induction (Daniel et al., 2010).

C17orf59 was recently assigned a gene name, BLOC-1 related complex subunit 6 (Borcs6). 
Borcs6 mRNA levels were significantly increased in CD4+T cells from mice given ADRB3 

stimulation (CL for 3 d at 1 mg/kg, i.p.], Fig. 6F). Consistent with the results upon ADRB3 

stimulation, Borcs6 mRNA levels were found to be enhanced following ADRB3 stimulation 

and cold exposure in vivo (Fig. 6H+I).

To validate the results by mass spectrometry we first used immunefluorescence for C17orf59 

in CD4+T cells together with confocal microscopy. We found C17orf59 protein expression 

to be upregulated following cold exposure or ADRB3 stimulation in vivo (Fig. 7A–D). Next, 

we employed stimulated emission depletion (STED) microscopy for creating super-

resolution images in order to analyze expression changes of C17orf59 in cytoplasm of 

CD4+T cells purified from inguinal lymph nodes of mice upon cold exposure in further 

detail (Fig. 7E). We found C17orf59 expression to be enhanced in CD4+T cells from mice 

exposed to cold (24 h, 4°C) when compared to animals kept at RT (Fig. 7E). In line with the 

increased protein abundance of C17orf59 upon ADRB3 stimulation or cold exposure in vivo 
we dissected intracellular localization of mTOR in CD4+T cells (Fig. 7F–H). While mTOR 

localizes more prominently to lysosomes in control CD4+T cells, we found mTOR to remain 

more diffuse in T cells from mice that had received ADRB3 stimulation in vivo or were 

exposed to cold (Fig. 7F–H). Both ADRB3 stimulation and cold exposure resulted in 

significantly reduced frequencies of mTOR+Lamp2+CD4+T cells (Fig. 7I+J). In addition, we 

provide first evidence that in the absence of Stat6 C17orf59 expression was reduced in the 

steady state when compared to WT mice (Fig. 7K, L, M).

Discussion

Here, we report the discovery of an important role of Treg cells in maintaining functional 

integrity of adipose tissue in response to environmental or systemic challenges. Specifically, 

in addition to cold exposure or physiological levels of beta-adrenergic stimulation we 

demonstrate that diet-induced thermogenesis by short-term exposure to a high-caloric 

challenge enhance T cell tolerance and their induction in BAT. This upregulation of 

thermogenesis-related genes upon short-term exposure to HFHS diet seen in BAT was 

blunted in Treg-depleted animals.

Furthermore, we find that local T cell tolerance induction was reduced in the context of 

impaired BAT-function using UCP1 ablated mice. We further reveal that a T cell-specific 

Stat6/Pten axis represents a mechanistic link between environmental challenges, induction 

of Foxp3+Treg cells and immune-metabolic function in adipose tissue.

We examined loss- and gain-of-function studies, including Treg depletion, -transfer and in 
vivo expansion to demonstrate an important role of Foxp3+Tregs for efficient thermogenesis 

and lipolysis. Furthermore, the results seen from s.c. Treg expansion in vivo underline a 

critical function of Foxp3+Tregs in beiging/browning of white fat. Additionally, Treg gain-

Kälin et al. Page 13

Cell Metab. Author manuscript; available in PMC 2018 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of-function experiments enhanced expression of Pparg, Adipsin and P2rx5 which was shown 

to be upregulated in differentiating brown adipocytes (Siegfried Ussar et al., 2014) and 

thereby suggest Foxp3+Tregs as relevant players for adipocyte differentiation.

In order to dissect the question, whether the fat thermogenic response induces Treg 

activation or whether Treg activity is required for thermogenic responses we studied 

UCP1ko mice. We found Foxp3+Treg frequencies and their induction in BAT to be reduced 

in the absence of UCP1. These results therefore support the notion of a mutual crosstalk 

between CD4+T cells/Treg cells and adipose tissue. Specifically, these findings underline 

that the local adipose tissue environment can shape local T cell differentiation programs, 

which in turn can influence tissue function and organismal homeostasis.

Mechanistically, we provide evidence that Stat6 can function as one potential signaling 

molecule that impacts the functional interplay between T cell tolerance induction and 

adipose tissue function. The involvement of Stat6 in Foxp3+Treg induction has been linked 

with the IL-2-Stat5 signaling pathway. IL-2R signals can induce IL-4 production through 

Stat5 (Zhu et al., 2003) or c-Maf activation (Hwang et al., 2002). The IL-4/Stat6/c-Maf/

CD25 and IL-2/CD25/c-Maf/IL-4 pathways may converge to act on 

CD4+CD25+Foxp3+Tregs (Sanchez-Guajardo et al., 2007). One means to explain the 

increase in peripheral Foxp3+Tregs in mice with a constitutively-active Stat6 (Stat6VT+ 

mice) might be an improved Treg cell survival by using common downstream elements of 

the IL-2 pathways (Sanchez-Guajardo et al., 2007). Additionally, IL-4, which promotes 

Stat6 activation (Quelle et al., 1995), can prevent apoptosis of CD25+Foxp3+Tregs (Maerten 

et al., 2005). It is hypothesized that in the periphery, Stat6 does not replace IL-2 signals, but 

rather acts in synergy to enhance Treg survival (Sanchez-Guajardo et al., 2007). Here, we 

show that fat-residing Treg abundance and induction, especially in BAT and scWAT, was 

critically impaired in the absence of Stat6.

Importantly, Stat6 is critically involved in regulating UCP1 expression in adipose tissue 

(Nguyen et al., 2011; Qiu et al., 2014). Furthermore, in vivo T cell transfer systems highlight 

the importance of T cell-specific Stat6 expression in tolerance induction. ADRB3 agonist-

mediated Treg enhancement was likewise not seen in the absence of Stat6. Accordingly, in 

contrast to WT mice in the absence of Stat6 upon ADRB3 stimulation in vivo we observed 

rather a downregulation of tolerogenic protein signatures including Foxp3. These 

immunological data on the reduction of T cell tolerance in Stat6 deficient animals integrate 

with metabolic analyses of fat depots from Stat6ko mice, which in contrast to WT mice upon 

ADRB3 stimulation in vivo showed a reduced expression of markers relevant for adipocyte 

differentiation such as Pparg, P2rx5 and Adipsin. Together with the results seen from Treg 

gain- and loss-of-function studies these findings further support a role of Foxp3+Tregs in 

impacting adipocyte differentiation.

As one possible means to further interlink Stat6-relevant signaling intermediates, mice with 

transgenic overexpression of Pten had decreased phosphorylated Akt as well as 

phosphorylated Foxo1 levels together with a significant enhancement of UCP1 expression in 

BAT (Ortega-Molina et al., 2012). Molecular analyses, including PI3K inhibitors, 

underscored that the effects of Pten on BAT are mediated by the PI3K/Akt/Foxo signaling 
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pathway that results in the activation of UCP1 and its transcriptional regulator Ppargc1a 

(Ortega-Molina et al., 2012).

The described metabolic effects on BAT function directly interlink with tolerance induction 

in CD4+T cells, where inhibition of the PI3K/Akt pathway enhances Foxp3+Treg induction 

(Daniel and von Boehmer, 2011; Sauer et al., 2008). Regulation of Foxo transcriptional 

activity is mainly dependent on the phosphorylation of Foxo proteins via the PI3K/Akt 

pathway (Daniel and von Boehmer, 2011).

In line with these observations, as one of the more prominently enhanced proteins identified 

in CD4+T cell proteomes of mice subjected to cold or ADRB3 stimulation, we found 

C17orf59. It was recently demonstrated to function as a Ragulator-interacting protein that 

regulates mTORC1 activity through its interaction with Ragulator at the lysosome 

(Schweitzer et al., 2015). Overexpression of C17orf59 disrupts the Rag-Ragulator complex, 

prevents Rag lysosomal localization and thereby inhibits mTORC1 activity (Schweitzer et 

al., 2015). Inhibition of mTORC1 activity, as evidenced by established drugs such as 

rapamycin or everolimus, directly induces T cell tolerance (Daniel et al., 2010; Sauer et al., 

2008; von Boehmer and Daniel, 2013). The increased protein abundance of C17orf59 in 

CD4+T cells of mice subjected to cold or ADRB3 stimulation supports a concept in which 

physiological level of ADRB3 stimulation can exert mTORC1-inhibiting activity, thereby 

directly contributing to the induction of Foxp3+Tregs.

Furthermore, in our unbiased proteomic approach we identified a series of proteins involved 

in negative regulation of immune responses as well as Treg induction, frequencies and 

function. Accordingly, we observed regulation of networks that impact Foxp3 itself as well 

as its interacting partners. Previous analyses indicated that Foxp3 forms large transcriptional 

complexes comprising several hundred partners (Rudra et al., 2012). Moreover, upon cold 

exposure or ADRB3 stimulation, we saw upregulation of Foxp3-associated factors 

implicated in transcription regulation such as Bc11b, CBFβ and Runx1. Some of these 

Foxp3-bound transcription factors are not only controlled by Foxp3, but also regulate Foxp3 
gene expression by binding to its promoter and intronic enhancers (Rudra et al., 2012). 

Indeed, targeted ablation of Runx1 or its essential cofactor CBFβ was reported to result in a 

decreased expression of Foxp3 mRNA and protein (Kitoh et al., 2009; Rudra et al., 2009).

Recent evidence is emerging that T cell subsets are metabolically distinct (Buck et al., 2016; 

Chang and Pearce, 2016; Chi, 2012; O’Sullivan and Pearce, 2015), with Tregs being the 

least glycolytic of the subsets (MacIver et al., 2013). Tregs have elevated rates of lipid 

oxidation and mitochondrial membrane potentials that are consistent with the observed high 

level of phosphorylated AMPK. Likewise, AMPK activation, which enhances FAO and 

energy conservation by antagonizing anabolic pathways, also alters this balance in favor of 

Tregs (Hardie et al., 2012; Michalek et al., 2011). Accordingly, CD4+T cells from mice 

subjected to cold exposure or ADRB3 stimulation in vivo had higher expression of proteins 

involved in FAO which can induce Tregs.

In sum, we demonstrate that local Foxp3+Treg induction in adipose tissue involves Stat6/

Pten signaling. These findings are consistent with recently emerging hypotheses that local 
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metabolic changes can link gene regulation, signaling, differentiation and function in order 

to drive tissue-specific T cell differentiation and fate (Panduro et al., 2016). Moreover, using 

gain- and loss-of-function studies we demonstrate that Foxp3+Tregs induced by beta-

adrenergic signaling or cold exposure are critically required for functional integrity of 

adipose tissue. Furthermore, we find that local T cell tolerance induction was reduced in the 

context of impaired BAT-function using UCP1 ablated mice. These findings highlight an 

important aspect of mutual crosstalk of immune cells and adipocytes in shaping local 

differentiation programs. Additionally, CD4+T cell proteomes of mice subjected to cold or 

ADRB3 stimulation identify signatures relevant for Treg induction. Specifically, the 

Ragulator-interacting protein C17orf59, which limits mTORC1 activity, was upregulated by 

either ADRB3 stimulation or cold exposure, and therefore might directly enhance Treg 

induction. In contrast, tolerogenic protein signatures were absent in Stat6ko mice upon 

ADR3 stimulation in vivo. These novel insights into the molecular underpinnings of tissue-

specific T cell tolerance induction uncover their role in linking environmental influences 

with adipose function and metabolic diseases. These discoveries shed new light on potential 

approaches toward tailored anti-inflammatory concepts to restore metabolic homeostasis in 

adipose tissue.

STAR Methods

Detailed methods are provided in the online version of this paper and include the following:

Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD4 Biotin BioLegend Clone: GK1.5; Cat# 553728; 
RRID: AB_395012

CD8a Pacific Blue BioLegend Clone: 53-6.7; Cat# 100725; 
RRID: AB_493425

CD11b Pacific Blue BioLegend Clone: M1/70; Cat# 101224; 
RRID: AB_755986

CD11c Brilliant Violett 421 BioLegend Clone: N418; Cat# 117330; 
RRID: AB_11219593

B220 Pacific Blue BioLegend Clone: RA3-6B2; Cat# 103227; 
RRID: AB_492876

F4/80 Pacific Blue BioLegend Clone: BM8; Cat# 123124; 
RRID: AB_893475

CD25 PerCP-Cy5.5 BioLegend Clone: PC61; Cat# 102030; 
RRID: AB_893288

CD44 PE BioLegend Clone: IM7; Cat# 103008; 
RRID: AB_312959

Ki67 APC BioLegend Clone: 16A8; Cat# 652406; 
RRID: AB_2561930

Ki67 Brilliant Violett 605 BioLegend Clone: 16A8; Cat# 652413; 
RRID: AB_2562664

CD4 Alexa Fluor 700 eBioscience Clone: RM4-5; Cat# 
56-0042-82; RRID: AB_494000
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REAGENT or RESOURCE SOURCE IDENTIFIER

CD62L APC eBioscience Clone: MEL-14; Cat# 
17-0621-82; RRID: AB_469410

Foxp3 FITC eBioscience Clone: FJK-16s; Cat# 
11-5773-82; RRID: AB_465243

CD14 V450 BD Biosciences Clone: rmC5-3; Cat# 560639; 
RRID: AB_1727429

CD90.1 PerCP-Cy5.5 BioLegend Clone: OX-7; Cat# 202515; 
RRID: AB_961438

CD90.2 APC-Cy7 BioLegend Clone: 30-H12; Cat#105328; 
RRID: AB_10613293

Anti-mouse CD25 (mCD25) BioXCell Clone: PC-61.5.3; Cat# 
BE0012; RRID: AB_1107619

Fc-Block BD Pharmingen Clone: 2.4G2; Cat# 553142; 
RRID: AB_394657

CD3e BD Pharmingen Clone: 145-2C11; Cat# 553057; 
RRID: AB_394590

CD28 BD Pharmingen Clone: 37.51; Cat# 553294; 
RRID: AB_394763

p-Stat6 (pY641) Alexa Fluor 647 BD Phosflow™ Clone: J71-773.58.11; Cat# 
558242; RRID: AB_647145

p-Stat6 rabbit anti-mouse Cell Signaling Cat# 9361S; RRID: AB_331595

anti-mouse IL-2 eBioscience Clone: JES6-1A12; Cat# 
16-7022-85; RRID: AB_469207

rabbit anti-mouse C17orf59 MyBioSource polyclonal; Cat# MBS6004199; 
RRID: N/A

mouse anti-mouse Stat6 Cell Signaling polyclonal; Cat# 9362; RRID: 
AB_2271211

rat-anti-mouse LAMP2 BioLegend Clone: M3/84; Cat# 108502; 
RRID: AB_313383

Mouse anti-mTOR Thermo Fisher Scientific Clone: 215Q18; Cat# 
AHO1232; RRID: AB_2536329

Hamster anti-mouse CD3 BioLegend Clone: 145-2C11; Cat# 100302; 
RRID: AB_312667

Rat anti-mouse CD4 BioLegend Clone: RM4-5; Cat #100506; 
RRID: AB_312709

Rat anti-mouse CD4 eBioscience Clone: GK1.5; Cat# 14-0041-8; 
RRID: AB_467064

F(ab′)2 donkey anti-rabbit IgG PE eBioscience polyclonal; Cat# 12-4739-81; 
RRID: AB_1210761

goat anti-rat Alexa Fluor 488 Life Technologies polyclonal; Cat #A11006; 
RRID: AB_2534074

biotinylated goat-anti-armen. hamster IgG eBioscience polyclonal; Cat #13-4113-85; 
RRID: AB_466651

donkey-anti-mouse AlexaFluor 555 Life Technologies polyclonal; Cat# A-31570; 
RRID: AB_2536180

goat-anti-mouse Cy3 Dianova polyclonal; Cat# 115-165-146; 
RRID: AB_2491007

goat-anti-rat AlexaFluor 594 Life Technologies polyclonal; Cat#A11007; RRID: 
AB_141374

goat anti-rabbit AlexaFluor 594 Life Technologies polyclonal; Cat# A11012; 
RRID: AB_141359

rat-anti-mouse biotinylated Dianova polyclonal; Cat# 415-065-166; 
RRID: AB_2340272
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REAGENT or RESOURCE SOURCE IDENTIFIER

horse anti-rabbit biotinylated Vector Laboratory Cat# BA-1100; RRID: 
AB_2336201

goat-anti-rat STAR580 abberior Cat# 2-0132-005-1; RRID: N/A

goat-anti-rabbit STAR635P abberior Cat# 2-0132-005-5; RRID: N/A

Chemicals, Peptides, and Recombinant Proteins

Foxp3 Staining Buffer Set eBioscience Cat# 00-5523-00

Fixable Viability Dye eFluor450 eBioscience Cat# 65-0863-18

Sytox Red Thermo Fisher Scientific Cat# S34859

Sytox Blue Thermo Fisher Scientific Cat# S34857

Streptavidin Microbeads Miltenyi Cat #130-048-101

Dynabeads untouched CD4+ mouse Invitrogen Cat# 11415D

Streptavidin Alexa Fluor 488 Dianova Cat# 016-540-084

Streptavidin Dylight 549 Vector Laboratory Cat# SA-5549

Streptavidin Pacific Blue Invitrogen Cat# S11222

Hoechst 33342 dye Invitrogen Cat # H1399; CAS 23491-52-3

high fat high sugar (HFHS) diet Research Diets Cat# D12331

Pten Inhibitor SF1670 Abcam Cat# ab141303; CAS 
345630-40-2

Stat6 Inhibitor AS 1517499 Axon Medchem Cat# Axon 1992 ; CAS 
919486-40-1

CL-316243 Sigma Aldrich Cat# C5976; CAS 138908-40-4

cyanopindolol hemifumarate Tocris Cat#0993; CAS 69906-86-1

LysC Wako Chemicals Cat# 129-02541; EC# 3.4.21.50

trypsin Sigma Aldrich Cat# T6567; EC# 232-650-8

ReproSil-Pur C18-AQ 1.9 μm resin Dr. Maisch GmbH Cat# R119.b9

Roti-Histofix 4% Carl Roth Cat# P087.5

Ficoll-Paque PLUS GE Healthcare Cat# 17-1440-03

recombinant human IL-2 ReproTech Cat# 200-02

collagenase type II Sigma Aldrich Cat#C6885; EC #3.4.24.3

collagenase D Roche Cat#11088882001; EC #3.4.24.3

Critical Commercial Assays

miRNeasy Micro Kit Qiagen Cat# 217084

Eva Green SuperMix BioRad Cat# 1725202

iScript Advanced cDNA Synthesis Kit BioRad Cat# 1725038

SMARTer ultra-low input RNA Kit for sequencing – v4 Takara Clonetech Cat# 634890

SMARTer Universal Low Input RNA Kit for Sequencing Takara Clonetech Cat# 634889

Deposited Data

mass spectrometry data This paper ProteomeXchange Consortium 
via PRIDE repository; Identifier: 
ProteomeXchange: PXD004671

Experimental Models: Organisms/Strains
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REAGENT or RESOURCE SOURCE IDENTIFIER

CD90.1 Balb/c; genotype: CBy.PL(B6)-Thy1a/ScrJ Jackson Laboratory RRID: IMSR_JAX:005443

CD90.2 Balb/c; genotype: Balb/cByJ Jackson Laboratory RRID: IMSR_JAX:001026

Foxp3 GFP Balbc; genotype: C.Cg-Foxp3tm2Tch/J Jackson Laboratory RRID: IMSR_JAX:006769

Foxp3 GFP Bl6; genotype: B6.Cg-Foxp3tm2Tch/J Jackson Laboratory RRID: IMSR_JAX:006772

Stat6VT+ Bl6; genotype: Stat6 VT/AA mutation Mark H. Kaplan, 
Indiana University, USA 
(Bruns et al., 2003)

N/A

Stat6KO Balbc; genotype: C.129S2-Stat6tm1Gru/J Mark H. Kaplan, 
Indiana University, USA 
(Kaplan et al., 1996)

RRID: IMSR_JAX:002828

Stat6KO 4get-GFP, Balbc Benno Weigmann, 
University Erlangen, 
Germany (Gessner et al., 
2005)

N/A

PtenTg Bl6 Manuel Serrano, 
Spanish National Cancer 
Research Center, Spain 
(Ortega-Molina et al., 
2012)

N/A

Betaless; genotype: Adrb1,2,3TKO Francoise Rohner-
Jeanrenaud, University 
of Geneva, Switzerland

N/A

Borcs6+/−; genotype: B6N(Cg)-Borcs6tm1.1(KOMP)Vlcg/J Jackson Laboratory RRID: IMSR_JAX:028178

Humanized mice; genotype: NOD.Cg-PrkdcscidH2-
Ab1tm1GruIl2rgtm1WjlTg(HLA-DQA1,HLA-DQB1)1Dv//Sz

Leonard Shultz, Jackson 
Laboratory

N/A

Foxp3-DTR; genotype: C57BL/6-Tg(Foxp3-DTR/EGFP)23.2Spar/Mmjax Tobias Bopp, Johannes 
Gutenberg University 
Mainz, Germany

RRID: MMRRC_032050-JAX

Sequence-Based Reagents

Custom primers used for qPCR This paper Table S1

Software and Algorithms

FlowJo software (version 7.6.1) TreeStar, OR https://www.flowjo.com/solutions/flowjo/downloads/

FACSDiva software (version 6.1.3) Beckton Dickinson N/A

Prism (version 6.0.1) GraphPad https://www.graphpad.com/scientific-software/prism/

Statistical Package for the Social Sciences (SPSS) (version 19.0) IBM https://www-01.ibm.com/software/de/analytics/spss/download/

SprayQc software (Scheltema and Mann, 
2012)

http://sprayqc.sourceforge.net/

MaxQuant software package (version 1.5.3.29) (Cox and Mann, 2008) http://www.coxdocs.org/doku.php?id=maxquant:start

Andromeda search engine (Cox et al., 2011) http://www.coxdocs.org/doku.php?id=maxquant:andromeda:start

iBAQ algorithm (Schwanhäusser et al., 
2011)

N/A

Perseus software package (Tyanova, 2016) http://www.coxdocs.org/doku.php?id=perseus:common:download_and_installat

DESeq2 (Love et al., 2014) https://bioconductor.org/packages/release/bioc/html/DESeq2.html

SAMTools (Li et al., 2009) N/A

FastQC (Andrews, 2010) http://www.bioinformatics.babraham.ac.uk/projects/fastqc

HTSeq-count (Anders et al., 2015) http://www-huber.embl.de/users/anders/HTSeq/doc/install.html
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Contact for reagent sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by Matthias Tschoep (Tschoep@helmholtz-muenchen.de)

Experimental model and subject details

Mice—CBy.PL(B6)-Thy1a/ScrJ (CD90.1 Balbc), Balb/cByJ (CD90.2 Balbc), C.Cg-

Foxp3tm2Tch/J (Foxp3 GFP Balbc) and B6.Cg-Foxp3tm2Tch/J mice (Foxp3 GFP Bl6) mice 

were originally obtained from Jackson Laboratories. C.129S2-Stat6tm1Gru/J (Kaplan et al., 

1996), referred to as Stat6ko mice, and Stat6VT mice (Bruns et al., 2003) were previously 

described. Pten Tg Bl6 mice were kindly provided by Manuel Serrano (Spanish National 

Cancer Research Center (CNIO), Spain). Adrb1,2,3TKO mice, referred to as betaless mice, 

were kindly provided by Francoise Rohner-Jeanrenaud (Faculty of Medicine, University of 

Geneva, Switzerland). Humanized mice, NOD.Cg-Prkdcscid H2-Ab1tm1Gru Il2rgtm1Wjl 

Tg(HLA-DQA1,HLA-DQB1)1Dv//Sz mice, lack murine MHC class II and transgenically 

express human HLA-DQ8. These mice were developed by Leonard Shultz at the Jackson 

Laboratory. For high-caloric challenge, mice were fed ad libitum with a high-fat, high-sugar 

(HFHS) diet composed of 58.0% kcal from fat, 25.5% kcal from carbohydrates (including 

8% sucrose) and 16.4% kcal from protein (Research Diets, #D12331, New Brunswick, NJ) 

or standard diet (Altromin, #1314, Lage, Germany) for 1–16 wk. Mice were maintained 

group-housed on a 12h/12h light dark cycle at 25°C under specific pathogen free (SPF) 

conditions. All mice had ad libitum access to food and water and were maintained in the 

animal facility of the Helmholtz Zentrum München, Munich, Germany according to 

guidelines established by the Institutional Animal Committees. C57BL/6-Tg(Foxp3-DTR/

EGFP)23.2Spar/Mmjax mice, referred to as Foxp3 DTR mice, were kindly provided by 

Tobias Bopp (Institute of Immunology, University Medical Center Mainz, Johannes 

Gutenberg-University, Mainz, Germany) and Stat6KO 4get-GFP Balbc mice (Gessner et al., 

2005) were kindly provided by Benno Weigmann (Department of Medicine 1, University of 

Erlangen-Nuremberg, Erlangen, Germany). These mice were maintained at the animal 

facility of the I. Medical Clinic, University of Erlangen-Nuremberg, Erlangen, Germany. 

Mice were randomized to test groups. For in vivo ADRB3 stimulation or inhibition mice 

were injected i.p. with 1 mg/kg CL or 0.3 mg/kg Cyanopindolol on three consecutive days, 

respectively. 0.9% NaCl was used as vehicle control. For Treg depletion, Foxp3 DTR mice 

were injected i.p. with 50 ng diphtheria toxin per g bodyweight on three consecutive days. 

As second approach of Treg depletion, 250 μg anti-mCD25 antibodies (BioXCell) were 

injected i.p. on three consecutive days (Setiady et al., 2010). For in vivo Treg expansion, 6 

μg anti-IL2/IL2 antibody (IL-2-mAb) complexes were injected s.c. on three consecutive 

days (Webster et al., 2009). For in vivo cold exposure experiments, mice were acclimated to 

8°C for 1 wk or to 4°C for 24 h as indicated in the text. No animals were excluded due to 

illness or outlier results; therefore, no exclusion determination was required. The 

investigators were not blinded to group allocation or to the assessment of experimental end 

points. All animal care was executed according to guidelines established by the Institutional 

Animal Committees at each institution. Ethical approval for all mouse experimentations has 

been received by corresponding local animal welfare authorities (District government of 

upper Bavaria or Veterinary office of Zurich).
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Human subjects and samples—Venous blood was collected from healthy adults (n=2, 

female, age 25) who consented to the Munich Bioresource project (approval number 
#5049/11, Technische Universität München, Munich, Germany) in heparinized blood 

collection tubes (BD Vacutainer Blood Collection Tubes, Becton Dickinson). For human 

adipose tissue samples, paired samples of abdominal subcutaneous (scWAT) and omental 

whole adipose tissue (visWAT) were obtained from individuals, which were lean (n=6, mean 

BMI: 23.2kg/m2). Phenotypic characterization of the study participants was performed as 

previously described (Kloting et al., 2010). All adipose tissue samples were collected during 

open or laparoscopic abdominal surgery as described previously (Kloting et al., 2010). The 

study was approved by the Ethics Committee of the University of Leipzig (approval number 
#159-12-21052012 and #017-12-23012012) and performed in accordance to the declaration 

of Helsinki. All subjects gave written informed consent before taking part in a study.

In vitro studies with primary murine T cells—Freshly isolated murine CD4+ T cells 

were cultured for three days in RPMI media (Gibco by life technologies™) supplemented 

with 10% FCS, 1 mM sodium pyruvate (Sigma Aldrich), 50 mM β-mercaptoethanol 

(Amimed), 1X non-essential amino acids (Merck Millipore), 100 U/ml human recombinant 

IL-2 (ReproTech), 100 U/ml penicillin and 100 μg/ml streptomycin (Sigma Aldrich) at 37°C 

in an humidified CO2 incubator. Cell culture treated 96 well U bottom plates were used 

(Bio-Greiner one).

In vitro studies with primary human T cells—Freshly isolated human CD4+ T cells 

were cultured in Vivo15 Medium supplemented with 2 mM glutamine, penicillin (50 U/ml) 

(Sigma Aldrich), streptomycin (50 μg/ml) (Sigma Aldrich), 100 U/ml human recombinant 

IL-2 (ReproTech) and 5% (vol/vol) heat-inactivated human AB serum (Invitrogen) in 96-

well U bottom plates (Bio-Greiner one). in an humidified CO2 incubator.

Method Details

Isolation of CD4+T cells from lymphoid organs—Lymph nodes and spleens were 

mashed through 70 μm cell strainers in HBSS+ (supplemented with 5% FCS and 10 mM 

HEPES). After surface antibody staining, CD4+T cells were enriched using biotin-labelled 

anti-CD4 antibodies and magnetic activated cell sorting (MACS, Miltenyi) with streptavidin 

microbeads (Miltenyi). Streptavidin-fluorochrome-conjugates (molecular probes by life 

technologies) were added after 5 min to allow flow cytometric detection. Cells were further 

processed for FACS sorting as described below. For immunofluorescence experiments, T 

cells were isolated from lymph nodes using Dynabeads® untouched™ Mouse CD4 Kit 

(Invitrogen) according to manufacturer’s instructions.

Isolation of CD4+T cells from adipose tissues—White adipose tissue was collected 

in PBS supplemented with 0.5% BSA and digested with Collagenase II solution [3–4 mg/ml 

Collagenase II, 10 mM CaCl2] for 10 minutes at 37°C on a rotator. The cell suspension was 

passed through a 200 μm nylon mesh and centrifuged (380xg, 5 min., 4°C) to separate the 

stromal vascular fraction from adipocytes. Pelleted cells were re-suspended in HBSS+ 

(HBSS supplemented with 5% FCS and 10 mM HEPES) and stained for flow cytometric 

analysis. Brown adipose tissue was digested in three digestion rounds with 1 mg/ml 
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Collagenase D in HBSS+ at 37°C for 20 min on a rotator. Cell suspensions were passed 

through a 200 μm nylon mesh and stained for flow cytometric analysis.

Human cell isolation from blood—Peripheral blood mononuclear cells (PBMC) were 

isolated by density centrifugation over Ficoll-Paque PLUS (GE Healthcare). Human CD4+T 

cells were isolated from fresh PBMCs via MACS enrichment with CD4+ microbeads 

following the manufacturer’s protocol.

Cell staining for flow cytometry

Murine FACS stainings: The following monoclonal antibodies were used for murine 
FACS stainings: From BioLegend (San Diego, CA): anti-CD4 Biotin (GK1.5, 1:400), anti-

CD8a Pacific Blue (53-6.7; 1:300), anti-CD11b Pacific Blue (M1/70, 1:300), anti-CD11c 

Brilliant Violett 421 (N418, 1:400), anti-B220 Pacific Blue (RA3-6B2, 1:300), anti-F4/80 

Pacific Blue (BM8, 1:400), anti-CD25 PerCP-Cy5.5 (PC61, 1:200), anti-CD44 PE (IM7, 

1:800, 1:3000 for analysis with ≤1,000 cells per well), anti-Ki67 APC (16A8, 1:400); anti-

Ki67 Brilliant Violett 605 (16A8, 1:400), anti-CD90.1 PerCP-Cy5.5 (OX-7, 1:500), anti-

CD90.2 APC-Cy7 (30-H12, 1:500); from eBioscience (San Diego, CA): anti-CD4 Alexa 

Fluor 700 (RM4-5; 1:200; 1:600 for analysis with ≤1,000 cells), anti-CD62L APC (MEL-14, 

1:400), anti-Foxp3 FITC (FJK-16s, 1:200), polyclonal donkey anti-rabbit IgG PE (1:2000); 

from BD Biosciences: anti-CD14 V450 (rmC5-3, 1:400). Unspecific binding of antibodies 

was prevented by incubation of cell suspensions with Fc-Block (BD Pharmingen, 2.4G2, 

1:100) for 10 min on ice, followed by flow cytometric staining for 30 min on ice in the dark. 

Cells were passed through a 40 μm cell strainer (NeoLab) to remove large debris. 

Enumeration of cells and acquisition were performed by using FACSAriaIII and FACSDiva 

software (BD version 6.1.3). Single-cell data analyses were performed by the use of the 

FlowJo software 7.6.1 (Tree Star Inc., OR).

Human FACS stainings: The following monoclonal antibodies were used for human FACS 

stainings: from BD Biosciences (San Jose, CA): anti-CD25 APC (2A3, 1:20), anti-CD45RO 

APC-H7 (UCHL1, 1:20), anti-CD4 V500 (RPA-T4, 1:20); from Biolegend (San Diego, CA): 

anti-CD45RA FITC (HI100, 1:20), anti-CD3 PerCP-Cy5.5 (HIT3a, 1:20), anti-CD127 PE-

Cy7 (A019D5, 1:20), anti-CD8a Pacific Blue (RPA-T8, 1:50), anti-CD11b Pacific Blue 

(ICRF44, 1:50), anti-CD14 Pacific Blue (HCD14, 1:50), anti-CD19 Pacific Blue, anti-CD3 

Alexa Fluor 700 (HIT3a, 1:20), anti-CD45 Alexa Fluor 700 (HI30, 1:20), anti-Ki67 APC 

(16A8, 1:200) or anti-Ki67 Brilliant Violet 605 (16A8, 1:400); from eBioscience (San 

Diego, CA): anti-Foxp3 Alexa Fluor 700 (PCH101, 1:100), anti-Foxp3 PE (236A/E7, 

1:100); Unspecific binding of antibodies was prevented by incubation of cell suspensions 

with Fc-Block (Human TruStain FcX, BioLegend, 1:20) for 5 min at RT, followed by FACS 

staining for 20 min at RT in the dark. Cells were passed through a 40 μm cell strainer 

(NeoLab) to remove large debris.

Intracellular staining: To detect intracellular protein expression, T cells were fixed and 

permeabilized using the Foxp3 Staining Buffer Set (eBioscience) after surface staining. For 

phospho-Stat6 stainings, MACS-enriched CD4+ T cells were cultured over night with 5 

μg/ml plate-bound anti-CD3 and anti-CD28 in RPMI media with supplements and 100 U/ml 
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IL-2. Cells were washed and re-stimulated with CL (100 nM) for 15 min. Surface staining 

was performed as described above with Fc Block supplemented with sodium vanadate (New 

England Biolabs). Cells were fixed with PFA (4.5% Histofix, Carl Roth) and permeabilized 

with 100% methanol. Anti-phospho Stat6-AlexaFluor 647 was stained as recommended by 

the manufacturer.

Sample acquisition: Cells were acquired on BD FACSAriaIII flow cytometer using 

FACSDiva software with optimal compensation and gain settings determined for each 

experiment based on unstained and single-color stained samples. Doublets were excluded 

based on SSC-A vs. SSC-W plots and FSC-A vs. FSC-W plots. Live cell populations were 

gated on the basis of cell side and forward scatter and the exclusion of cells positive for 

Sytox Blue (Life Technologies) or Fixable Viability Dye eFluor450 (eBioscience). Samples 

were analyzed using FlowJo software version 7.6.1 (TreeStar Inc., OR).

Analysis of mitochondrial membrane potentials—The analysis of mitochondrial 

membrane potentials of CD4+T cells was performed on FACS sort-purified CD4+T cells 

from lymphoid organs and adipose tissues with BD™ MitoScreen Kit (BD) according to the 

manufacturer’s instructions. T cells incubated with 250 μM H2O2 for 2 hours at 37°C prior 

to staining with JC-1 dye were used as positive controls, while unstained cells were used as 

negative control. Analysis was performed on the FACSAriaIII (BD) flow cytometer.

In vitro Treg-induction assay—Murine naïve CD4+T cells were defined as 

CD4+CD25−Foxp3−GFP−CD44low for Foxp3-GFP reporter mice and as 

CD4+CD25−CD44low for non-reporter mice. Cells were sorted with a FACSAriaIII (BD) cell 

sorter for purity. Murine naïve CD4+T cells were cultured for 18 hours in RPMI media 

(Gibco by life technologies™) supplemented with 10% FCS, 1 mM sodium pyruvate (Sigma 

Aldrich), 50 mM β-mercaptoethanol (Amimed), 1X non-essential amino acids (Merck 

Millipore), 100 U/ml human recombinant IL-2 (ReproTech), 100 U/ml penicillin and 100 

μg/ml streptomycin (Sigma Aldrich), while human naïve 

CD3+CD4+CD45RA+CD45RO−CD127+CD25− T cells were cultured in Vivo15 Medium 

supplemented with 2 mM glutamine, penicillin (50 U/ml), streptomycin (50 μg/ml), and 5% 

(vol/vol) heat-inactivated human AB serum (Invitrogen) in 96-well plates pre-coated with 5 

μg/ml anti-CD3e (145-2C11, BD Pharmingen) and 5 μg/ml anti-CD28 (37.51, BD 

Pharmingen). TCR stimulation was limited to 18 hours by transferring cells into uncoated 

wells. Cells were cultured for additional 36 hours without further TCR stimulation.

Chemicals and enzymes used for experiments—To test the influence of adrenergic 

receptor stimulation or inhibition on Treg induction capacities, chemicals were added to in 
vitro cultures in the concentrations given in the text: CL-316243 (Sigma Aldrich, CAS 

138908-40-4), Cyanopindolol hemifumarate (Tocris, CAS 69906-86-1) and Mirabegron 

(Selleckchem, CAS 223673-61-8). To evaluate the influence of specific signaling pathways 

on Treg induction we used a specific PTEN inhibitor SF1670 (Abcam, CAS 345630-40-2) 

and a specific Stat6 inhibitor AS 1517499 (Axon Medchem, CAS 919486-40-1). 

Collagenase type II (Sigma Aldrich, EC #3.4.24.3) and Collagenase D (Roche, EC 

#3.4.24.3) were used for T cell isolation from adipose tissues.
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Quantitative analysis of mRNA abundance

RNA extraction and cDNA synthesis: Total RNA was extracted from sort-purified T cell 

populations using QIAzol Lysis Reagent/ miRNeasy Micro Kit and from snap-frozen total 

tissue samples (BAT, scWAT, visWAT), which were previously homogenized using 

QIAshredder (Qiagen) according to the manufacturer’s instructions. 1 μg total RNA was 

converted to first strand cDNA using iScript™ Advanced cDNA Synthesis Kit (Bio-Rad). 

For cell numbers < 2000 and/or RNA amounts < 200 ng, cDNA synthesis and subsequent 

amplification was performed using the SMARTer ultra-low input RNA Kit for sequencing – 

v4 or SMARTer Universal Low Input RNA Kit for Sequencing (Takara Clonetech) 

according to the manufacturer’s instructions. cDNA was generated in the Thermal Cycler 

peqStar 2X (Peqlab). Real-time PCR quantification was performed using SsoFast Evagreen 

Supermix (Bio-Rad) or SYBR® Premix Ex Taq™ (Takara Clonetech) and gene-specific 

primer sets on a CFX96 real time system (Bio-Rad). Histone and 18S RNA levels were used 

for normalization of target gene expression levels. Analysis of candidate genes involved in 

thermogenesis, browning, lipolysis, glycolysis and inflammation was performed. Primers 
used for Quantitative Real-Time PCR analyses are listed in Supplemental Table S1.

Gel electrophoresis: 2% (w/v) peqGOLD Universal Agarose (Peqlab) was dissolved in 1X 

TAE Buffer (Applichem) and 3 μL/100 mL Midori Green Advance (Biozym Scientific) were 

added. Products from RT-qPCR were mixed with Gel Loading Dye Blue (BioLabs). 100 bp 

Ladder (New England Biolabs) was used as reference. Gel electrophoresis was performed 

with 130 V for 40–120 min using the power supply unit peqPOWER E250 (Peqlab). DNA 

fragments were detected using FUSION-FX7 Spectra (Vilber).

mRNA expression profiling: cDNA Synthesis: cDNA was generated directly from cells in 

the Thermal Cycler peqStar 2X (Peqlab) using the SMARTer ultra-low input RNA Kit for 

sequencing – v4 or SMARTer Universal Low Input RNA Kit for Sequencing (Takara 

Clonetech) according to the manufacturer’s instructions. mRNA expression profiling using 

next generation sequencing (NGS). For NGS, cDNA concentration and integrity (quality) of 

the samples were assessed using Agilent High Sensitivity DNA Chips (Agilent 

Technologies) and Agilent 2100 Bioanalyzer. We employed NGS for expression profiling in 

pooled sample-sets of CD4+T cells purified from white and brown fat. mRNA library 

preparation was conducted with Nextera reagents (Illumina), according to the 

manufacturer’s instructions. NGS was performed on a NextSeq (Illumina) with 75bp single 

end reads for mRNA using Illumina reagents and following the manufacturer’s instructions.

NGS data processing and statistical analysis: Quality was assessed by FastQC (Andrews, 

2010). Reads were mapped to the mouse genome (mm10) using BWA-mem with default 

configuration. Read counts lists were created using SAMTools (Li et al., 2009) and HTSeq-

count (Anders et al., 2015). Reads were normalized using DESeq2 (Love et al., 2014). 

Normalized read counts were further processed for descriptive visualization of expression 

trends for this preliminary experiment. The cut-off for reading counts was set to 30 and 

pseudogenes were manually removed. The top 5 upregulated genes are shown.
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Proteomics—Mice were treated for three days with 1 mg/kg CL316243 or 0.9% NaCl as 

vehicle control in vivo. Additionally, mice were subjected to cold exposure (8°C) vs. room 

temperature for 1 week CD4+T cells were isolated by MACS enrichment using CD4-biotin 

antibodies and streptavidin microbeads as described above.

Sample preparation for LC-MS/MS analysis: Cell lysis of isolated cells was performed in 

LB buffer (50% (v/v) 2-2-2-trifluoroethanol (TFE) plus 2 mM dithiothreitol, 50% (v/v) 50 

mM ammonium bicarbonate (ABC) buffer) at 99°C for 10 min followed by sonication for 10 

min (10 cycles high intensity, Bioruptor, Diagenode). Cell debris was removed after 10 min 

centrifugation (16,000 g at 4°C) and proteins in the lysate were alkylated for 30 min with 10 

mM iodoacetamide in the dark. Next, the solution was centrifuged in a vacuum evaporator 

for about three hours at 45°C. Proteins were resolubilized in 10% (v/v) TFE in 50 mM ABC 

and sonicated in a water bath for 5 min. Proteins were digested by adding 0.2 μg of LysC 

and 0.2 μg of Trypsin and incubation at 37°C overnight. The next day, the digest was 

stopped by adding 1% (v/v) TFE and the solution volume was reduced in a vacuum 

evaporator for about one hour at 45°C. Samples were finally desalted on SDB-RPS 

StageTips (3M, Empore, Neuss, Germany) and eluted as described (Kulak et al., 2014).

LC-MS/MS analysis: MS analysis was performed using Q-Exactive HF mass spectrometers 

(Thermo Fisher Scientific, Bremen, Germany) coupled on-line to a nanoflow UHPLC 

instrument (Easy nLC, Thermo Fisher Scientific). Peptides were separated on a 50 cm long 

(75 μm inner diameter) column packed in-house with ReproSil-Pur C18-AQ 1.9 μm resin 

(Dr. Maisch GmbH, Ammerbuch, Germany). Column temperature was kept at 50 °C by an 

in-house designed oven with a Peltier element and operational parameters were monitored in 

real time by the SprayQc software (Scheltema and Mann, 2012). Peptides were loaded with 

buffer A (0.1% (v/v) formic acid) and eluted with a nonlinear gradient of 5–60% buffer B 

(0.1% (v/v) formic acid, 80% (v/v) acetonitrile) at a flow rate of 300 nl/min. Peptide 

separation was achieved by 120 min gradients. The survey scans (300–1650 m/z, target 

value = 3E6, maximum ion injection times = 20ms) were acquired at a resolution of 60,000 

followed by higher-energy collisional dissociation (HCD) based fragmentation (normalized 

collision energy = 27) of up to 15 dynamically chosen, most abundant precursor ions 

(isolation window = 1.4 m/z). The MS/MS scans were acquired at a resolution of 15,000 

(target value = 1E5, maximum ion injection times = 60 ms). Repeated sequencing of 

peptides was minimized by excluding the selected peptide candidates for 20 s.

Computational MS data analysis: All data was analyzed using the MaxQuant software 

package 1.5.3.29 (Cox and Mann, 2008). The false discovery rate (FDR) cut-off was set to 

1% for protein and peptide spectrum matches. Peptides were required to have a minimum 

length of 7 amino acids and a maximum mass of 4600 Da. MaxQuant was used to score 

fragmentation scans for identification based on a search with an initial allowed mass 

deviation of the precursor ion of a maximum of 4.5 ppm after time-dependent mass 

calibration. The allowed fragment mass deviation was 20 ppm. Fragmentation spectra were 

identified using the UniprotKB Mus musculus database (UniProt, 2015), based on the 

2014_07 release, combined with 262 common contaminants by the integrated Andromeda 

search engine (Cox et al., 2011). Enzyme specificity was set as C-terminal to arginine and 
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lysine, also allowing cleavage before proline, and a maximum of two missed cleavages. 

Carbamidomethylation of cysteine was set as fixed modification and N-terminal protein 

acetylation as well as methionine oxidation as variable modifications. Both ‘label-free 

quantification (MaxLFQ)’ and ‘match between runs’ with standard settings were enabled 

(Cox et al., 2014). Protein copy number estimates were calculated using the iBAQ algorithm 

(Schwanhäusser et al., 2011).

Statistics and Data visualization

Basic data handling, normalization, statistics and annotation enrichment analysis was 

performed with the Perseus software package (Tyanova, 2016). We filtered for protein 

groups that were quantified with at least two valid values in at least one group of triplicates. 

Missing values were imputed with values representing a normal distribution (generated at 

1.8 standard deviations of the total intensity distribution, subtracted from the mean, and a 

width of 0.3 standard deviations). Differentially expressed proteins were identified by one-

way ANOVA test at a permutation-based FDR cutoff of 0.05. Enrichment for annotation 

categories was evaluated by 1D annotation enrichment or Fisher exact test to obtain a p-

value. The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium (Vizcaino et al., 2014) via the PRIDE partner repository with the dataset 

identifier PXD004671.

Immunefluorescence by confocal microscopy—T cells were isolated from thymus 

and lymph nodes with Dynabeads untouched CD4+ mouse kit (Invitrogen) according to the 

manufacturer’s instructions. Isolated cells were fixed with PFA (Histofix 4.5%, Carl Roth) 

for 10 min at RT. Immunofluorescence staining was done using rat-anti-mCD4 antibodies 

(RM4-5; BioLegend) and goat-anti-rat antibodies conjugated with AlexaFluor488 dye (Life 

Technologies). For CD3 staining armenian hamster-anti-mouse antibodies (145-2C11; 

BioLegend) were used together with biotinylated goat-anti-hamster antibodies followed by 

streptavidin-AlexaFluor488 (Life Technologies). For mTOR immunofluorescence analyses, 

mouse-anti-mTOR antibodies (215Q18; Thermo) and donkey-anti-mouse antibodies 

conjugated with AlexaFluor555 (Life Technologies) were used. For CD107b staining rat-

anti-mouse LAMP2 (M3/84; BioLegend) antibodies were used followed by goat-anti-rat 

antibodies conjugated with AlexaFluor488 dye (Life Technologies). STAT6 was stained 

using mouse-anti-mSTAT6 antibodies followed by goat-anti-mouse antibodies conjugated 

with Cy3 dye. Negative control slides were incubated with secondary antibodies only. In 

most experiments the cells were PFA-fixed and prepared with cytospin centrifuge 

(Shandon). For Foxp3 staining, T cells were aceton-fixed, incubated with rat-anti-mouse 

antibodies (eBioscience) and goat-anti-rat antibodies conjugated with AlexaFluor594 dye 

(BioLegend). Nuclei were counterstained with DAPI (Vector). Finally, cells were analyzed 

by confocal microscopy (Leica DMI6000CS).

Immunefluorescence by STED microscopy—Untouched CD4+T cells from inguinal 

lymph nodes were fixed with PFA for 10 min at RT. After permeabilization with TritonX100 

for 5 min and protein block for 10 min with 2% BSA, staining of rat anti-CD4 antibody 

(BD) and rabbit anti-C17orf59 antibody (MyBioSource) was performed. Goat-anti-rat-

STAR580 (abberior) and goat-anti-rabbit STAR635P (abberior) were used as secondary 
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antibodies. Finally, nuclei were counterstained with DAPI. Negative control slides were 

incubated with secondary antibodies only. Cells were analyzed by Abberior 3D STED 2-

Channel Super Resolution Microscope (Abberior, Göttingen). The dye STAR580 was 

excited with a 594 nm pulsed laser, STAR635p with a 640 nm pulsed laser and DAPI with a 

405 nm CW laser and depletion of STAR580 + STAR635p was done with a 775 nm pulsed 

STED laser.

Quantification and statistical analysis

Results are presented as means±SEM, as percentage, where appropriate or as summary box-

and-whisker plots indicating minimum to maximum values to demonstrate data distribution. 

For normally distributed data, Student’s t-test for unpaired values was used to compare 

independent groups. Group size estimations were based upon a power calculation to 

minimally yield an 80% chance to detect a significant difference in the respective parameter 

of P< 0.05 between the relevant groups. For all tests, a two-tailed p value of <0.05 was 

considered to be significant. Statistical significance is shown as * = P<0.05; ** = P<0.01; 

*** = P<0.001. N numbers can be found within the text and/or within the figure legends. 

Analyses were performed using GraphPad Prism 6.0.1 (La Jolla, CA) and the Statistical 

Package for the Social Sciences (SPSS 19.0; SPSS Inc., Chicago, IL).

Data and software availability

Data resources—The mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium (Vizcaino et al., 2014) via the PRIDE partner repository with 

the dataset identifier PXD004671.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Cold exposure or beta3-adrenergic stimulation induces T cell tolerance

• Beta3-adrenergic stimulation or cold exposure upregulates C17orf59 protein 

expression

• A Stat6/Pten axis links cold exposure with tolerance induction

• Foxp3+ regulatory T cells control brown adipose tissue metabolic function
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Figure 1. Frequencies and induction of regulatory T (Treg) cells in fat depots
(A) Representative FACS plots for the identification of fat-residing CD4+T cells purified 

from BAT, scWAT or visWAT of young lean female Balbc Foxp3 GFP reporter mice. CD4+T 

cells were gated on live CD14−, F4/80−, CD8a−, CD11b−, CD11c−, B220, sytox and CD4+. 

(B) Representative FACS plots for the identification of fat-residing CD4+CD25+Foxp3 

GFP+Tregs in BAT, scWAT or visWAT. (C) Box-and-whisker plots for frequencies of Foxp3 

GFP+ Tregs residing in fat-depots as indicated in B. n=22 per group from 5 independent 

experiments. (D) Representative FACS plots for in vitro Treg induction assays using limited 

TCR stimulation and naïve CD4+T cells purified from different fat depots. (E) Box-and-

whisker plots for in vitro Treg induction assays of fat-residing CD4+T cells. n=6 per group. 

(F) Box-and-whisker plots of absolute Treg numbers obtained from Treg induction 
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experiments starting with identical numbers of naïve CD4+T cells from respective fat-

tissues. n=6 per group. (G) Representative confocal microscopy images of CD4+T cells 

purified from mice upon in vivo cold exposure (4 days at 8°C). (H) Foxp3+CD3+T cells per 

high power field in samples from (G). n=8 per group. Data are shown as means±SEM from 

2 independent experiments. (I) Ex vivo Treg frequencies purified from fat-depots of young 

Balbc mice upon in vivo cold exposure (24 h at 4°C). n=9 per group. (J) In vitro Treg 

induction assays of fat-residing naïve CD4+T cells after in vivo cold-exposure (24 h at 4°C). 

n=6 per group. Data are presented as box-and-whisker plots with min and max values for 

data distribution, ** = P<0.01, *** = P<0.001.
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Figure 2. Beta-adrenergic stimulation promotes T cell tolerance
(A) Representative confocal microscopy images of CD4+T cells purified from Balbc Foxp3 

GFP reporter mice after in vivo treatment with CL (2 d, 1 mg/kg i.p.). (B) Foxp3+CD3+T 

cells per high power field in samples from (A). n=5 per group, P=0.0003. (C) Representative 

FACS plots for the identification of ex vivo CD4+CD25+Foxp3 GFP+Tregs from BAT upon 

in vivo treatment with CL (3 d, 1 mg/kg i.p.). (D) Summary graph for ex vivo Treg 

frequencies purified from fat-depots of young Balbc mice as in (C). n=6 per group. (E) 

Summary graph for in vitro Treg induction assays with naïve CD4+T cells from adipose 

tissues after in vivo treatment with CL (3 d, 1 mg/kg i.p.). n=6 per group. (F) Representative 

FACS plots for the identification of ex vivo CD4+CD25+Foxp3+Tregs from fat depots of WT 

or mice lacking all three beta adrenergic receptors (betaless mice). (G) Summary graph for 
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ex vivo Treg frequencies purified from inguinal lymph nodes of WT or betaless mice. n=11 

per group. (H) Summary graph for ex vivo Treg frequencies purified from fat depots of WT 

mice or betaless mice. n>12 per group. (I) Summary graph for in vitro Treg induction assays 

of naïve CD4+T cells purified from fat depots or inguinal lymph nodes of WT or betaless 

mice. n=6 per group. Data are presented as box-and-whisker plots with min and max values 

for data distribution or as means±SEM. * = P<0.05, ** = P<0.01, *** = P<0.001.
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Figure 3. Role of Tregs induced by ADRB3 stimulation or cold exposure for adipose tissue 
function
(A) Representative FACS plots demonstrating Treg depletion efficacy in inguinal lymph 

nodes after 3 d of mCD25 antibody treatment. (B) Representative FACS plots demonstrating 

Treg depletion efficacy in inguinal lymph nodes 48 h after administration of diphtheria 

toxin. (C) mRNA expression of genes involved in BAT function upon treatment with CL in 
vivo in the presence or absence of Tregs. Tregs were depleted using anti-CD25 depleting 

antibodies. n=6 per group. (D–F) mRNA expression of genes involved in BAT (D), scWAT 

(E) and visWAT (F) function after cold exposure (4°C, 24h) in the presence or absence of 

Tregs. Tregs were depleted in Foxp3 DTR mice by administration of diphtheria toxin. n=6 

per group. (G) In gain-of-function experiments, CD4+CD25+Foxp3GFP+Tregs were 

adoptively transferred into congenic recipients. Analyses of BAT function by qPCR was 

performed 1 wk after transfer. n=6 per group. Data are presented as box-and-whisker plots 

with min and max values for data distribution. * = P<0.05, ** = P<0.01, *** = P<0.001.
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Figure 4. Role of Stat6 in T cell tolerance of fat-residing T cells
(A) Depicted are the top 5 fold-changes for upregulated genes in CD4+T cells purified from 

brown vs. white fat by mRNA expression profiling. The cut-off for reading counts was set to 

30 and pseudogenes have been manually removed. (B) Representative confocal microscopy 

images of CD4+T cells purified from Balbc control mice or Balbc mice after in vivo 
treatment with CL (3 d, 1 mg/kg i.p.). (C) Quantitative RT-qPCR analyses of Stat6 mRNA 

abundance in CD4+T cells purified from Balbc mice upon cold exposure (1 wk, 8°C). n=4 

mice per group from 2 independent experiments. (D) Stat6 mRNA expression in CD4+T 

cells purified from BAT, scWAT or visWAT of young lean Balbc mice. n=5 mice per group. 
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(E) Representative confocal microscopy images for p-Stat6 induction in CD4+T cells from 

inguinal lymph nodes after CL treatment (3 d at 1 mg/kg i.p.) and in vivo cold exposure 

(4°C, 24 h). (F) Quantification of p-Stat6+CD4+T cells per high power field in samples from 

(E) after cold exposure. n=4 per group. (G) Quantification of p-Stat6+CD4+T cells per high 

power field in samples from (E) after CL treatment. n=4 per group. (H) Histogram of p-

Stat6 detection in pre-activated CD4+T cells after 10 nM CL stimulation for 15 min in vitro. 

(I) Representative FACS plots for the identification of ex vivo CD4+CD25+Foxp3+Tregs 

from BAT of WT or Stat6ko mice. (J) Summary graph for ex vivo Treg frequencies purified 

from fat depots of WT mice or Stat6ko mice. n=10 per group. (K) Summary graph for in 
vitro Treg induction assays of naïve CD4+T cells purified from fat depots of WT or Stat6ko 

mice. n=6 per group. (L) Summary graph for in vitro Treg induction assays of naïve CD4+T 

cells purified from BAT, scWAT and visWAT Stat6ko mice that were treated with vehicle or 

CL (3 d, 1 mg/kg) in vivo. (M) Representative FACS blots for ex vivo Treg frequencies 

purified from inguinal lymph nodes of WT mice or mice with constitutively active Stat6 

(Stat6VT mice). n=10 per group. (N) Summary graph for ex vivo CD4+CD25+Foxp3+ Treg 

frequencies purified from fat depots of Stat6VT+ or Stat6VT− mice. n=4 per group. Data are 

presented as box-and-whisker plots with min and max values for data distribution. * = 

P<0.05, ** = P<0.01, *** = P<0.001.
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Figure 5. Role of Pten in T cell tolerance of fat-residing CD4+T cells
Quantitative RT-qPCR analyses of Pten mRNA abundance in (A) CD4+T cells purified from 

BAT, scWAT or visWAT of young lean Balbc animals. n=5 per group, (B) CD4+T cells 

purified from inguinal lymph nodes after in vivo cold exposure of Balbc animals. n=5 per 

group and in (C) CD4+T cells purified from inguinal lymph nodes of Stat6ko animals, n=4 

per group. (D) Representative FACS plots identifying ex vivo CD4+CD25+Foxp3+Tregs 

from inguinal lymph nodes of WT or mice transgenetically-overexpressing Pten (PtenTg 

animals). (E) Summary graph for the identification of ex vivo CD4+CD25+Foxp3+Tregs 

purified from BAT, scWAT or visWAT of WT or PtenTg mice. n=5 per group. (F) Summary 

graph for in vitro Treg induction assays using limited TCR stimulation of naïve CD4+T cells 

purified from fat depots of WT or PtenTg animals. n=6 per group. (G) Summary graph for in 
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vitro Treg induction assays using limited TCR stimulation of naïve CD4+T cells of PtenTg 

animals in the presence or absence of ADRB3 stimulation [0.001 nM CL]. n=5 per group. 

(H) Ex vivo Treg frequencies purified from fat-depots of PtenTg mice upon in vivo ADRB3 

stimulation (3 d, 1 mg/kg CL). n=8 for PtenTg control group and n=4 for PtenTg + CL 

group. (I) Representative FACS plots for in vitro Treg induction assays with or without Pten 

inhibitor (500 nM) using naïve CD4+T cells purified from inguinal lymph nodes of WT 

mice. (J) Summary graph of Pten inhibition for in vitro Treg induction assays of naïve 

CD4+T cells purified from inguinal lymph nodes of WT animals. n=4 per group from 2 

independent experiments. Data are presented as box-and-whisker plots with min and max 

values for data distribution or as means±SEM. * = P<0.05, ** = P<0.01, *** = P<0.001.

Kälin et al. Page 42

Cell Metab. Author manuscript; available in PMC 2018 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Cold exposure or ADRB3 stimulation induces a tolerogenic proteome signature in 
CD4+T cells
(A+B) Proteins associated with selected GeneOntology terms Biological Function (GOBP) 

were grouped using unsupervised hierarchical clustering of the z-scored MaxLFQ-intensities 

across the indicated experimental groups; CL vs. NaCl (A) and cold vs. RT (B). GOBP 

annotations are depicted in purple. (C+D) Proteins associated with the Foxp3 regulatory 

network were grouped using unsupervised hierarchical clustering of the z-scored MaxLFQ-

intensities across the indicated experimental groups; CL vs. NaCl (C) and cold vs. RT (D). 

(E–G) Combined volcano plot of the pairwise comparison between CD4+T cell proteomes 

purified from cold/CL- vs. RT/NaCl-treated mice (E), NaCl- vs. CL-treated mice (F) and 
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NaCl- vs. CL-treated Stat6ko mice (G). Expression fold changes (t-test difference, log2) 

were calculated and plotted against the t-test p-value (–log10). Proteins associated with 

Foxp3 regulatory networks (red) and the C17orf59 homologue (blue) are highlighted. Their 

position on the right side of the plot indicates a higher abundance upon cold/CL- (E) or CL-

treatment (F+G). (H+I) Quantitative RT-qPCR analyses of Borcs6 mRNA abundance in 

CD4+T cells purified from mice after in vivo ADRB3 stimulation (H) or cold exposure (I). 

n=5 mice per group. Data are presented as box-and-whisker plots with min and max values 

for data distribution. * = P<0.05, ** = P<0.01.
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Figure 7. ADRB3 stimulation or cold-exposure increases C17orf59 protein expression in CD4+T 
cells
(A) Representative confocal microscopy images for C17orf59 expression of CD4+T cells 

purified from inguinal lymph nodes of mice exposed to cold in vivo (24 h, 4°C). (B) 

C17orf59+CD4+T cells per high power field in samples from CD4+T cells from (A). n=9 for 

control group at room temperature and n=6 for group at 4°C. (C) Representative high 

magnification confocal images for C17orf59 expression of CD4+T cells purified from 

inguinal lymph nodes of mice subjected to ADRB3 stimulation (3 d, 1 mg/kg CL). (D) 

C17orf59+CD4+T cells per high power field in samples from (C). n=5 per group. (E) 

Stimulated emission depletion (STED) microscopy of cytoplasmatic C17orf59 expression in 

CD4+T cells purified from inguinal lymph nodes of mice upon cold exposure. (F) 

Representative confocal microscopy images for Lamp2 and mTOR expression in CD4+T 
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cells purified from inguinal lymph nodes of mice subjected to ADRB3 stimulation or cold 

exposure in vivo. (G+H) Single cell magnifications and depiction of single stainings of 

samples from (F) after cold exposure (G) or ADRB3 stimulation (H). (I) mTOR+Lamp2+T 

cells per high power field in samples from CD4+T cells purified from inguinal lymph nodes 

of mice subjected to CL (3 d, 1 mg/kg CL). n=6 per group. (J) mTOR+Lamp2+T cells per 

high power field in samples from CD4+T cells purified from inguinal lymph nodes of mice 

subjected to cold exposure (24 h, 4°C) in vivo. n=6 per group. (K) Representative confocal 

microscopy images for C17orf59 expression in CD4+T cells purified from inguinal lymph 

nodes of WT or Stat6ko mice. (L) Negative staining control of C17orf59. Shown are 

stainings with secondary antibody in the absence of primary antibodies using CD4+T cells 

from WT mice. Data are presented as box-and-whisker plots with min and max values for 

data distribution. * = P<0.05, ** = P<0.01, *** = P<0.001.
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