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Abstract

Despite the longstanding role of radiation in cancer treatment and the presence of advanced, high-

resolution imaging techniques, delineation of voxels at-risk for progression remains purely a 

geometric expansion of anatomic images, missing subclinical disease at risk for recurrence while 

treating potentially uninvolved tissue and increasing toxicity. This remains despite the modern 

ability to precisely shape radiation fields. A striking example of this is the treatment of 

glioblastoma, a highly infiltrative tumor that may benefit from accurate identification of 

subclinical disease. In this study, we hypothesize that parameters from physiologic and metabolic 

magnetic resonance imaging (MRI) at diagnosis could predict the likelihood of voxel progression 

at radiographic recurrence in glioblastoma by identifying voxel characteristics that indicate 

subclinical disease. Integrating dosimetry can reveal its effect on voxel outcome, enabling risk-

adapted voxel dosing. As a system example, 24 patients with glioblastoma treated with 

radiotherapy, temozolomide and an anti-angiogenic agent were analyzed. Pretreatment median 

apparent diffusion coefficient (ADC), fractional anisotropy (FA), relative cerebral blood volume 

(rCBV), vessel leakage (percentage recovery), cho-line-to-NAA index (CNI) and dose of voxels in 

the T2 nonenhancing lesion (NEL), T1 post-contrast enhancing lesion (CEL) or normal-appearing 

volume (NAV) of brain, were calculated for voxels that progressed [NAV→NEL, CEL (N = 

8,765)] and compared against those that remained stable [NAV→NAV (N = 98,665)]. Voxels that 

progressed (NAV→NEL) had significantly different (P < 0.01) ADC (860), FA (0.36) and CNI 

(0.67) versus stable voxels (804, 0.43 and 0.05, respectively), indicating increased cell turnover, 

edema and decreased directionality, consistent with subclinical disease. NAV→CEL voxels were 

more abnormal (1,014, 0.28, 2.67, respectively) and leakier (percentage recovery = 70). A 

predictive model identified areas of recurrence, demonstrating that elevated CNI potentiates 

abnormal diffusion, even far (>2 cm) from the tumor and dose escalation >45 Gy has diminishing 
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benefits. Integrating advanced MRI with dosimetry can identify at voxels at risk for progression 

and may allow voxel-level risk-adapted dose escalation to subclinical disease while sparing normal 

tissue. When combined with modern planning software, this technique may enable risk-adapted 

radiotherapy in any disease site with multimodal imaging.

INTRODUCTION

Despite both advances in modern imaging and the ability to precisely deliver radiation in 

highly complex spatial distributions, defining tissue at risk for progression for radiation 

planning remains largely an empiric geometric expansion of gross tumor visualized on 

anatomic imaging sequences. This has the unintended consequences of missing subclinically 

involved tissue, adversely affecting clinical outcomes, as well as irradiating normal tissue, 

thereby increasing toxicity. While applicable to a wide array of cancers, this paradigm is 

particularly relevant to the treatment of glioblastoma, which despite advancements in both 

technology and therapeutics over the last several decades, remains one of the most 

aggressive brain tumors, with a median survival of only 12–15 months (1). This poor 

outcome is mainly due to the difficulty of defining and treating the full extent of this highly 

infiltrative (2) tumor while sparing uninvolved brain. Although advanced imaging and 

surgical techniques combined with radiation and chemotherapy have improved outcome (3–

5) with more conformal radiotherapy techniques (6) having enhanced the ability to deliver 

targeted radiation, recurrences remain largely local with 90% occurring within 2 cm of the 

original tumor (7, 8). To further complicate matters, the advent of anti-angiogenic agents, 

both in the upfront (9, 10) and recurrent settings (11), is changing the pattern of recurrence, 

with tumor often recurring as a nonenhancing, diffusely invasive phenotype (12). Despite 

these factors, current treatment planning guidelines for high-grade gliomas still do not take 

into account any magnetic resonance (MR) imaging beyond conventional post-contrast T1-

weighted and T2-weighted FLAIR sequences when prescribing the cumulative radiation 

dose to be delivered. An improved method of risk-adapted radiotherapy based on a voxel’s 

likelihood of progression is becoming imperative.

Significant recent advances in physiologic and metabolic imaging using MR (13, 14) enable 

voxel-level characterization of the brain parenchyma beyond the traditional anatomic T1 and 

T2 sequences, allowing visualization of cellular-level parameters that are indicative of tumor 

involvement. Subclinical invasion results in increased edema and decreased directionality 

along white matter tracts reflected by an increased apparent diffusion coefficient (ADC) and 

decreased fractional anisotropy (FA), respectively. Dynamic susceptibility contrast (DSC) 

perfusion-weighted imaging (PWI) facilitates assessment of the vasculature in terms of the 

amount or size of blood vessels (relative cerebral blood volume or rCBV) and leakiness 

(percentage recovery) that is typical of the poor tumor neovasculature and reflected by an 

increase in rCBV and decrease in percentage recovery, respectively. 1H magnetic resonance 

spectroscopic imaging (MRSI), specifically using the choline-to-NAA index (CNI), allows 

visualization of cellular turnover associated with tumor growth. The combination of these 

techniques provides more detailed information regarding tumor burden (15, 16) and 

malignant behavior, and has been closely associated with both progression-free (17) and 

overall survival (18). While the use of these parameters can aid in identifying voxels that are 
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likely to progress and facilitate the delineation of at-risk areas for radiation treatment 

planning, there is currently no method for integrating voxel-level metabolic and physiologic 

characteristics with dosimetry to guide clinicians in prescribing the optimal dose per voxel.

The goal of this study was to demonstrate a technique for integrating dosimetry and 

multiparametric imaging that consisted of pre-radiotherapy metabolic and physiologic MRI 

to both identify voxels at risk for progression and create a model for risk-adapted 

radiotherapy planning. This report hypothesizes that there would be anatomically normal-

appearing voxels that harbor subclinical disease and would therefore have physiologic and 

metabolic characteristics more similar to abnormal voxels. To identify anatomically normal-

appearing voxels at risk for progression, we integrated spectroscopic, diffusion- and 

perfusion-weighted MRI parameters with dosimetry to detect voxel-level subclinical disease 

at diagnosis and predict the likelihood of voxel progression at radiographic recurrence. 

Incorporating dosimetry can also reveal its effect on voxel outcome, enabling risk-adapted 

voxel dosing.

MATERIALS AND METHODS

Patient Population

A total of 24 patients with newly diagnosed primary glioblastoma, whose radiation 

dosimetry maps were available, were retrospectively examined in this study. All patients had 

undergone surgical resection and subsequently participated in one of two clinical trials that 

consisted of treatment with a standard six-week cycle of external beam radiation and 

concurrent and adjuvant chemotherapy with temozolomide [75 mg/m2 daily during 

radiotherapy and 200 mg/m2 for five days every 28-day cycle after radiotherapy based on the 

Stupp regimen (5)] plus agents that have anti-angiogenic properties. Eleven patients were 

treated with enzastaurin (250 mg daily) (19, 20), while 13 patients received erlotinib (150 

mg/day continuously or 500 mg/ day continuously if on anti-epileptic drugs starting on day 

1 of radiotherapy) and bevacizumab (10 mg/kg every 14 days starting in week 2 of 

radiotherapy). Patient ranged from 25 to 70 years of age, with a median of 52 years old. To 

be included in the study, patients had to have a Karnofsky performance score of at least 60, 

while those who discontinued therapy because of adverse effects were excluded. All patients 

provided informed consent in accordance with guidelines established by our Institutional 

Review Board.

Patients had baseline (after surgical resection, before radio- and chemotherapy) imaging that 

included diffusion-weighted imaging (DWI), DSC-PWI and MRSI. One patient did not have 

PWI at the baseline scan. Patients received follow-up imaging examinations approximately 

every two months. Radiographic progression was defined by an experienced 

neuroradiologist in concurrence with a multi-interdisciplinary tumor board. To address the 

potential for pseudoprogression, the clinical histories of patients who either progressed 

within 12 weeks of the completion of radiotherapy or had a suspect scan followed by stable 

disease were centrally re-reviewed by a neuro-oncologist. If reoperation was performed, true 

progression in the location of recurrence was confirmed according to the recommendations 

of Wen et al. (21). Based on these criteria, none of the patients in this study exhibited 

pseudoprogression.

Anwar et al. Page 3

Radiat Res. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MR Image Acquisition

All MR data were acquired on a 3T GE scanner (GE Healthcare, Waukesha, WI) with an 8-

channel head coil. Anatomic MR imaging included axial T2-weighted fluid attenuated 

inversion recovery (FLAIR) and T1-weighted pre- and post-gadolinium (Gd) spoiled 

gradient echo (SPGR) images. Diffusion-weighted images were acquired with a 6-

directional axial diffusion-weighted echo-planar imaging (EPI) sequence with b = 1,000 

s/mm2 and 4 NEX, while DSC-PWI consisted of collecting a series of 80 T2*-weighted EPI 

images [TR/TE/flip = 1,500 ms/54 ms/35, 128 × 128 matrix, field of view (FOV) = 24 × 24 

cm, 4 mm slice thickness] acquired before, during and after the bolus injection of 0.1 

mmol/kg of body weight Gd-DTPA intravenously at the speed of 5 ml/s. Lactate-edited 3D 

point resolved spectroscopy (PRESS) 1H-MRSI data were obtained using the parameters 

described by Park et al. (16), including a flyback echo-planar readout gradient in the 

superior–inferior (SI) dimension and an over-PRESS factor of 1.5 with very selective 

saturation (VSS) bands to avoid chemical shift artifacts (repetition time/echo time = 

1,104/144 ms, FOV = 16 × 16 × 16 cm, voxel size = 1 × 1 × 1 cm, total acquisition time = 

9.5 min, 712 dwell points and 988 Hz bandwidth). Anatomic images were used to define the 

PRESS region, which covered the lesion and 200–300 cc of normal tissue and avoided areas 

with sharply varying magnetic susceptibility and lipid contamination. Additional VSS bands 

were utilized to suppress residual lipid signals.

Within Exam Image Processing

All imaging and spectroscopic data were transferred offline to a Linux workstation. The 

FLAIR and pre-Gd T1-weighted images were rigidly aligned to the post-Gd T1-weighted 

images using previously developed software (22). Regions of interest (ROI) included 

normal-appearing white matter (NAWM), the contrast enhancing lesion (CEL), and the 

nonenhancing lesion (NEL), which was defined as the CEL subtracted from the T2-

hyperintense lesion. CEL regions were manually defined on the co-registered post-Gd T1 

SPGR images, excluding enhancement that was also present on the pre-Gd T1 images. The 

T2-hyperintense lesion was segmented based on the hyperintense signal on FLAIR images 

using a semiautomatic method (23). The resection cavity was excluded from all ROIs. 

NAWM was segmented automatically using a hidden Markov random field model with an 

expectation-maximization algorithm (24) on the pre-Gd T1 images.

ADC values were calculated on a voxel-by-voxel basis using software based on previously 

published algorithms (17), after alignment to the T2-weighted (b = 0) diffusion image to the 

T2-weighted FLAIR (25, 26). Perfusion datasets were nonrigidly aligned to the precontrast 

T1-weighted images using the VTK CISG software package (15) and rCBV, peak height and 

percentage recovery values were calculated for each voxel using software developed by our 

group. CBV was calculated by fitting the dynamic perfusion data by a modified gamma-

variate function with a recirculation parameter, while peak height of the ΔR2* curve and 

percentage recovery were estimated nonparametrically. The spectroscopic data were 

processed using custom-designed software, described elsewhere (27), to generate maps of 

choline-to-NAA index (CNI) (28), a metric developed to describe the deviation of choline 

and NAA in regions of tumor relative to values in regions of normal brain tissue from the 

same individual. It is calculated using an iterative regression procedure, which eliminates 
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outliers that correspond to tumor by first estimating the ratio of Cho and NAA in “normal” 

brain from the slope of the line through the remaining voxels, and then defining the CNI for 

each voxel by its distance from the regression line divided by the standard deviation of the 

distance of normal voxels from the regression line. All spectroscopic voxels were visually 

inspected and manually excluded using SIVIC (29) if an unquantifiable low signal-to-noise 

ratio or artifacts were present. Only remaining voxels in the white matter were used for the 

analysis of normal-appearing voxels (NAV).

Inter-Exam Image Registration

The planning CT (pCT) was first rigidly aligned to the baseline precontrast T1-weighted 

image using FLIRT (26, 30), and the same transformation matrix was applied to the aligned 

dosimetry from MIM Vista (MIM Software, Cleveland, OH). Precontrast, T1-weighted 

images from the one- or two-month scan were used to correct for tissue shift around the 

tumor cavity through nonlinear registration [FNIRT (31)] to the baseline T1-weighted 

image. All images and associated ROIs from the progression scan were then rigidly aligned 

to the corrected T1-weighted intermediate image from the one- or two-month scan, 

providing a one-to-one mapping of voxels from the recurrence to the baseline scan. To 

mitigate errors due to alignment, all imaging, dosimetry data and CNI maps were resampled 

to 5 mm × 5 mm × 3 mm.

Voxel Classifications

Voxels were separated into three categories based on baseline anatomical imaging: 1. 

normal-appearing voxels (NAV; those that were outside of the CEL and NEL but within 

NAWM); 2. enhancing abnormal voxels (those within the CEL); and 3. nonenhancing 

abnormal voxels (those within the NEL). Histograms of each imaging parameter were 

plotted for each voxel category and for the subset of normal-appearing voxels at baseline 

that later progressed (defined as converting to either CEL or NEL tissue). Progressed voxels 

from NAV to NEL were grouped with those that progressed to CEL in this population 

because patients receiving anti-angiogenic therapy typically progress with a nonenhancing 

T2 lesion (21). For the latter, initial voxel categories were combined into four groups based 

on their category at both baseline and recurrence as shown in Fig. 2. Stable-NAV, or normal 

voxels, were defined as NAV voxels at both baseline and recurrence. Voxels that progressed 

consisted of those that progressed from either the NAV to NEL, NAV to CEL or NEL to 

CEL. Stable-nonenhancing (stable-NEL) voxels were defined as voxels in the NEL at 

baseline and recurrence, while stable-enhancing (stable-CEL) voxels were defined as voxels 

in the CEL at baseline and recurrence.

Data Analysis and Statistics

To determine whether a statistically significant difference existed among voxels in each 

voxel classification category, the median of each imaging parameter was computed for each 

category per patient as long as the classification region contained at least five voxels for that 

patient. For some categories, such as CNI within the CEL, this resulted in less than 24 

patients available for analysis. Patient medians among groups were then compared using a 

Wilcoxon signed rank test. Within these groups, we further stratified for risk in both normal 

and progressing voxels by distance from the primary tumor. The distance of voxels that 
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progressed to the NEL were measured from the original T2 lesion boundary, and those that 

progressed to the CEL were measured from the edge of the CEL. Voxels were subdivided as 

either greater or less than 2 cm from the primary lesions based on the current definition for 

radiation treatment margins.

Predicting the Probability of Recurrence

To generate a model of the probability of recurrence, voxels were subdivided according to 

distance from the primary lesion and physiologic imaging parameters. Voxels were first 

subdivided by risk (with low and high risk being defined as 0–2 cm and 2–4 cm away from 

the primary lesion, respectively), and then binned by parameters found to be statistically 

significantly different among voxel classes, which included ADC, FA and CNI. Perfusion 

values did not reach the P < 0.2 cutoff for inclusion into the model. Voxels outside the 

respective PRESS box for a patient were not incorporated in the analysis that required both 

diffusion and spectroscopy. A distance cutoff of 4 cm from the primary lesion was used. 

ADC values were binned at 100-unit interval bins between 600 and 1,100, FA values at 0.05-

unit increments between 0.2 and 0.55, and CNI at unit-intervals between 0–4. Voxel values 

outside of these ranges were assigned to the closest minimum or maximum bin values. The 

positive predictive value (PPV) was calculated as the percentage of voxels that recurred in 

each “bin”. To generate a predictive map for a particular patient, the values from the 23 other 

patients were used to generate the PPV matrix (leave-one-out cross-validation or LOOCV), 

then each voxel for the patient of interest was mapped to the appropriate PPV value by its 

distance (< or >2 cm), ADC, FA and CNI value.

Multinomial Model Integrating Dosimetry to Estimate the Likelihood of Voxel Progression

To integrate the effect of radiation on the likelihood of voxel progression, distance and dose 

were incorporated into a multinomial logistic regression model (MLRM). Univariate 

regression analysis was first performed for each variable and only parameters with P < 0.05 

were used in the multivariate analyses. Consistent with our other analyses, perfusion 

parameters did not meet the required significance level to be analyzed in the multivariate 

model. A MLRM using the remaining variables was implemented using the R statistical 

software package, with the mlogit package [Eq. (1)], which enabled voxels from the same 

patient to be modeled as a random effect. Because the dose is planned according to distance 

from the tumor, we also included the interaction of dose and distance. Distance from the T1 

and T2 lesions for each voxel was calculated as a continuous variable for this model. The 

likelihood of recurrence is expected to decrease as a function of increasing distance (1/

min_dist) and with increasing dose (1/dose), and is reflected in the model.

Using LOOCV, individual voxel parameters of 23 training patients were combined according 

to Eq. (1), to provide a probability score per voxel based on the diffusion (ADC, FA), 

spectroscopy (CNI), distance from the edge of the baseline tumor volume and dose. The 

coefficients were determined by the best fit to the known results of each voxel within the 23 

training patients, and the per-voxel PPV score was computed for the 24th patient by using 

the derived coefficients for each term in Eq. (1) (ADC, FA, CNI, distance and dose of each 

voxel) and solving the model equation for the 24th patient. To guard against overfitting, 

Akaike information criterion (AIC) was implemented in R software program, where the 
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optimal model was determined by repeated backwards-variable selection of the terms of the 

model until only a single model remained. The most accurate model was then selected and 

used to calculate the final predicted likelihood of recurrence per voxel for that patient.

This procedure was iteratively repeated for all patients, and the combined results were 

quantified using a receiver-operator-curve (ROC), and the area under the curve (AUC).

(1)

RESULTS

Patient Characteristics and Outcomes

Patient characteristics are shown in Table 1. The cohort of 15 males and 9 females had a 

median progression-free survival and overall survival of 10.8 (range: 1.7–29.7) and 18.4 

(range: 8.7–59.2) months, respectively. Although no significant difference in overall survival 

was found between the two treatment groups, the subset of patients eligible for this study 

treated with enzastaurin did worse than those treated with bevacizumab and erlotinib 

[median overall survival 14.1 (95% CI; 9.8–29.3) vs. 20.6 (16.4–44.5) months; median 

progression-free survival 4.8 (1.9–9.6) vs. 12.6 (11–23) months].

Patterns of Recurrence

Voxel characteristics are shown in Table 2. A total of 117,418 white matter voxels in 24 

patients were available for analysis, of which 107,430 were NAV at baseline, while 7,669 

were in the NEL and 2,319 in the CEL. The voxels in each category per patient are listed in 

Supplementary Table S1 (http://dx.doi.org/10.1667/RR14662.1.S1). As expected, the 

majority of voxels (98,665) belonged to the stable-NAV group, representing either voxels 

with no subclinical involvement or voxels that were appropriately treated. The remaining 

NAV voxels at baseline were either NAV to NEL (8,022) or NAV to CEL (743). An 

additional 132 voxels in the NEL that progressed to the CEL were included in the 

progressed group. For voxels that were initially NAV at baseline, but part of the NEL and 

CEL at recurrence, the vast majority (90%) were nonenhancing, consistent with the known 

phenotype of nonenhancing recurrence in the setting of anti-angiogenic agents (32, 33). For 

the voxels that progressed into the NEL (N = 8,022), 77 and 95% recurred within 2 and 4 cm 

from the original T2 lesion, while 23% of voxels resided outside of the traditional 2-cm 

treatment boundary, highlighting the need for the identification of at-risk areas. Similarly, 

20% of voxels recurring in the CEL were greater than 2 cm from the original CEL lesion, 

with 81 and 90% recurring within 2 and 4 cm, respectively. Figure 1 shows the patterns of 

recurrence as a function of distance (Fig. 1A and B) and dose (Fig. 1C and D) for voxels 

initially normal that progressed to the NEL and CEL. The vast majority of voxels within the 
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60 Gy isodose line progressed to the CEL, while those that progressed to the NEL had a 

more heterogeneous dose distribution.

Physiologic and Metabolic Characteristics of Voxels

Figure 2 shows the distribution of voxels for each imaging parameter as a function of their 

baseline and recurrence state. As expected, the voxels in NEL or CEL at baseline and 

recurrence had increased edema (Fig. 2A and D, panels i and ii, respectively), represented as 

a markedly elevated ADC and decreased FA when compared to normal voxels (panel iv). 

These effects were more pronounced in voxels within the CEL than the NEL, representing 

greater tumor burden. The CNI (Fig. 2C) was significantly elevated for voxels in the NEL 

and CEL compared to normal voxels, indicating more rapidly-dividing cells in these lesions. 

NAV voxels at baseline that progressed to NEL or CEL at recurrence had parameter values 

in between normal voxels and grossly pathologic voxels with elevated CNI and ADC and 

reduced FA, indicating subclinical involvement. Conversely, perfusion parameters were not 

significantly different for voxels that progressed compared to the stable-NAV group, as 

shown by the percentage recovery and rCBV values shown in Fig. 2B and E.

To more robustly identify parameters that are statistically significant for voxels that 

progress, histograms of parameter values were also analyzed per patient, as shown in Fig. 3 

for NAV voxels progressing to CEL (left-side column) and NEL (center column) at 

recurrence, and compared to parameter values for stable, normal-appearing voxels (right-

side column). For voxels that progressed to the NEL, statistically significant differences 

were observed for FA, ADC and CNI, with NAV voxels at baseline that exhibited decreased 

FA, increased ADC and increased CNI having a greater likelihood of progression. While 

voxels progressing into the NEL had no significant perfusion changes over stable-NAV, 

interestingly, voxels progressing into the CEL had a significantly lower percentage recovery 

from the perfusion data.

Discrete Model to Predict Recurrence

To predict the likelihood of a voxel progressing to the NEL or CEL from imaging 

parameters obtained at baseline, we constructed a model based on the statistically significant 

parameters (FA, ADC and CNI) identified by univariate regression analyses. A total of 

21,140 voxels normal at baseline had both diffusion and spectroscopy data, of which 3,575 

represented progressed voxels. Within the traditional 2-cm boundary, 9,329 voxels had 

diffusion and spectroscopy data, of which 2,920 progressed. Outside of the 2-cm boundary, 

655 of the 11,811 voxels with both diffusion and spectroscopy data progressed.

Figure 4A and B shows the PPV of voxels between 0 and 2 cm, and >2 cm as a function of 

diffusion parameters and increasing CNI. CNI had a strong effect on the likelihood of 

progression both within and outside of the irradiated volume, even for voxels with normal 

diffusion parameters. The PPV grew with increasingly abnormal diffusion parameters, with 

elevated CNI potentiating the effect. For voxels >2 cm from the boundary of the standard 

radiation field with normal physiologic and metabolic parameters, the likelihood of 

progression was almost zero, while in voxels with elevated CNI, those with abnormal 

diffusion parameters exhibited a higher PPV. Voxels with a CNI value greater than 4 were 
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likely to progress regardless of diffusion value. When using a model for the likelihood of 

progression that only utilized diffusion and spectroscopy (not distance), an AUC of 0.68 was 

achieved. Incorporating distance as a binary category (≤2 or >2 cm) increased the AUC to 

0.75.

Continuous Model to Predict Recurrence

The model described by Eq. (1), all terms were significant in all iterations, except for “FA/
(dose × min_dist)” in 5 of the 24 patients (see Fig. 4C for results of the model). The 

likelihood of progression is shown on the Y-axis as a function of varying a single parameter 

on the X-axis for each NAV, at distance of both 1 and 3 cm from the initial tumor. The 

remaining baseline parameters were set at the median values of the normal voxels (ADC = 

806, FA = 0.42, CNI = 0.10, dose = 33 Gy) so the effect of varying a single parameter could 

be visualized. The likelihood of progression increased with elevated ADC, decreased FA and 

increased CNI, with both increasing distance and dose significantly decreasing the 

likelihood of progression. Notably, an incremental increase in dose had the greatest effect in 

the low-dose region (<45 Gy), with diminishing benefit on the likelihood of recurrence for 

higher doses. The results of the ROC analysis yielded an AUC of 0.76.

To illustrate the utility of the model in treatment planning, we applied it to create PPV maps 

for the three examples shown in Fig. 5. Figure 5A represents an example where the 

increased likelihood of recurrence predicted by the model extends across the white matter 

tracks of the corpus callosum to the contralateral hemisphere corresponding to the T2-

hyperintensity lesion at recurrence, and reflects the effects of increased CNI and decreased 

FA despite being located within the high-dose region. Figure 5B shows a representative case 

where the likelihood of recurrence corresponds to the area of elevated CNI at baseline and 

dose <60 Gy, and correctly identifies the new T2 lesion at recurrence. Figure 5C shows the 

ability of the model to predict a distant recurrence in the low-dose region where 

spectroscopy was not available. In this example, the model predicted recurrence based on 

diffusion, dose and distance parameters only, whereby the region of low dose drove an 

increased risk of recurrence in the contralateral frontal lobe that corresponded to the new T2 

lesion at recurrence.

DISCUSSION

Radiotherapy is an essential component of treatment for high-grade gliomas, providing a 

proven overall survival benefit. Despite increases in dose and variation in the radiation 

volume, recurrences remain largely local and controversy remains over the correct definition 

and dose of at-risk voxels, as demonstrated in the differing criteria of two large cooperative 

groups [RTOG and EORTC (34)]. Notwithstanding advances in modern imaging, 

radiotherapy is primarily guided by anatomic T1 and T2 sequences, with guidelines 

suggesting a purely geometric expansion, bounded by anatomic barriers. This geometric 

expansion often leads to irradiation of normal brain tissue, affecting cognitive sequela (35) 

and quality of life (36), while underdosing at-risk voxels outside the traditional 2-cm 

boundary. While our results showed that the majority of voxels recurred within 2 cm of the 

primary tumor T2 lesion boundary, which is consistent with previously reported studies, we 
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found that 25% of voxels recurred outside this margin. This illustrates the importance of 

identifying at-risk voxels outside of the traditional irradiated margin. We also found that 

75% of voxels within the 2-cm margin did not progress, representing either appropriately or 

over-treated voxels with no significant subclinical involvement. With the advent of novel 

systemic agents that can potentiate the effect of radiotherapy, it has become crucial to 

correctly identify voxels at risk for progression to accurately target radiation.

Despite advances in modern imaging and radiation delivery, current treatment strategies do 

not integrate physiologic and metabolic imaging to guide dose and spatial distribution in 

radiotherapy. Incorporating multi-modal imaging can potentially enable voxel-level, risk-

adapted radiation treatment by identifying voxels with subclinical disease that have a high 

likelihood of recurrence outside of the traditional high-risk area. In addition, this approach 

may help to determine which voxels within the traditional radiation margins have a low 

chance of recurrence. The creation of a voxel-level predictive map, based on quantitative 

imaging parameters and dose to each voxel developed in this study, can enable future risk-

adapted radiotherapy, potentially increasing local control while mitigating toxicity. To our 

knowledge, this is the first effort to model an individual voxel’s likelihood of recurrence 

before treatment to provide a framework for future risk-adapted radiation treatment 

planning.

Although other studies have analyzed the effect of physiologic characteristics within the 

tumor itself (37, 38), we have demonstrated how abnormal baseline physiologic and 

metabolic imaging metrics in otherwise anatomically normal-appearing tissue can be used 

along with planned dosimetry information to predict a voxel’s likelihood of future 

recurrence. Our results confirmed the hypothesis that voxels at risk for progression would 

harbor subclinical disease and therefore have physiologic and metabolic parameters, which 

were in between voxels, that were completely normal and grossly pathologic by indicating 

that the combination of ADC, FA and CNI can identify normal-appearing voxels at baseline 

likely to progress at recurrence. The amount of cell turnover, as indicated by elevated CNI, 

had the greatest effect of a voxel’s likelihood of progression, significantly potentiating the 

effect of abnormal diffusion parameters.

The observed elevation of the ADC in NAV at baseline that was associated with an increased 

likelihood of recurrence suggests that measured ADC values were dominated by the 

presence of subclinical edema caused by microscopic disease infiltration. Our results also 

showed that increased dose decreased the likelihood of progression, but had diminishing 

benefits with higher doses, consistent with the failure of dose-escalation studies above 60 

Gy. For voxels recurring in the nonenhancing lesion, no effect of perfusion parameters on 

the likelihood of progression was seen. These findings are consistent with the notion that 

subclinical disease involves small populations of infiltrative cells that have not yet formed 

neovasculature, or could be due to the vascular normalization that results from anti-

angiogenic therapy. However, for the small subset of normal voxels that progressed to the 

CEL at recurrence, the amount of vessel leakiness (represented by reduced percentage 

recovery) was significantly elevated in these voxels, indicating that neovasculature had 

already begun to form.
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The prediction of disease recurrence was made more challenging by treatment with agents 

that have anti-angiogenic properties and result in a more diffuse and infiltrative recurrence 

pattern (39). In this study, the vast majority of voxels that progressed became nonenhancing 

tumor, consistent with the use of an anti-angiogenic agent. The predominance of voxels 

recurring in the NEL, the associated lack of perfusion abnormalities, and the elevated rather 

than reduced ADC in NAV at baseline being associated with an increased likelihood of 

recurrence, were likely the result of the concomitant anti-angiogenic therapy our cohort 

received. Because our findings were based on a population that used an upfront anti-

angiogenic agent [a strategy explored in recent clinical trials (9, 10)], the model generated 

may not be directly applicable to patients undergoing standard therapy (5) for glioblastoma. 

Nonetheless, the methodology and model developed here can be easily trained on and 

applied to other cohorts of irradiated patients treated with different adjuvant therapies. 

Although two agents with different mechanisms of action and potentially distinct patterns of 

recurrence were utilized, the baseline images used to predict recurrent voxels were obtained 

before the administration of all therapy and were free of the effects of the treatments.

Despite the potential impact of our results on radiotherapy planning, there are several 

methodological limitations to this study. The accuracy of the model is mostly limited by the 

fact that not all voxels are equally represented across the entire range of parameters (for 

example, spectroscopy data was not routinely obtained for voxels far from the tumor) and 

the fact that guidelines for radiotherapy planning are relatively standardized. The latter 

results in a somewhat homogeneous dose distribution across patients (for example, 60 Gy to 

the CEL and 45–60 Gy to the NEL) with lower doses to voxels far from the tumor. This in 

turn may limit the reliability of the model in areas not well represented within the data set, 

such as high-dose voxels far from the tumor or low-dose voxels close to the tumor. While 

this limitation is most pronounced in the discrete model, the MLRM model still enables us 

to derive trends based on the existing data. Future prospective studies that accrue additional 

patients would add increasing diversity to the dataset, which could improve the ability to 

identify voxels likely to progress, and could take advantage of the improved MRSI 

acquisition schemes that include automatic prescription with larger fields of view that have 

since become routine in serial studies. In addition, methods to achieve higher resolution 

MRSI data should also be considered for this application. A final source of error inherent to 

such voxel-level serial analyses originates from aligning images from two different time 

points and is exacerbated by tissue shift around the tumor cavity. However, we minimized 

error due to registration by resampling all images to a lower (5 × 5 mm) resolution and using 

the two-month scan as an intermediate image in the alignment to accommodate shifting 

morphology after surgery.

In conclusion, in these data, we have shown that voxels outside of the contrast enhancing 

and T2 lesions that are likely to recur have a significantly different physiologic and 

metabolic signature than voxels that do not progress. Using a model that combines 

dosimetry, distance and quantitative metrics obtained from physiologic and metabolic MRI, 

we were able to both generate maps that are predictive of the likelihood of progression, and 

model the decreased likelihood of progression with increasing dose. The framework 

provided can be applied in future studies of larger cohorts of patients to evaluate the 
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potential of voxel-level, risk-adapted radiotherapy planning strategies in improving survival 

and quality of life.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG 1. 
Patterns of recurrence. Panels A and B: Distribution of normal appearing voxels (NAV) that 

progressed to the NEL or CEL versus the distance from the initial nonenhancing or 

enhancing tumor. Panels C and D: Distribution of progressing voxels as a function of 

radiation dose.
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FIG 2. 
The distribution of voxel parameters value by voxel type and parameter, with stable 

enhancing [stable-CEL (panel i)] and nonenhancing [stable-NEL (panel ii)] tumor, 

compared with NAV voxels that progress (panel iii) and those that remain uninvolved 

[stable-NAV (panel iv)]. Voxels from all patients were concatenated into a single dataset. 

Median values are shown for each parameter and voxel type. Panel A: Apparent diffusion 

coefficient; panel B: percentage recovery; panel C: choline to NAA index; panel D: 

fractional anisotropy; panel E: relative cerebral blood volume; and panel F: radiation dose.
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FIG 3. 
Box plots of the median value of each patient’s voxels, by parameter, that progress from the 

NAV at baseline to the CEL and NEL, and remain as stable NAV, respectively, at recurrence. 

Panel A: Apparent diffusion coefficient; panel B: percentage recovery; panel C: choline to 

NAA index; panel D: fractional anisotropy; panel E: relative cerebral blood volume; and 

panel F: radiation dose.
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FIG 4. 
Likelihood of progression [positive predictive value (PPV)] of voxels NAV at baseline 

progressing into the NEL or CEL at recurrence, as function of voxel parameters. Panels A 

and B demonstrate the PPV of voxels using the discrete model, whereby voxels are 

subdivided by their distance from the primary tumor (panel A: 0–2 cm; and panel B: 2–4 

cm) and their CNI values (top). Within each group of voxels with similar CNI values and 

distance from the primary tumor, the PPV is calculated for voxels as a function of ADC and 

FA. Panel C shows the results of the continuous model [Eq. (1)], whereby the effect of a 

single parameter on the PPV is illustrated by sweeping through a range of values while 

holding all other parameters constant. This is done for a voxel at 1 and 3 cm, illustrating the 

strong effect of distance on likelihood of recurrence.
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FIG 5. 
Panel A: Baseline T2 and FA (left side, bottom) showing tumor in the left frontal lobe 

(abutting the falx cerebri) with corresponding T2 hyperintensity and disruption in white 

matter tracts. Spectroscopy from the same baseline scan is overlaid on FLAIR MRI (left 

side, top) showing increased CNI extending to the contralateral lobe. The likelihood of 

recurrence predicted from the model is mapped onto the recurrent FLAIR image on the two 

different slices with the corresponding dosimetry (right side), correctly predicting recurrence 

along the genu of the corpus callosum (yellow arrows). Panel B: Another example in a 

different patient showing a local recurrence predicted in the high-dose area. The baseline 
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FLAIR, ADC and FA are shown, and the map of likelihood of recurrence (i.e., probability 

map) highlights an area just superior to the initial tumor with elevated CNI (white arrows). 

This corresponds to the area of recurrence seen on FLAIR, despite being in the high dose 

region. Panel C: A third example showing recurrence far from the original tumor. The top 

slice shows the baseline tumor on FLAIR overlaid with a large radiation field. The bottom 

slice shows the recurrent FLAIR image overlaid with the probability map, correctly showing 

recurrence at the contralateral frontal lobe, in a low-dose region (blue arrows).
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TABLE 1

Patient Characteristics

Trial All Bevacizumab Enzastaurin

N 24 13 11

Age (years) 52 51 57

Progression-free survival (days) 323 377 142

Overall survival (days) 552 619 422

Male 15 6 9

Female 9 7 2

GTR 11 7 4

STR 11 5 6

Biopsy 2 1 1
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